
2D Graphics

John E. Laird
Based on “Tricks of the Game-

Programming Gurus” pp.72-109
Lots of obvious observations that make

drawing easy

Vector Graphics

Directly control
electronic gun of CRT

•Drawings defined as lines
•Lines stored as endpoints
•Look like wireframes
•No curved lines
•Limited variation in color or intensity.

History of 2D graphics: Vector
• Example: Asteroids, Battlezone

• http://www.squadron13.com/games/asteroids/asteroids.htm

• Advantages:
• Control the electronic gun directly so can be fast
• Only draw what is on the screen
• No jagged lines (aliasing).
• Only store endpoints of lines

• Problems:
• Best for wireframes.
• Must draw everything as lines: text, circles, surfaces, ...
• $$’s: Can’t use commercial TV technology

• Example Displays:
• Textronics, GDP

http://www.squadron13.com/games/asteroids/asteroids.htm
http://home.xnet.com/~patster/astpd5.jpg

Raster Graphics
• Advantages:

• Cheaper
• Can easily draw solid surfaces
• Maps screen onto 2D memory
• Can move blocks of image around, control individual pixels

• Problems:
• Memory intensive
• Aliasing problems

• Example:
• VGA =

• 640 x 350 with 16 colors
• 320x200 with 256 colors

Raster Graphics

Screen is made up of
“picture elements” =
pixels.

Color defined by
mixture of 3-guns: Red,
Green, Blue

Current Approach
• Use Raster Graphics as underlying technology

• Memory is cheap
• Get access is every point on the screen

• Create drawing primitives similar to those in vector
graphics
• Drawing lines

• Support surfaces, textures, sprites, fonts, etc. directly

• Sprites vs. Graphics??

2D Graphics

• Points
• x,y

• Lines
• Two points
• Draw by drawing all points in

between
• Low-level support for this in

hardware or software

4,4

-2,-1

Coordinate System
(0,0)

+y

+x

(120,120)

Polygons

• Defined by vertices
• Closed: all lines connected
• Draw one line at a time
• Can be concave or convex
• Basis for many games

• Required data:
• Number of vertices
• Color
• Position: x, y
• List of vertices

• Might be array with reasonable max

moveto(100,100)
lineto(100,300)
lineto(500,300)
lineto(500,100)
lineto(100,100)

100,100

Positioning an object
• Problem: If we move an object, do we need to change

the values of every vertex?
• Solution:

• World coordinate system for objects
• coordinates relative to screen

• Local coordinate system for points in object
• coordinates relative to the position of the object

Triangle location: 4,0
P1: 0, 1
P2: -1, -1
P3: 1, -1

P1

P3P2

Translation: Moving an Object
• To move an object, just add in changes to position:

• xo = xo + dx
• yo = yo + dy

• If have motion, the dx and dy are the x and y
components of the velocity vector.

Velocity Vector: V

dx = cos v
x0, y0

dy = sin v

Scaling: Changing Size
• Multiply the coordinates of each vertex by the scaling

factor.
• Everything just expands from the center.
• object[v1].x = object[v1].x * scale

• object[v1].y = object[v1].y * scale

Rotation: Turning an object
• Spin object around its center in the z-axis.
• Rotate each point the same angle

• Positive angles are clockwise
• Negative angles are counterclockwise

• new_x = x * cos(angle) - y * sin(angle)

• new_y = y * cos(angle) + x * sin(angle)

• Remember, C++ uses radians not degrees!

Matrix Operations

• Translation, rotation, scaling can all be
collapsed into matrix operations:

• Translation:

• Scaling:

• Rotation:

1 0 0

0 1 0

dx dy 1

x y 1 *

sx 0 0

0 sy 0

0 0 1

cos -sin 0

sin cos 0

0 0 1

sx, sy =
scaling values

Putting it all together

sx*cos -sx*sin 0

sy*sin sy*cos 0

dx dy 1

Common Problems: Flicker
• Too slow updating
• Change video buffer during updating.
• Solution:

• Double buffering -- write to a “virtual screen” that isn’t being
displayed.

• Either BLT buffer all at once, or switch pointer.

Video
Buffer

Backup
Buffer

Video Pointer

Speed Issues (Gone)
• Using regular drawing routines

• Original Microsoft graphics library (GDI) was quite slow
• Not a problem now – DirectX is ok

• Using Floating Point
• Floating point used to be much slower than integer
• Not a problem with Pentium architecture

• Using Standard Trig functions
• Current machines are fast enough
• If you start having performance problems, pre-compute and

store all rotations you are going to need

Image Space vs. Object Space
• Image space:

• What is going to be displayed
• Primitives are pixels
• Operations related to number of pixels

• Bad when must to in software
• Good if can do in parallel in hardware – have one “processor”/pixel

• Object space:
• Objects being simulated in games
• Primitives are objects or polygons
• Operations related to number of objects

Clipping
• Display the parts of the objects on the screen.

• Can get array errors, etc. if not careful.
• Easy for sprites – done in DirectX

• Approaches:
• Border vs. image space or object space

Border Clipping
• Create a border that is as wide as widest object

• Only render image
• Restricted to screen/rectangle clipping
• Still have to detect when object is all gone
• Requires significantly more memory

Image Space Clipping
• Image Space:

• The pixel-level representation of the complete image.

• Clipping
• For each point, test if it is in the region that can be drawn before trying to

draw it
• If buffer is 320x200, test 0-319 in x, 0-199 in y.

• Evaluation
• Easy to implement
• Works for all objects: lines, pixels, squares, bit maps
• Works for subregions
• Expensive! Requires overhead for every point rendered if done in

software.
• Cheap if done in hardware (well the hardware cost something).

Object Space Clipping
• Object space:

• Representation of lines, polygons, etc.

• Clipping
• Change object to one that doesn’t need to be clipped
• New object is passed to render engine without any testing for

clipping

• Evaluation
• Usually more efficient than image space software

• But hardware support of image space is fast
• Need different algorithm for different types of objects

• Lines are easy. Concave objects are problematic
• Usually just worry about bitmaps

Line Clipping Cases

1

2 3

4

Collision Detection
• Image Space:

• Pixel by pixel basis. Expensive.

• Object Space:
• Hard for complex and concave spaces:

• Standard Approach:
• Cheat!
• Create a bounding box or circle

• test each vertex to see in another object
• Hide this by making your objects boxy
• Don’t have objects like:

Scrolling - simple

screen

Scrolling – Tile Based
Tile map

screen

Scrolling – Sparse
• Object-based

• Keep list of objects with their positions
• Each time render those objects in current view
• Go through list of object – linear in # of objects

• Grid-based
• Overlay grid with each cell having a list of objects
• Only consider objects in cells that are in view

	2D Graphics
	Vector Graphics
	History of 2D graphics: Vector
	Raster Graphics
	Raster Graphics
	Current Approach
	2D Graphics
	Coordinate System
	Polygons	
	Positioning an object
	Translation: Moving an Object
	Scaling: Changing Size
	Rotation: Turning an object
	Matrix Operations
	Putting it all together
	Common Problems: Flicker
	Speed Issues (Gone)
	Image Space vs. Object Space
	Clipping
	Border Clipping
	Image Space Clipping
	Object Space Clipping
	Line Clipping Cases
	Collision Detection
	Scrolling - simple
	Scrolling – Tile Based
	Scrolling – Sparse

