
Networking Multiplayer Games
EECS 494 Fall 2005

Sugih Jamin
jamin@eecs.umich.edu

Multiplayer Games

Why multiplayer games?

• humans are better at most strategy than current AIs

• humans are less predictable

• can play with people, communicate in natural language

• add social aspect to computer games

• provides larger environments to play in, with more characters

• make money as a professional game player

Sugih Jamin (jamin@eecs.umich.edu)

People Online

by Web Site Optimization, LLC

http://www.websiteoptimization.com/bw/

Sugih Jamin (jamin@eecs.umich.edu)

Two Types of Multiplayer Games

Head-to-head death-match:

• fast-pace, intense interaction/combat

• no persistent state

• players form ad-hoc, short-lived sessions

• any client can be a server

• requires matchmaking service:
built-in lobby or use GameSpy

• examples: X/NetTrek (1980s, simulation), Doom (1990s, FPS),
Counter-Strike, StarCraft, AoE, etc. (RTS-combat)

Persistent-world, massively multiplayer online game (MMOG)

Sugih Jamin (jamin@eecs.umich.edu)

MMOG

Most MMOGs are MMORPGs:
• server(s) keep persistent states,

players can drop in anytime
• traditionally emphasize social

interaction (less combat, but
changing)

• in the beginning: MUD/MOO
(1978, text-based)

• first commercial titles:
Meridian 59 (c. 1996) and others,
together had ≤ 30,000 players

Sugih Jamin (jamin@eecs.umich.edu)

MMORPGs

• Ultima Online (Origin Sys-
tems/EA, gold Sept. 27, 97):
o isometric view
o took 3 years to developed
o > 100,000 players in 1998

240,000 players in 2001,
225,000 in Apr. 2003

• Everquest (Verant/Sony, gold
Mar. 16, 1999):
o first non-wireframe 3D entry,
o 300,000 players in 2000,

430,000 in 2002
o total revenue: $4 mil/month

(BW, 11/9/01)

Sugih Jamin (jamin@eecs.umich.edu)

Most Popular MMORPG: NCSoft’s Lineage and Lineage II

S. Korea’s (Sept. 1998)
• 4 million players in 2003,

110,000 concurrent players!
• Lineage II (3D) developed

by UO’s/Destination Games’
Richard Garriott (released Oct.
1, 2003)

• in the first 4 days: 130,000
players, 90,000 concurrent

Population of S. Korea: 50 million
Population of Seoul: 10 million

Sugih Jamin (jamin@eecs.umich.edu)

An Analysis of MMOG Subscription Growth

by Bruce S. Woodcock

http://www.mmogchart.com/

Sugih Jamin (jamin@eecs.umich.edu)

Networking in Games

Differentiate between in-game networking and backend infrastructure

Backend infrastructure (see Yahn Bernier’s talk at GDC2000
rtsp://media.cmpnet.com/gamasutra/bernier.rm):

• lobby where gamers meet

• authentication and CD key checking
• accounting and billing

• ranking and ladder

• reputation and black list

• buddy lists, clans, and tournaments
• mods and patches management

• virtual economy

• beware of DDoS

Issues: scalability, adapting to failure, security

Sugih Jamin (jamin@eecs.umich.edu)

Networking in Games

In-game networking:
• networking topology: client-server vs. peer-to-peer
• computing model: distributed object vs. message passing
• which protocol to use? tcp, udp, reliable udp
• bandwidth limitation
• latency limitation
• consistency
• cheat proofing
• socket programming WinSocks

Machine 1 Machine 2

in library/kernel
(EECS 489)

in game
(more in EECS 591/491)

Network: LAN or Internet

Distributed
Systems

Networking

Distributed
Systems

Networking

Sugih Jamin (jamin@eecs.umich.edu)

Peer-to-Peer

Peer-to-peer with O(N2) unicast
connections:
• each player is connected directly

to all other players
• each player simulates the whole

world
• advantages: reduced latency, no

single point of failure
• disadvantages: easier to cheat,

not scalable: each client must
send and receive N -1 messages

• used in Age of Empire

Player

Player

Player

Player

Player

Player

Player

Player

Sugih Jamin (jamin@eecs.umich.edu)

Client-server

Two flavors:

• ad-hoc servers: death match

• dedicated servers: MMORG

Two types of clients:

• clients simulate world, server has authoritative state: allows for
client-side dead reckoning (QuakeIII/Half-Life).

• clients for I/O, all simulations at server: useful for thin clients, e.g. cell
phones, and persistent-world MMOG.

Sugih Jamin (jamin@eecs.umich.edu)

Client-server

Client-server:
• advantages: each client sends

only to server, server can aggre-
gate moves

• advantages (dedicated servers):
cheat-proofing, server can be
better provisioned, persistent
states (for MMOG)

• disadvantages: longer delay,
server bottleneck, single point of
failure, needs server manage-
ment

Server

Player

Player

Player

Player

Player

Player

Player

Sugih Jamin (jamin@eecs.umich.edu)

MMOG Server Architecture 1

The world replicated at each server (shard); each shard contains an
independent world; players go to specific shard:

Shard1

Player

Player

Player

Player

Player

Player

Shard2

Player

Player

Player

PlayerPlayer

Most MMORPG

Sugih Jamin (jamin@eecs.umich.edu)

MMOG Server Architecture 2

The world replicated at each server (mirror); all the worlds are
synchronized; players see everyone across all mirrors:

Mirror1

Player

Player

Player

Player

Player

Player

Mirror2

Player

Player

Player

PlayerPlayer

High-speed
Connection

Mirrors must be kept consistent

Sugih Jamin (jamin@eecs.umich.edu)

MMOG Server Architecture 3

The world is split up into regions, each region is hosted by a different
server:

Server1

Player

Player

Player

Player

Player

Player

Server2

Player

Player

Player

PlayerPlayer

High-speed
Connection

Example: Second Life from Linden Lab
Servers must be kept consistent

Sugih Jamin (jamin@eecs.umich.edu)

Distributed Computing Model

Usually your game company will have its preferred computing model and
would provide high-level libraries to implement the model

Distributed objects:
• characters and environment

maintained as objects
• player inputs are applied to ob-

jects (at server)
• changes to objects propagated

to all players at end of game loop
• object update usually imple-

mented as one or more library
calls

Initialization Overall Game
Control

Game Session
Control

Local Player
Input

Send & Receive
Object Updates

Main Logic:
- update objects
- game AI
- physics
- collision

Render scene
to buffer

Copy buffer to
display

Time sync

Sugih Jamin (jamin@eecs.umich.edu)

Distributed Computing Model

Message passing:
• player inputs (either button

pushes or higher-level move-
ments) are sent to other players
(or server)

• all players update their own
game state

• or server updates the global
game state and send it out to all
players

Initialization Overall Game
Control

Game Session
Control

Local Player
Input

Receive Remote
Player(s) Input

Main Logic:
- update states
- game AI
- physics
- collision

Send
Local Input

Render scene
to buffer

Copy buffer to
display

Time sync

Sugih Jamin (jamin@eecs.umich.edu)

Which Protocol to Use? Protocol Layers

Physical

Data Link

Network

Transport

Session

Presentation

Application

socket API

Domain Name
System (DNS)

Sugih Jamin (jamin@eecs.umich.edu)

TCP vs. UDP

IP routes packet from source to destination,
max IP packet size is 64 KB, may be fragmented

What TCP (Transmission Control Protocol) gives you:

• reliable delivery

• retransmission and reordering

• congestion control

What UDP (User Datagram Protocol) gives you:

• unreliable delivery

• no retransmission, packets not ACKnowleged, no reordering

• no congestion control

• so, more or less, plain IP service

Sugih Jamin (jamin@eecs.umich.edu)

Which Protocol to Use?

Game requirements:

• late packets may not be useful anymore

• lost information can sometimes be interpolated

• but loss statistics may be useful

Use UDP in game:

• can prioritize data

• can perform reliability if needed

• can filter out redundant data

• use soft-state

• send absolute values, not deltas

• or if deltas are used, send “baseline” data periodically

• must do congestion control if sending large amount of data

Sugih Jamin (jamin@eecs.umich.edu)

Reliable UDP

UDP doesn’t provide reliability, write your own reliable udp for moves that
must be reliable, e.g., snipper shots

Desirable features:
• error control: do checksum
• ordering: use sequence #
• reliability: acknowledge packet

(use cumulative ACK), retrans-
mit if not ACKed, timeout value a
function of average rtt (round-trip
time)

• flow control: don’t send more
than the target can handle; use
stop-and-wait or sliding-window

time

source target

2

3

ack3

1

Stop and wait:

ack1

1

ack1

2

ack2

Sliding window:

1

ack2

2 3 4

3

ack6

4 5 6

cumulative
ACK

Sugih Jamin (jamin@eecs.umich.edu)

Bandwidth Limitation

What is bandwidth?

What information is sent?

• depends on your computing model, distributed object or message
passing

• game state: coordinates, status, action, facing, damage

• user keystrokes

• commands/moves
For AoE: 1 every 1.5-2 sec, up to 3-4 commands/sec during battles
(but some of these are redundant and can be filtered out)

Current lower limit assumed: 56 Kbps

Sugih Jamin (jamin@eecs.umich.edu)

Bandwidth Limitation (cont)

Bandwidth requirement has been HIGHLY optimized
Even with audio chat, takes up at most 8 Kbps

So, bandwidth is not a big issue (but note the asymmetric nature: at 8
Kbps, you can only support a total of 4 players on a 28.8 Kbps modem)

Must be continually vigilant against bloat

HOWEVER, with player-created objects and worlds, bandwidth becomes
an issue again: use streaming, levels of details, and pre-fetching

Sugih Jamin (jamin@eecs.umich.edu)

Latency Limitation

How is latency different from bandwidth?

Latency:

• RTS: ≤ 250 ms not noticable, 250-500 ms playable, > 500 ms
noticable

• FPS: ≤ 150 ms preferred

• Car racing: < 100 ms preferred, 100-200 ms sluggish, ≥ 500 ms, car
out of control

• players’ expectation can adapt to latency

• it is better to be slow but smooth than to be jittery

• don’t rely on DirectPlay—at least test for its limitations

Sugih Jamin (jamin@eecs.umich.edu)

