2D Graphics

John E. Laird

Based on ““Tricks of the Game-
Programming Gurus™ pp.72-109

Lots of obvious observations that make
drawing easy

Vector Graphics

ZaN

Directly control
electronic gun of CRT

O /

eDrawings defined as lines

eL_ines stored as endpoints

Look like wireframes

*No curved lines

Limited variation in color or intensity.

History of 2D graphics: Vector

Example: Asteroids, Battlezone

Advantages: 2O - &
 Control the electronic gun directly
e Only draw what is on the screen
e No jagged lines (aliasing).
 Only store endpoints of lines

Problems:

 Best for wireframes.
e Must draw everything as lines: text, circles,
« 3’s: Can’t use commercial TV technology

Example Displays: Tz A ~oS=
e Textronics, GDP —=T7 O ==

B8 ATARI [5EO

http://www.squadron13.com/games/asteroids/asteroids.htm
http://home.xnet.com/~patster/astpd5.jpg

Raster Graphics

« Advantages:
o Cheaper
« Can easily draw solid surfaces
e Maps screen onto 2D memory
e Can move blocks of image around, control individual pixels

e Problems:
 Memory intensive
 Aliasing problems

o Example:

e VGA =
* 640 x 350 with 16 colors
e 320x200 with 256 colors

Raster Graphics

Screen is made up of
“picture elements” = -II-
Ixels.
i]]
Color defined by =
mixture of 3-guns: Red,
’]]

Green, Blue
[] []

Current Approach

Use Raster Graphics as underlying technology
e Memory is cheap
» (et access Is every point on the screen

Create drawing primitives similar to those in vector
graphics

e Drawing lines

Support surfaces, textures, sprites, fonts, etc. directly

Sprites vs. Graphics??

2D Graphics

e Points
° X,y
e Lines

4.4

e Two points

e Draw by drawing all points in
between

e Low-level support for this in

hardware or software

Ty

(0,0)

Coordinate System

+X

(120,120)

Polygons

Defined by vertices
Closed: all lines connected

i i 100,100

Draw one line at a time

Can be concave or convex

Basis for many games

Required data:
* Number of vertices moveto(100,100)
* Color lineto(100,300)
o Position: X, y lineto(500,300)
« List of vertices 11neto(500,100)

« Might be array with reasonable max 1ineto(100,100)

Positioning an object

* Problem: If we move an object, do we need to change
the values of every vertex?

e Solution:

« World coordinate system for objects
» coordinates relative to screen

 Local coordinate system for points in object
 coordinates relative to the position of the object

P1 Triangle location: 4,0

B /\ P1: 0, 1
L L/

P2: -1, -1
L u P3: 1, -1

P2 P3

Translation: Moving an Object

e To move an object, just add in changes to position:

e X0 = X0 + dx
* yo=Yyo +dy

 |f have motion, the dx and dy are the x and y
components of the velocity vector.

dy = sin v

x0, yO

Velocity Vector: V

dx = cos v

Scaling: Changing Size
« Multiply the coordinates of each vertex by the scaling

factor.

« Everything just expands from the center.
e object]vl].x = object]vl].x * scale
e object]vl].y = object]vl].y * scale

ik Q—

Rotation: Turning an object

e Spin object around its center in the z-axis.

* Rotate each point the same angle
 Positive angles are clockwise
* Negative angles are counterclockwise

e new X = X * cos(angle) - y * sin(angle)
e new y =y * cos(angle) + x * sin(angle)

 Remember, C++ uses radians not degrees!

Matrix Operations

Translation, rotation, scaling can all be
collapsed into matrix operations:

1 0
Translation: x y 1 * | g 4

dx dy

sx O

Scaling: SX, Sy = 0 s
J scaling values Y
O O

o)
o)
1
o)
o)
1

COS -SIn
Rotation: sin cos
0 0

o)
o)
1

Putting It all together

SX*C0SsS -sx*sin 0
sy*sin Sy*cos 0
dx dy 1

Common Problems: Flicker

e Too slow updating
e Change video buffer during updating.

e Solution:
e Double buffering -- write to a “virtual screen” that isn’t being
displayed.
o Either BLT buffer all at once, or switch pointer.
Video Pointer

AN
CEAD R

Buffer Buffer

Speed Issues (Gone)

 Using regular drawing routines
 Original Microsoft graphics library (GDI) was quite slow
* Not a problem now — DirectX is ok

» Using Floating Point
 Floating point used to be much slower than integer
* Not a problem with Pentium architecture

e Using Standard Trig functions
« Current machines are fast enough

 |If you start having performance problems, pre-compute and
store all rotations you are going to need

Image Space vs. Object Space

* |mage space:
« What is going to be displayed
* Primitives are pixels

» Operations related to number of pixels
e Bad when must to in software
* Good if can do in parallel in hardware — have one “processor”/pixel

e Object space:
e Objects being simulated in games
* Primitives are objects or polygons
» Operations related to number of objects

Clipping

 Display the parts of the objects on the screen.
« Can get array errors, etc. if not careful.
 Easy for sprites — done in DirectX

o Approaches:
» Border vs. image space or object space

Border Clipping

* Create a border that Is as wide as widest object
e Only render image
 Restricted to screen/rectangle clipping
o Still have to detect when object is all gone
 Requires significantly more memory

¥ X

Image Space Clipping

* Image Space:

The pixel-level representation of the complete image.

e Clipping

For each point, test if it is in the region that can be drawn before trying to
draw it
If buffer is 320x200, test 0-319 in x, 0-199 in y.

o FEvaluation

Easy to implement

Works for all objects: lines, pixels, squares, bit maps

Works for subregions

Expensive! Requires overhead for every point rendered if done in
software.

Cheap if done in hardware (well the hardware cost something).

Object Space Clipping

* Object space:
* Representation of lines, polygons, etc.

e Clipping
» Change object to one that doesn’t need to be clipped
* New object Is passed to render engine without any testing for

clipping

* Evaluation
* Usually more efficient than image space software [\
» But hardware support of image space is fast

* Need different algorithm for different types of objects
» Lines are easy. Concave objects are problematic
» Usually just worry about bitmaps

Line Clipping Cases

Collision Detection

e |Image Space:
 Pixel by pixel basis. Expensive.

e Object Space:
e Hard for complex and concave spaces:

*

« Standard Approach:
e Cheat!

» Create a bounding box or circle
* test each vertex to see in another object

« Hide this by making your objects boxy
* Don’t have objects like:

4 *

AN

+F

Scrolling - simple

Screen

Scrolling — Tile Based

Tile map

Screen

Scrolling — Sparse

e Object-based
» Keep list of objects with their positions
« Each time render those objects in current view
* Go through list of object — linear in # of objects

e Grid-based

« Overlay grid with each cell having a list of objects
* Only consider objects in cells that are in view

	2D Graphics
	Vector Graphics
	History of 2D graphics: Vector
	Raster Graphics
	Raster Graphics
	Current Approach
	2D Graphics
	Coordinate System
	Polygons	
	Positioning an object
	Translation: Moving an Object
	Scaling: Changing Size
	Rotation: Turning an object
	Matrix Operations
	Putting it all together
	Common Problems: Flicker
	Speed Issues (Gone)
	Image Space vs. Object Space
	Clipping
	Border Clipping
	Image Space Clipping
	Object Space Clipping
	Line Clipping Cases
	Collision Detection
	Scrolling - simple
	Scrolling – Tile Based
	Scrolling – Sparse

