
Scaling in Genetic Algorithms

Sushil J. Louis
Dept. of Computer Science
University of Nevada, Reno

sushil@cse.unr.edu

September 4, 2019

Motivation

We want to maintain an even selection pressure throughout the genetic algorithm’s processing.

• At the beginning of the GA run, there may be a very high fitness individual i, that biases
search towards i.

• Near the end of a run, when the population is converging, there may also not be much
seperation among individuals in the population.

Neither is desirable. Thus we may want to scale the fitness so that selection pressure remains
the same throughout the run. Let us formulate the problem in the following way:

• One useful scaling procedure is linear scaling where we want to scale the fitness of each
individual in the population such that the scaled fitness is linearly related to the unscaled
fitness.

f ′ = af + b

• We want to maintain a certain relationship between the maximum fitness individual in the
population and the average population fitness. Let this be expressed by the following con-
straint equations:

f ′
max = favg ∗ Cs

f ′
avg = favg

where f ′ is the scaled maximum fitness, favg is the average fitness of the population, and Cs

is a scaling constant that specifies the expected number of copies of the best individual in the
next generation. Increasing Cs will increase selection “pressure” (bias towards best individual
and quicker convergence), decreasing Cs will decrease selection pressure.

We can calculate the linear coefficients a and b from the constraint equations above. However,
it is possible for the scaled fitness to go below 0. What do we do? We map f ′

min to 0. The pascal
code for doing this is given in the book on page 79.

1



#include "type.h"

void FindCoeffs(IPTR pop, Population *p);

void Scalepop(IPTR pop, Population *p)

{

/* linearly scale the population */

IPTR pj;

int i;

FindCoeffs(pop, p);

p->scaledSumFitness = 0.0;

for(i = 0; i < p->popsize; i++){

pj = &pop[i];

pj->scaledFitness = p->scaleConstA * pj->fitness + p->scaleConstB;

p->scaledSumFitness += pj->scaledFitness;

}

}

void FindCoeffs(IPTR pop, Population *p)

{

/* find coeffs scale_constA and scale_constB for linear scaling according to

f_scaled = scale_constA * f_raw + scale_constB */

double d;

if(p->min > (p->scaleFactor * p->avg - p->max)/

(p->scaleFactor - 1.0)) { /* if nonnegative smin */

d = p->max - p->avg;

p->scaleConstA = (p->scaleFactor - 1.0) * p->avg / d;

p->scaleConstB = p->avg * (p->max - (p->scaleFactor * p->avg))/d;

} else { /* if smin becomes negative on scaling */

d = p->avg - p->min;

p->scaleConstA = p->avg/d;

p->scaleConstB = -p->min * p->avg/d;

}

if(d < 0.00001 && d > -0.00001) { /* if converged */

p->scaleConstA = 1.0;

p->scaleConstB = 0.0;

}

}

2


