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Abstract
Over the years, there have been many variations of the Vehicle Routing Problem created to fit the actual needs of society,
one of which is the Electric Vehicle Routing Problem (EVRP). EVRP is a more complex and challenging combinatorial
optimization than the conventional vehicle routing problem. This paper considers a specific model for the tram routing
problem and proposes a clustering-inspired greedy search algorithm GS. GS algorithm aims to cluster charging routes and
greedily search charging stations for the optimal route output. In this paper, we purposely implement GS into a meta-heuristic
genetic algorithm GA to utilize GA’s finding a globally optimal, leading to the formulation of the GSGA algorithm. To
evaluate performance, we use a benchmark dataset found in the CEC-12 Tram Routing Problem CEC-12 Competition at the
World Congress on Computational Intelligence (WCCI) 2020. The experiment evaluates GS’s effectiveness when applied
to other algorithms such as genetic algorithms and simulated annealing. The experiments results show that our proposed
algorithm has better solution quality than previous algorithms.

Keywords Electric vehicle routing problem · Greedy search · Meta-heuristic algorithm · Genetic algorithm

1 Introduction

Recently, the use of Electric vehicles (EVs) has become
more crucial to transportation companies because of their
low cost, low energy consumption, and environmental
friendliness, contributing to reducing CO2 emission. EVs
come with a rechargeable battery, but some issues may
arise such as insufficient energy and low battery due to the
limited number of charging stations. The need to manage
EV’s battery power raises the complexity and difficulty of
the path planning problem for EVs.

In some recent studies on the problem of routing a
fleet of EVs, M. Mavrovouniotis et al. [1] presents the

� Vu Quoc Hien
hienvq.2000@gmail.com

Tran Cong Dao
daotc.bk@gmail.com

Huynh Thi Thanh Binh
binhht@soict.hust.edu.vn

1 Hanoi University of Science and Technology, Hanoi, Vietnam

Electric Vehicle Routing Problem (EVRP) for battery
electric vehicles. He also presented the benchmark set
to evaluate the proposed algorithms’ effectiveness. The
objective function of the EVRP is to find a set of routes
that minimize the total distance traveled. The authors
have proven that the EVRP is a NP-hard combinatorial
optimization problem.

As a challenging NP-hard problem, the EVRP with
a large number of customers is considered a complex
and challenging. However, this problem can be solved
effectively by a meta-heuristic algorithm. One of the most
popular meta-heuristic algorithms that has been widely
studied in the scientific community is the Genetic Algorithm
(GA) [2, 3]. GA, inspired by the process of natural selection
and genetics [4], begins with a population of individuals
undergoing reproduction and mutation to create offspring.
Procedure execution is repeated and terminated when a
predefined condition is satisfied. Due to its powerful and
easy search in use, over the past decades, GA has achieved
remarkable successes to obtain an optimal or near-optimal
solution on a plethora of complex real-world optimization
problems, including combinatorial optimization, continuous
optimization, and constrained optimization. Therefore, we
propose a hybridization of a greedy search nature-inspired
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metaheuristic algorithm [5], namely Greedy search based
Genetic Algorithm (GSGA), to solve the EVRP.

The main contributions of this work are described below:

– Propose a new greedy search algorithm GS for this
problem based on the nearest neighbor clustering
method, the balanced method, and the local search to
achieve a reasonable solution.

– Propose a genetic algorithm GSGA implements the
proposed greedy search algorithm to solve the EVRP
problem efficiently. A novel encoding and decoding
method are specifically designed for this problem.
Furthermore, new initialization, hybridization, and
mutation operators are also proposed.

– Conduct experiments with different scenarios to
demonstrate the effectiveness of the proposed greedy
search method on existing existing charging path opti-
mization algorithms and of the greedy search inspired
genetic algorithm for solving the EVRP.

The rest of this paper is organized as follows: Section 2
introduces the related works for EVRP, Section 3 describes
the statement and formulation of the problem. The proposed
greedy search algorithm (GS) and the proposed genetic
algorithm (GSGA) are elaborated in Sections 4 and 5,
respectively. Section 6 provides computational experiments
and results. Conclusions and future extension of this
research are given in Section 7.

2 Related works

The demand for Electric Vehicles is increasing, so the
problem is to change variants and different constraints. One
major downside of electric vehicles is their limited battery
capacity; as a result, they are required to visit charging
stations to recharge the battery. Therefore, the problem of
finding optimal routing schemes of electric vehicles, i.e.,
EVRP, are attracting special attention from numerous of
researchers and experts. Many recent related works have
studied about EVRP. In [6], problem is introduced and
mathematically formulated. The aim of this problem is to
minimize the energy consumption of EVs. Moreover, the
authors applied an ant colony (AC) algorithm based meta-
heuristics to solve the EVRP. In [7], Montoya et al. proposed
a hybrid metaheuristic that combines simple components
from the literature and components specifically designed
for this problem. To assess the importance of nonlinear
charging functions, they presented a computational study
comparing our assumptions with those commonly made in
the literature. Erdelic et al. reviewed the state-of-the-art
exact, heuristic, and hybrid procedures applied for solving
various EVRP variants [8]. In [9], the authors proposed a

heuristic approach for the green vehicle routing problem
with multiple technologies and partial recharges.

In [10], Afroditi et al. proposed a mathematical model
inspired by the known VRPTW. To solve Afroditi’s model,
an adaptive large neighborhood search (ALNS) algorithm
enhanced with the fuzzy simulation method is proposed
[11]. In the proposed ALNS algorithm, four new removal
algorithms are designed and integrated to address the
FEVRPTW. In [12], Yang et al. presented an EVs battery
swap stations locations routing problem called BSS-EV-
LRP. The problem’s objective is to determine the location
strategy of battery swap stations (BSSs) and the routing plan
of an EV fleet within conditions that limit the battery driving
range. Moreover, the authors also proposed two methods to
solve the problem. The first proposed method is a four-phase
heuristic called SIGALNS, in which the BSSs location stage
and the vehicle routing stage are alternated iteratively. The
second method is a two-phase Tabu Search-modified Clarke
and Wright Savings heuristic (TS-MCWS). These proposed
algorithms have been shown to be effective in finding good
solutions without too many computations in medium and
large instances when compared to MIP solver of CPLEX.
Abdallah et al. solved this problem using a Lagrangian
relaxation and proposed a new Tabu search algorithm [13].
They also presented the first results for the fully adapted
Solomon instances. In the study [14], the authors pointed
out the importance of the CVRP problem in practice and
proposed a method based on the combination of the ant
colony algorithm and the simulation annealing algorithm,
called SACO. The SACO algorithm is compared with the
methods based on the ant colony algorithm and shows better
results than the baseline methods. However, a limitation
of the proposed algorithm is the relatively long execution
time, especially in cases where the size of the problem is
enormous.

A problem similar to ours is studied in [15, 16], but the
model formulation and optimization goals are different. In
[16], the authors presented the first EVRPmodel to consider
the vehicle load effect on battery consumption to find the
optimal routing strategy with minimal travel time cost,
energy cost, and number of EVs dispatched. In [15], the
EVRP model with charging demands, energy consumption,
range constraint, vehicle capacity constraint is presented.
The model’s optimization goal [15] is to find the minimum
total cost, including fixed vehicle cost, travel cost, and
charging cost.

In summary, with the related studies introduced, there
are many variations of the VRP problem that have been
proposed, including the EVRP with several models and
proposed methods to solve that model. In this paper, we
propose a greedy search algorithm and a genetic algorithm
to persuasively solve the EVRP problem introduced in [1].
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3 The electric vehicle routing problem

3.1 Problem statement

The problem is expressed with the use of a fully connected
weighted graph G = (V , E) where V = {C, O, S} is a set
of nodes and E = {(i, j), ∀i, j ∈ V, i �= j} corresponds
to all possible arcs connecting vertices of V . The set C =
{c1, c2, ..., cnc } is a set of customer points, O is the central
depot, S = {s1, s2, ..., sns } is a set of charging stations.
Each arc (i, j) is associated with a non-negative Euclidean
distance dij between nodes i and j .

The power recharging rule is defined as follows: the
battery of an EV is fully charged each time the EV starts the
route at the depot or after visiting a charging station. The
EV can be recharged once or more at any charging stations
in S during routing.

The aim of the EVRP is to find a set of routes that
minimize the total traveled distance that must satisfy the
following conditions or constraints:

– Each EV is homogeneous and each route starts and
finishes at the depot.

– Each charging station may be visited multiple times or
not visited by any EV in a given strategy.

– Every customer is visited exactly once by exactly one
EV.

– For every EV route, the total energy consumption does
not exceed the EV’s maximal battery charge level
Qmax .

– For every EV route, the total demand of customers does
not exceed the EV’s maximal carrying capacity Pmax .

Consider a feasible solution to EVRP p =
(R1, R2, ..., Rl). The objective fuction of the EVRP is
below:

minimize :
l∑

t=1

∑

i,j∈Rt ,i �=j

dij xij

xij ∈ {0, 1}, ∀i, j ∈ Rt

(1)

where Rt = (0, π1, π2, ..., πk, 0) is a path of EVt in which
EVt starts from the depot and visits customers and after
recharging at charging stations, it returns to the depot; dij

is the Euclidean distance between nodes i and j , xij = 1 if
there is an arc connecting i and j , or xij = 0 otherwise.

A simple EVRP example consisting of five customer c1,
c2, c3, c4, c5, one charging station s1, and only one central
depot O is illustrated in Fig. 1a and b.

In Fig. 1b, a strategy without visiting any charging station
and using two EVs is given. The first EV on route 1 leaves
the depot O to visit 3 customers c1, c2, c3 then returns to
the depot. Similarly, the second EV on route 2 leaves the
depot to visit 2 customers c4 and c5 then returns to the
depot. In the example in Fig. 1 , p1 = (R1, R2) with R1=
(O, c1, c2, c3, O) and R2 = (O, c4, c5, O).

Figure 1b depicts a better strategy that involves visiting
one charging station and using one EV (one route). The EV
leaves the depot O to visit 3 customers c1, c2 and c3 then
visits charging station s1 to fully recharge its battery. After
recharging at s1, the EV visits customer c4 and c5 before
returning the depot. In this example, p2 = (R1) with R1=
(O, c1, c2, c3, s1, c4, c5, O).

3.2 Problem formulation

The EVRP seeks to find a set of EV routes where each
EV visits each customer once and only once so that the
total distance is minimized. Notations of the EVRP problem
are given in Table 1. Furthermore, the mathematical
formulation of the EVRP in [1] is also represented below:

∑

j∈V,i �=j

xij =
∑

j∈V,i �=j

xji = 1, ∀i ∈ C, S (2)

∑

j∈V,i �=j

xij � 1, ∀i ∈ O (3)

∑

j∈V,i �=j

xij � 0, ∀i ∈ S (4)

Fig. 1 Two strategies of EVs in
the EVRP c1

c4

c2

c3
O

s1
c5

(a) Strategy without visiting any charging station

c1

c4

c2

c3
O

s1

c5

c1
c2

c3

(b) Strategy with visiting one charging station
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Table 1 Notations and parameters of the EVRP

Notation, parameter Description

C Set of customers

S Set of charging stations

O Depot

nc Number of customer

ns Number of charging station

n Size of problem(1 + nc + ns )

Qmax Maximum battery

Pmax Maximum capacity

h Consumption rate of the EV

Ri Route of the i-th EV

l Number of electric vehicles

ui Remaining carrying capacity of an EV

at node i

yi Remaining battery charge level of an EV

at node i

bi Demand of customer i

π The charging station or customer visited

by the vehicle in the route

∑

j∈V,i �=j

xij −
∑

j∈V,i �=j

xji = 0, ∀i ∈ V (5)

∑

i∈Rj

bi ≤ Pmax, 0 ≤ j ≤ l (6)

0 ≤ ui ≤ Pmax, ∀i ∈ C (7)

yj ≤ yi − hdij xij + Qmax(1 − xij ),∀i ∈ S,∀j ∈ V, i �= j

(8)

yj ≤ yi − hdij xij , ∀i ∈ S ∪ O, ∀j ∈ V, i �= j (9)

0 ≤ yi ≤ Qmax, ∀i ∈ V (10)

xij ∈ {0, 1}, ∀i ∈ V, ∀j ∈ V, i �= j (11)

Equation 2 guarantees every customer is visited exactly
once by exactly one EV; (3) ensures each EV is homoge-
neous and each route starts and finishes at the depot; (4)
implies that each charging station may be visited multiple
times or not visited by any EV in a given strategy. Equa-
tion 5 establishes flow conservation by guaranteeing that
at each node, the number of incoming arcs is equal to the
number of outgoing arcs. Equations (6) and (7) guarantee

demand fulfillment at all customers by assuring a non-
negative carrying load upon arrival at any node including
the depot, (8), (9), and (10) ensure that the battery charge
never falls below 0, and (11) defines a set of binary decision
variables which each one equal to 1 if an arc is traveled and
0 otherwise.

Figure 2 is an example solution, in which a red circle
is a depot 0, green circles are customers (from customer
1 to customer 9), and blue circles are charging stations 10
and 11. The number on each edge is the distance between
customer and customer or customer and charging station,
and the number in red font-size inside a green circle is the
remaining carrying capacity of an EV at that corresponding
customer. This solution consists of three different routes:
R1 = (0, 7, 5, 10, 2, 4, 0), R2 = (0, 9, 11, 8, 6, 0), and
R3 = (0, 3, 1, 0). In the first route, the route length is
calculated as: 4 + 8 + 7 + 4 + 4 + 6 = 33. In a similar way,
the second one is 22, and the third one is 11.

In this case, we assume that this solution is valid,
which means all the constraints (capacity and battery) are
satisfied. Hence, the numerical fitness of the solution is 66
(= 33+22+11), which is the total length of three routes. In
another case, if the solution is invalid, which exists one of
the constraints is not satisfied, the fitness of the solution is
set at positive fitness.

4 Greedy search algorithm

In this section, we present a greedy algorithm (GS) solving
the EVRP problem followed by the combination of the
algorithm and a genetic algorithm (GSGA) in Section 5. The
flow of the GS is divided into two main periods, beginning
with clustering customers into subroutes and ordering them,
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Fig. 2 A sample solution
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ending with finding the best set of charging stations for
each route of each vehicle. The clustering strategy has
three steps, each obtained cluster corresponding with each
vehicle. Here, the evaluation function does not mention the
optimal number of cars. However, the number of clusters
also significantly affects the total length of all routes. In
most cases, using a small number of vehicles will bring
better performance than dividing customers’ goods into too
many ones. To do that, we use a greedy clustering method
make significantly reduce the number of vehicles needed.

4.1 Clusteringmethod

We implement the nearest neighbor method for clustering
such that the cluster centers are uniformly distributed
while the maximum power is not exceeded without
exceeding the maximum carrying capacity of Ev Pmax . The
implementation steps as follows:

1. Randomly select a customer as seed point in a cluster
2. Add the nearest customers into that cluster until

reaching max capacity without exceeding the EV’s
maximal carrying capacity Pmax .

3. Repeat the process until all customers belong to one of
the routes.

The customers, as ordered, tend to be close together,
and the total capacity of each cluster will be close to
the maximum capacity. Thus, the number of vehicles is
significantly reduced, and the locations on each route that
customer’s goods are transported to will not be too far apart.

4.2 Balancingmethod

For the clustering at the before step, the customers assigned
in the last route are the non-clustered customers. They are
the remaining customers, so their geographical locations are
not close-set. Moreover, the number of customers on this
route will be less than other routes, even a single customer.
To ensure the distance of customers and increase the number
of customers in this, we use a balanced approach with the
following steps:

1. Randomly select a customer (customer A) from the last
route.

2. Select in turn the customers from the other routes such
which is the closest one to A.

3. The chosen customers must satisfy the two following
conditions:

(a) The initial sum of the total capacity of the last
route and the capacity of the chosen customer does
not exceed the EV’s maximal carrying capacity
Pmax .

(b) Total capacity difference (delta) is less than
before: consider two routes Ri and Rj (A ∈
Ri, B ∈ Rj ), then delta = | ∑x∈Ri

bx−∑
y∈Rj

by |
in which, bx , by is the demand of customer x and
y, respectively.

4. Repeat until the above conditions are not satisfied.

4.3 Local search

After dividing the customers into distinct clusters, the local
search algorithm will rearrange them such that there are no
intersecting paths. The detail of the local search is described
in Algorithm 1.

General, this method will provide some benefits of
solving the EVRP problem, such as:

– The total of an EV’s capacity in a route does not exceed
the EV’s maximum carrying capacity Pmax . Therefore,
this method ensures that a solution is valid for capacity
constraints.

– Each solution that is performed by the local search has
an advantage in the total distance because customers on
the same route are likely to be near each other.

4.4 Finding the charging station for earch route

After being routed, the vehicles will provide the goods in
turn in the sorted order, but to ensure energy constraints
is a more complicated problem. In many cases, despite the
routes scheduled, it may not be possible to find a set of
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Fig. 3 The optimize charging stations strategies of EV

charging stations that can deliver to all customers of that
vehicle. To ensure enough traveling energy for each of them,
we use a greedy strategy combined with the shortest path
algorithm to find a set of best-charging stations among the
collection of satisfying charging stations. In reality, moving
between two locations requires a single charging station.
However, to generalize for all cases, we found a set of
charging stations between the two locations instead of using
only one charging station. The detailed method is presented
in Algorithm 2. For each route, the procedure is given as
follows:

1. For each vehicle transfer in turn in scheduled order,
if the energy necessary to go from customer ci to
customer ci+1 is not enough to move, it will go to
the charging stations (not necessarily the only one) to
recharge. The goal is to maximize the remaining energy
of the vehicle when it reaches ci+1. Let ec be the energy
of the EV at ci . And S′ = {s1, s2, ..., sk} is the set of
satisfy charging station, such that sk is nearest to ci+1

and the energy consumption from ci to s1 is less than ec.
If the vehicle cannot find such a set of charging stations,
it will go back to find a station from customer ci−1 to ci .
Repeat the process until it can find a satisfactory station
or back to the depot.

2. For any customer ci , we can prove that the number of
times to find the set of charging stations from ci to ci+1

does not exceed two because after finding the previous

Tk-1Tk Tj T2 T1Tj+1

S'

T3

S'

d1 d2 d3

l0
l1

r1 r2

Fig. 4 Replacing the current set of charging stations with the best other

of them, the energy when reaching ci is maximum in
any case. If we go back to the depot, there will be no
way to insert charging stations to get a satisfying route
and return f itness = +∞.

After inserting the charging station as above, the
remaining energy of the vehicle is the largest when it moves
from the charging station to the next customer on the route.
However, this set of charging stations is not good in terms
of the distance cost of the way. Therefore, we will use one
more stage to find another with shorter path costs. We can
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prove that the proposed algorithm will give the optimal
results if all of the considered sets have the same number of
finding charging stations in a route. Suppose two different
sets S and S′ have k number of times to explore for charging
stations along the way, in which S ′ using the proposed
algorithm will get better results than S, at least equal. The
following steps are describe the process of finding a set of
charging stations:

1. First, consider the route R = {O, c1, c2, .., ci−1, S
′,

ci, ..., cr , O} and R̄ as the reversed order route. In pre-
arranged order R, ci is a customer right head to that
the set of charging stations S′ and let T be the set of
customers cj in front of ci . If the vehicle transfer with
the reversed order R̄, the energy from depot to cj is
sufficient but without visiting any stations (*).

An example is illustrated in Fig. 3, in which set
T including customer 8, customer 9, customer 2 and
customer 4. T not include the customer 5 because its
energy not sufficient to travelling with the reversed
order R̄ = {0 → 6 → 8 → 9 → 2 → 4 → 5 → 7 →
0}.

2. Let S’ = {sk, sk−1, ..., s1} be the set of charging stations
found from Tj to Tj+1 which satisfies the following
conditions:

(a) In R, EV has enough energy go from depot to s1.
(b) In R̄, EV has enough energy go from depot to sk .
(c) The distance from Tj to Tj+1 that through S’ is the

smallest.

In Fig. 3, the tour length through the set of charging
stations S’ is smaller than before. After process
reoptimization has been completed with Djkstra’s
algorithm, the route is {0 → 6 → 8 → 9 → 12 →
4 → 5 → 7 → 0}

As present on above, we can prove that if the set
of charging stations S′ replaces with the set of charging
stations S’, the condition (*) is also satisfied.

Proof Let delta0 be the distance from T1 to T2 through S′,
and deltai is the distance from Ti to Ti+1 through S’. We
will replace S′ from T1 → T2 with the new set of charging
stations S’ from Ti → Ti+1 if deltai is less than delta0.
If deltai is the smallest, it is considered as the best set of
charging stations in the satisfied sets of charging stations.
For each EV route with arranged order, the best set of
charging stations will provide enough energy for the vehicle
to visit all customers and return to the depot with minimum
travel distance. The explanation is as following:

For two routes: (Ol, .., Tk , Tk−1,..., Tj+1, Tj ,..., T2, S′,
T1, ...Or ) (1) and (Ol , Tk , Tk−1,..., Tj+1, S’, Tj ,..., T2,
T1,..., Or ) (2) (as in Fig. 4). Let’s consider the following

expressions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 = sumDistance(Ol, ..., Tj+1)

d2 = distance(Tj , T2)

d3 = sumDistance(T1, ..., Or)

r1 = distance(Tj+1, Tj )

r2 = distance(T2, T1)

l1 = distance(Tj+1,S’) + distance(S’, Tj )

l2 = distance(T2, S
′) + distance(S′, T1)

– Route length (1) : L1 = d1 + r1 + d2 + l0 + d3
– Route length (2) : L2 = d1 + l1 + d2 + r2 + d3
– Let L2 < L1 ⇒ d1 + r1 + d2 + l0 + d3 < d1 + l1 + d2 +

r2 + d3 ⇔ l1 – r1 < l0 – r2 ⇔ deltaj < deltai , which
completes the proof.

5 Evolutionary algorithm

In this section, a genetic algorithm combined with the
proposed greedy search algorithm, called GSGA, is
presented in detail. The flow of GSGA is described
in Fig. 5. The algorithm includes the basic steps of
a traditional genetic algorithm: individual representation,
initialization, and reproduction. However, the novelty of
implementing the proposed greedy search strategies into GA
is clarified in the new two-level representation method, the
greedy initialization method, the new hybrid and mutation
operators. The details are presented in the following
subsections.

5.1 Representation

An essential step in designing genetic algorithms is to
find an appropriate chromosome representation. For this
EVRP problem, a solution involves tram routes, in which
the electric vehicles depart from a depot to visit customers
and possibly pass through intermediate charging stations.
Therefore, a reasonable solution representation requires
information about customers, charging stations, and depots.
This paper proposes a solution representation including new
encoding and decoding methods, which are described in
detail in the following subsections.

5.1.1 Encoding

In the proposed encoding method, the initial representation
of a solution needs only represent the customer’s informa-
tion and the order of the route that the customer is visiting.
Thus, encoding for an individual is an array of fixed-size
integers nc, where nc is the total number of customers in the
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Terminate?

Start

Local Search 2-opt for each individual
in population

Construct two-level EVRP solution for
finding the best set of charging stations

Evaluate fitness for each individual End

Clustering Method Balancing
Method

Genetic Operations
Crossover + Mutation

Selection Method

No

Yes

Fig. 5 Proposed Algorithm Schema (GSGA)

problem. The value of each element corresponds with the
customer node. The order of the element values in the array
is the order of customers’ visits in the solution.

Assume that a given EVRP model solution begins from
the depot and needs to visit nine customers and go through
some intermediate charging stations. The solution encoding
method for this case is described in detail in Fig. 6. Figure 6a
illustrates the solution mentioned above, including three
routes: route 1: 0 → 7 → 5 → 10 → 2 → 9 → 0, route
2: 0 → 4 → 11 → 8 → 6 → 0, route 3: 0 → 3 → 1
→ 0. Hence, according to the proposed encoding method, a
corresponding representation is shown in Fig. 6b.

5.1.2 Decoding

According to the solution encoding described above, a
simple decoding method to obtain the corresponding

solution is to insert possible charging stations into each
existing route. Therefore, the proposed strategy of finding a
set of charging stations presented in Section 4.4 is applied
to build a complete path, including the order of visiting
customers and charging stations. This finding charging
stations strategy from Section 4.4 will ensure the set of
charging stations is best from each existing route.

5.2 Initialization

According to the proposed encoding, an individual is
represented by a permutation array of nc elements, where
nc is the number of customers. Note that an individual
encoding only needs the customer’s information and the
order of the route to visit that customer. Therefore, we use
the greedy strategy proposed, including steps Sections 4.1,
4.2, and 4.3 in Section 4, to initialize an individual.

Fig. 6 Encoding of a candidate
solution
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route 3route 1 route 2

5 9 8 4 2 3 6 1 7parent 1

route 3route 1 route 2

6 2 3 9 4 8 7 1 5parent 2

Fig. 7 One customer is randomly selected

This greedy initialization method is expected to be more
efficient than the random initialization method. Moreover,
this method always generates a valid individual for capacity
constraints because it applies the local search introduced in
Section 4.3. This will be demonstrated in the experimental
results section.

5.3 Crossover operator

In this paper, a new hybridization method is proposed
in the GSGA. This method uses the distance heuristic,
suitable for multi-vehicle problems. Details of the proposed
crossover method are shown in Algorithm 3. An example
of the proposed crossover operator including four steps is
described as follows:

Step 1: Randomly select a customer (customer 2) in the
parent individuals as in Fig. 7.

Step 2: Sub1 is a set of customers in the route that
contains customer 2 of parent1. Sub2 is a set of customers
in the route that contains customer 2 of parent2 as in Fig. 8.

Step 3: Customers who do not belong to sub1 and sub2
will be inherited from parent to children respectively that
keep relative order.

Step 4: Customers in sub1 and sub2 will be partitioned
into children satisfying the following rules: partition con-
catenate (sub2, sub1) respectively into child1 and partition
concatenate (reverse(sub1), reverse(sub2)) respectively into
child2 at the positions where elements are in sub1 ∪ sub2
as in Fig. 9.

route 3route 1 route 2

5 9 8 4 2 3 6 1 7parent 1

route 3route 1 route 2

6 2 3 9 4 8 7 1 5parent 2

2 3

sub 1

6 9

sub 2

Fig. 8 sub1 and sub2 obtained in route contain customer 2 from two
parents

The proposed crossover operator is quite similar to
two-point hybridization. However, we still use a heuristic
approach by selecting a random seed point to swap the
chromosomes in two different subroutes belonging to two
separate parents. When exchanging chromosomes in these
two subroutes, we find that the crossover operator only
switches the positions of adjacent customers of different
subroutes by both subroutes close to the previously selected
seed point. Therefore, this will minimize the number of
customers located far away from other customers in a route.
However, this algorithm always ensures the abundance of
new features.

5.4 Mutation operator

Mutation aims to introduce new genetic material into an
existing individual, adding diversity to the population’s
genetic characteristics. Herein, we propose two types
of mutation operators independently with a mutation
probability for each of them:

1. Heuristic-swap mutation (HSM): Choose a random
customer ci and exchange its position with the customer
cj from different routes that has the shortest distance to
the customer ci .

2. Heuristic-move mutation (HMM): Choose a random
customer ci , find the customer cj from a different
route that has the shortest distance to the customer ci ,

5 6 8 4 9 2 3 1 7offspring 1

3 2 9 6 4 8 7 1 5offspring 2 

Fig. 9 Two new children after crossover processing
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and insert customer cj into the route containing the
customer ci .

An example of the HSM method is shown in Fig. 10. In
this example, a random customer (customer 4) is chosen,
and the nearest customer from other routes is customer
9. Then, two customers, 4 and 9, are swapped. Figure 11
depicts the HMM method by choosing a random customer
(customer 11), finding the nearest customer from a different
route (customer 2), and inserting it into the route containing
customer 11.

The proposed mutation operators use heuristic methods
similar to the proposed crossover operator. We can
see that the mutation operators have sizable effects
on the redistribution route and changing the genetic
abnormalities. In the Heuristic-swap mutation operator,
switching positions of two points near each other will
be effective for two intersection routes. Meanwhile, the
Heuristic-move mutation operator will be effective when
an abnormal point needs to be moved through another
route. The mutation operators described may produce the
solution that violates the maximum load, we mark it
as an invalid individual and return the positive infinity
fitness. To evaluate clearly the effectiveness, we present
the experimental result in Section 6. Overall, the use of
mutation operators may be proposed for many different
routing problems, and the EVRP is one of them.

5.5 Selectionmethod

Natural selection is an important step in the evolution
theory. Individuals struggle to survive in the wild, and only
the fittest can survive. In this selection method, we choose
the best individual by the wheel selection method. The
details of the method are described in Algorithm 4. This
method ensures that individuals with good fitness will have
a high probability of choosing and vice versa. Specifically,
the global best individual is added to the new population to
maintain the best existing traits.

6 Experiment results and performance
evaluation

6.1 Problem benchmark dataset

The EVRP benchmark set consists of two groups of
problems:

1. Group 1: consists of 7 small problem instances (up
to 100 customers) in which their optimal upper bound
values are provided in [1].

2. Group 2: consists of 10 larger problem instances (up to
1000 customers) in which their upper bound values are
not provided.

The first group of EVRP instances is generated by
extending the well-known instances of the conventional
vehicle routing problem from Christofides and Eilon [17].

Fig. 10 Heuristic-swap mutation
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Fig. 11 Heuristic-move
mutation
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The second group is an extension of the recent instances
of the conventional vehicle routing problem from Uchoa
et al. [18].

6.2 Experimental setup

To evaluate the performance of the GSGA for the EVRP,
we implement the proposed algorithm on Windows 10 with
8.0 GB RAM, CPU 2.2 GHz, with a population size of
200 individuals and a mutation rate of 0.1. The maximum
number of evaluations is 25000n, where n = |C| + 1+ |S| is
the size of the problem instance. Our source code is written
in the C++ language.

In this study, we try to set the parameter for different
ranges to find the best results. The fixed POP SIZE

parameter equals 200 individuals, but it is not ideal to work
in large instances because the population is not diverse
enough to get a good local optimal solution. However, it
is good for mean and small problem size. Besides, the
mutation rate also significantly affects the performance, so
we experiment with different parameters (from 0.025 to 0.1)
to choose the best one. The crossover rate that gives the best
experimental results is 0.9, and the smaller the crossover
rate, the worse the results tend to be. Details are listed in
Table 2.

6.3 Experimental criteria

The effectiveness of the proposed algorithm is evaluated
based on several criteria: speed convergence of population,

Table 2 The experimental parameters

Parameter Description Value

POP SIZE number of individuals 200

pc crossover rate 0.95

pm mutation rate 0.1

Evm maximum number of evaluations 25000n

best result, worst result, average result, execution time, and
stabilization. Details of the criteria are presented in Table 3.

6.4 Experimental results

6.4.1 Greedy search algorithm analysis

To evaluate the effectiveness of the proposed greedy search
algorithm, the given upper bound on all instances belonging
to the group 1 (small) dataset are compared with the average
objective values found by the greedy search algorithm on
all runs. Notably, we calculate a value called approximation
ratio given by the following formula:

Approximation ratio = GSAi

UBi

(12)

In the formula, UBi and GSAi are the lower bound
value provided and the average objective value found
by the proposed greedy search algorithm of i instance.
This approximation ratio is the ratio between the result
obtained by the proposed greedy search algorithm and the
given lower bound value. In this paper, the closer the
approximation ratio is to 1, the better result is.

6.4.2 Greedy Seach implemented algorithms analysis

In this study, the number of runs is set to 20 (with random
seed from 1 - 20). According to the execution time chart, as
shown in Fig. 12, the execution time depends on the number

Table 3 Criteria for assessing the performance of the proposed
algorithm over all runs

Best The best objective function value achieved

Worst The worst objective function value achieved

Avg The average objective function value achieved

Stdev The standard deviation

Time Time for execution the proposed algorithm
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Fig. 12 Execution time chart of the proposed GSGA algorithm over
all runs in all instances

of customers, charging stations, and the number of routes. In
the X-n1001-k43 instance, the execution time of the GSGA
is smaller than the X-n916-k207 instance. Therefore, the
number of routes in each instance proportional the execution
time of the proposed algorithm. In general, the execution
time of the algorithm is relatively fast, about 500 seconds
for large instances.

Furthermore, we also evaluate the effectiveness of the
proposed algorithm with the given upper bound value. As
shown in Table 5, the experiment results show that the best
average results obtained by the GSGA are lower than the
upper bound value in most instances by about 1.56%.

During the experiment, the best objective values were
obtained when the population size ranged from 150 to 200.
With such a number of individuals, populations can adapt
quickly. However, when the problem size is quite large, the
number of customers is large, the population’s diversity will
be reduced. Comparing the Tables 4 and 5 results, the model
has a much better execution time when the greedy search
algorithm is implemented to GA.

Table 4 The given upper bound values, average objective values of
the proposed greedy search algorithm, and approximation ratios on 30
random runs in the small dataset

Instance Upper bound Greedy search Approximation ratio

E-n22-k4 384.67 490.21 1.27

E-n23-k3 573.13 760.03 1.33

E-n30-k3 511.25 626.28 1.22

E-n33-k4 869.89 976.16 1.12

E-n51-k5 570.17 661.01 1.15

E-n76-k7 723.36 868.96 1.20

E-n101-k8 899.88 1065.43 1.18

Table 5 The upper bound values are provided and best result of GSGA

Instance Upper Bound GSGA

E-n22-k4 384.67 384.67

E-n23-k3 573.13 571.94

E-n30-k3 511.25 509.47

E-n33-k4 869.89 845.62

E-n51-k5 570.17 542.08

E-n76-k7 723.36 717.30

E-n101-k8 899.88 872.69

6.4.3 Comparison with baselines

In this paper, we conduct three baseline algorithms: a
normal genetic algorithm (GA), a simulated annealing
algorithm combined the proposed greedy search algorithm
(GSSA), and a hybrid ACO algorithm (SACO) mentioned
in the related works. Notably, the baseline method GA
do not use the initial balanced distribute method and only
use the Dijkstra’s algorithm to find the possible nearest
station. GSSA also uses initial proposed methods and
search energy station schema similar to GSGA. SACO is
based on the framework of ACO and combined with the
Simulated Annealing. The combination of the ACO and
SA really produces an excellent outcome. ACO is used
to find a viable and stable solution, but it is difficult
to find a globally optimal solution while SA will rely
on ACO’s solution to find a globally optimal solution.
We evaluate four algorithms based on the same duration
(25000n evaluations).

Overall, GSGA performs the best for all data instances
with the shortest path and average execution time. The GS
algorithm can improve GA’s performance by 10% − 25%
on average if implemented, compared to GA’s results. The
GSGA algorithm incorporates the proposed GS strategy and
outperforms GSSA and the state-of-the-art SACO in all
instances of datasets in average objective value.Specifically,
GSGA algorithm is approximately 5% better than SACO on
the small dataset and 23.5% on the large dataset. Compared
to GSSA, GSGA is 5.7% better on small dataset and 4% on
large dataset. This is because the proposed Greedy Strategy,
combined with a genetic algorithm, can significantly reduce
the cost of finding optimal solutions as the data scales.
Table 6’s findings show the greedy search algorithm GS’s
potential in improving any genetic algorithm’s performance
for finding the optimal charging routes with GSGA remains
the best performing algorithm.

Next, we run Wincoxon rank test on three different pairs:
GSGA vs GA, GSGA vs GSSA, and GSGA vs SACO.
Performance of the above algorithms when compared with
the proposed GSGA algorithm on two type datasets for 30
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Table 6 The travel distance results obtained from the implemented GA, GSGA, GSSA and SACO (the best results are indicated in bold font)

GA GSGA GSSA SACO

Instances Best Avg Best Avg Best Avg Best Avg

E-n22-k4 385.44 391.78 384.67 384.67 384.67 407.93 384.67 385.48

E-n23-k3 582.60 583.32 571.94 571.94 571.94 636.09 571.94 582.62

E-n30-k3 516.31 517.12 509.47 509.47 515.61 526.02 511.01 542.20

E-n33-k4 860.21 860.92 844.25 845.62 845.33 890.81 840.56 857.86

E-n51-k5 551.47 568.62 529.90 542.08 556.92 590.06 558.46 595.79

E-n76-k7 725.84 742.03 697.27 717.30 701.87 745.06 707.29 773.58

E-n101-k8 879.28 902.82 852.69 872.69 867.22 906.60 877.40 958.47

X-n143-k7 16876.24 17389.54 16488.60 16911.50 16845.47 17496.27 17813.49 19256.56

X-n214-k11 11794.23 12277.79 11762.07 12007.06 12116.68 12600.04 14929.50 15491.52

X-n351-k40 28435.32 28973.42 28008.09 28336.07 28575.47 28768.73 36450.11 38427.21

X-n459-k26 26305.41 27330.85 26048.21 26345.12 26899.03 27620.47 30114.04 33675.74

X-n573-k30 55678.62 56810.22 54189.62 55327.62 57906.94 59878.48 62175.89 64544.27

X-n685-k75 75065.39 76357.98 73925.56 74508.03 76029.72 78155.81 117122.33 120876.62

X-n749-k98 85258.97 86501.16 84034.73 84759.79 85850.66 88641.28 126675.87 128481.11

X-n819-k171 174693.48 175382.71 170965.68 172410.12 175527.73 177915.03 203541.34 210170.65

X-n916-k207 361402.06 365416.88 357391.57 360269.94 367617.75 371027.32 408692.18 412554.09

X-n1001-k43 79513.74 80918.71 78832.90 79163.34 80907.12 81569.93 115439.23 115439.15

independent runs in the Wilcoxon signed-rank test at alpha
= 0.05 is shown in Tables 7 and 8. Where, -, ≈, + indicate
that the results obtained by the base algorithms are worse,
similar, and better than the proposed algorithm, respectively.

It can be observed that the results of our algorithm
GSGA outperform other algorithms on both small and large
datasets. Specifically, GSGA outperformed GA and GSSA
in all instances; GSGA outperformed SACO in 6 out of 7
small instances, and it outperformed SACO in all instances
on the large dataset.

Consequently, illustration routes of the best recorded
solutions of instances are shown in Fig. 13a–d. Note that the
symbols: a red circle symbol, a green triangle symbol, and
a blue square symbol represent a depot, a customer, and a
charging station, respectively.

Table 7 Wilcoxon signed-rank test on small dataset

Instances GA GSSA SACO

E-n22-k4 − − ≈
E-n23-k3 − − −
E-n30-k3 − − −
E-n33-k4 − − −
E-n51-k5 − − −
E-n76-k7 − − −
E-n101-k8 − − −
Total (-/≈/+) 0/0/7 0/0/7 0/1/6

6.4.4 Ablation studies

To further examine the effectiveness of each component
in the proposed genetic algorithm (GSGA), including
the initialization method, the crossver method, and the
mutation method, we carry out the experiments by
removing each of these components in the GSGA. Table 9
shows the experimental results with %improv being the
relative improvement of versions GSGA-I (replacing the
greedy initialization by random one) and GSGA-M (without
mutation), and GSGA-C (without crossover) to the version
GSGA.

Table 8 Wilcoxon signed-rank test on large dataset

Instances GA GSSA SACO

X-n143-k7 − − −
X-n214-k11 − − −
X-n351-k40 − − −
X-n459-k26 − − −
X-n573-k30 − − −
X-n685-k75 − − −
X-n749-k98 − − −
X-n819-k171 − − −
X-n916-k207 − − −
X-n1001-k43 − − −
Total (-/≈/+) 0/0/10 0/0/10 0/0/10
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Table 9 Ablation analysis of each component in the proposal: initialization, crossver, mutation

Instances GSGA-I GSGA-C GSGA-M

Small E-n22-k4 −10,76 % −2,14 % −1,56 %
E-n23-k3 −0,69 % −0,40 % −0,16 %
E-n30-k3 −10,02 % −0,54 % −0,30 %
E-n33-k4 −3,89 % −0,12 % −0,12 %
E-n51-k5 − −3,49 % −2,79 %
E-n76-k7 − −2,22 % −4,84 %
E-n101-k8 − −1,69 % −4,68 %

Large X-n143-k7 − −1,74% −4,31%
X-n214-k11 − −0,77 % −6,62 %
X-n351-k40 − −1,76 % −5,48 %
X-n459-k26 − −2,10 % −6,30 %
X-n573-k30 − −2,01 % −5,10 %
X-n685-k75 − −1,39 % −4,65 %
X-n749-k98 − −1,39 % −3,92 %
X-n819-k171 − −1,37 % −2,20 %
X-n916-k207 − −1,31 % −1,93 %
X-n1001-k43 − −1,47 % −5,04 %

The results are %improv averaged over 10 runs of the GSGA-I, GSGA-M, GSGA-C algorithms to the GSGA algorithm

(a) The E-n101-k8 instance. (b) The best result for E-n101-k8 instance.

(c) The X-n214-k11 instance. (d) The best result for X-n214-k11 instance.

Fig. 13 Routes of the best recorded solutions of instances in the benchmark datasets
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First, we observe that greedy initialization gives better
solutions than random initialization on all datasets. The
result is inadequate when not using the greedy initialization
strategy, even finding invalid solutions (except for four
small instances). The reason is that the greedy initialization
method can produce valid solutions and the solutions are
superior in quality to the random initialization.

Second, we observe that the results of GSGA-C (without
crossover) are also not good. Besides, GSGA-M (without
mutation) results are much worse than GSGA-C on all large
instances. As a result, both crossover and mutation operators
play a significant role in improving the solution’s quality,
in which mutation is more efficient than the crossover.

7 Conclusion

This paper presents an Electric Vehicle Routing Problem
(EVRP) and proposes an efficient algorithm, namely
GSGA, based on a genetic algorithm and greedy search
algorithm to solve the EVRP. In our approach, the new
solution representation, including the new encoding and
decoding method, is proposed for GSGA. Furthermore, this
paper proposes the greedy initialization, the new crossover,
and mutation operators for the problem. The proposed
algorithm is evaluated on EVRP benchmark instances
in EVRP Competition at WCCI 2020. The experimental
results show that when implemented to a genetic algorithm,
our greedy search algorithm GS can find much better
clustered charging routes with more optimal travel distances
for vehicles.

For the future, we plan to further study the proposed
GSGA on more variations of electric vehicle routing prob-
lems. The design of multifactorial evolutionary algorithms
to solve vehicle routing problems is also a promising
research direction.
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