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Abstract—The capacitated electric vehicle routing prob-
lem is a challenging non-deterministic polynomial hard
(NP-hard) problem consisting of two interdependent sub-
problems, the routing optimization problem and the charg-
ing decision problem. The routing optimization for electric
vehicles with limited driving range is dependent on the
available charging stations, while the charging decision is
based on the charging demand that is estimated on the
fixed route in return. Taking this coupling relationship into
consideration, this paper proposes a dual-population based
co-evolutionary algorithm that uses two evolution popula-
tions to collaboratively optimize these two sub-problems.
In routing population, the charging station is regarded as
a kind of customer with no demand, and an improved ant
colony optimization algorithm is designed to generate routes
that involve the position information of charging stations. In
charging population, a binary genetic algorithm is used to
generate a population of charging schemes whose qualities
are evaluated based on the best ant obtained from the routing
population, and then the resultant solution by inserting the
best charging scheme is used to update the pheromone for
the routing generation. Through the information interaction
during the evolution, these two populations collaboratively
search for the optimal solution of the problem. Experimental
results demonstrate that the proposed algorithm can be able
to avoid falling into the local optimum and has a reduction
of about 4% in route distance averaged over two test suites.
Additionally, it also has a high computational efficiency,
which is faster than the advanced ant colony optimization
method by about 2 times.

Index Terms—Electric vehicle routing problem, charging
decision problem, co-evolution, ant colony optimization,
genetic algorithm.
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TANSPORTATION has been one of the main sources
of greenhouse gas emission over the past decades.

Recently, electric vehicles (EVs) have been identified as
a promising alternative to traditional fossil fuel-driven
vehicles due to the characteristics of energy saving and
carbon reduction [1]–[3]. Considering the increasingly
serious environmental problems and the goals of carbon
peak and carbon neutrality, many logistics companies,
such as FedEx, DHL, and UPS, have started using EVs
instead of fossil fuel-driven vehicles in their express
businesses [4], [5].

Academically speaking, logistics companies usually
model the services for customers as the vehicle routing
problem (VRP) that is a non-deterministic polynomial
hard (NP-hard) problem [6]–[11]. Over the last few
decades, a large number of VRP variants have been
widely studied for different real scenarios, such as capac-
itated VRP (CVRP) [12], [13], VRP with time windows
[14], VRP with pickup and delivery [15], multi-objective
VRP [16], [17], and dynamic VRP [18], [19]. Note that
most of these VRPs are formulated based on fossil fuel-
driven vehicles, where the refueling problem is usually
not considered due to their long driving range and
the widely distributed gas stations. However, compared
with fuel vehicles, EVs have relatively limited driving
range and the number of charging stations is also not
enough in the city at present [20]. Thus, when using
EVs as the delivery vehicles, not only the order for
visiting customers but also the charging scheme of the
EVs should be considered.

Due to this extra concern, a new category of VRP
variant called electric VRP (EVRP) is proposed in recent
years [21]–[25]. Moreover, several EVRP variants have
been proposed in the last few years, such as capacitated
EVRP (CEVRP) [26], [27], EVRP with time window
(EVRPTW) [21], [28] , EVRP with pickup and delivery
[29], EVRP with non-linear charging (EVRP-NL) [30],
etc. Particularly, CEVRP is the most fundamental variant
and is the main concern in this paper. The CEVRP can
be described as follows: given a fleet of EVs, the best
possible routes need to be found within the capacity
and battery power limits of the EVs, starting from the
depot and returning to it, to serve a set of customers with
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different demands. Different from the traditional CVRP,
the objective of CEVRP is to minimize the total travel
distance of vehicles including the visits for not only all
the customers but also some charging stations. Each EV
cannot be overloaded or run out of electricity during its
journey. If a vehicle cannot finish the journey by only
using the initial electricity, it needs to visit the charging
station to recharge its battery. It is worth noting that there
are two aspects should be optimized simultaneously in
CEVRP: 1) the routing for visiting the customers and
2) the charging scheme of each EV. These two aspects
are highly interdependent with each other, since the
routing optimization for EVs with limited driving range
is dependent on the available charging stations, while
the charging decision scheme of each EV is based on the
charging demand that is estimated based on the given
driving route in return [31], [32].

Until now, the existing approaches proposed to solve
EVRPs mainly include exact algorithms, heuristic al-
gorithms and metaheuristic algorithms [33]–[35]. Exact
algorithms always translate the EVRPs into the mixed
integer linear programming (MILP) models to address
them [36], [37]. They can fast obtain the optimal solution
for small-scale test instances, but are inefficient on larger-
scale problems with more than 50 customers. Heuris-
tic algorithms are problem-specified programs that im-
prove solutions according to the problem structure,
such as Clarke and Wright savings algorithm [2]. Meta-
heuristic algorithm is a kind of problem-independent
heuristic that does not depend on the specific condi-
tions of a problem. It can be divided into individual-
based and population-based metaheuristic algorithms.
The individual-based ones improve a single solution by
the local search strategy, such as simulated annealing
(SA) [38], tabu search (TS) [39], variable neighborhood
search (VNS) [40], [41], and adaptive large neighborhood
search (ALNS) [22], [42]. The population-based ones use
multiple solutions to make a collaborative search for
finding the optimal solution, such as genetic algorithm
(GA) [43]–[46] and ant colony optimization (ACO) [26],
[47], [48].

Note that these heuristic and metaheuristic algorithms
generally optimize the routing plan and the charging
scheme iteratively and in stages, which can tackle the
coupling between them to some extent. However, with
the increase of the problem scale, the coupling between
two subproblems becomes more complicated, this two-
stage alternating optimization would make a lot of un-
promising searchs in the large solution space. Specif-
ically, in the routing stage, only the optimization of
the service order for customers is considered, which
neglects the influence of the position of charging stations
on the routing plan and may cause the EV to take a
detour to recharge. While in the charging stage, the
optimal charging scheme is excessively sought for a fixed
routing plan, once the routing plan is changed in the
next generation, the charging scheme needs to be re-
optimized. This inconsistency between the optimization

of routing and charging causes an unpromising search
during the optimization process.

Therefore, how to make a collaborative optimization
between routing and charging is important for improv-
ing the search efficiency of algorithms. In this study,
the idea of co-evolution optimization is adopted for
better considering the coupling relationship between the
routing optimization and the charging decision, where
two subproblems are simultaneously optimized by using
two co-evolution populations. Through the information
interaction during the evolutionary process, these two
populations collaboratively search for the optimal solu-
tion of the problem. To sum up, the contributions of this
paper are as follows:

1) A dual-population based co-evolutionary algo-
rithm (DPCA) is proposed for solving the CEVRP,
where one population is for the routing optimiza-
tion and another population is for the charging
optimization.

2) An improved ACO is designed to generate routes
where the charging station is regarded as a kind
of customer with no demand, which can consider
the influence of the position of charging stations on
planning the routes.

3) A binary genetic algorithm is used to generate
a population of binary charging schemes, which
can provide diverse charging schemes for better
matching the optimal routing plan and thus reduce
the unpromising search.

4) An interaction strategy is proposed to make two
populations co-evolve, where the best ant in the
routing population is used to evaluate the charging
population and the resultant solution by inserting
the best charging scheme is used to update the
pheromone information.

The rest of the paper is organized as follows. In Sec-
tion II, the related work is presented and the motivation
for the work is given. In Section III, the formulation of
CEVRP is presented. In Section IV, the details of the
proposed DPCA for solving the CEVRP are presented.
The experimental studies are conducted in Section V.
Finally, Section VI makes a conclusion about this paper
and points out some future research issues.

II. RELATED WORK AND MOTIVATION

This section first introduces existing methods for solv-
ing EVRPs, and then summarizes these methods to give
the motivation of this work.

A. Existing methods for CEVRP
In this section, the existing methods for solving

EVRPs are reviewed, which can be classified into
four categories: 1) Exact methods, 2) Heuristic meth-
ods, 3) Individual-based metaheuristic methods, and 4)
Population-based metaheuristic methods.

Exact methods generally transfer the EVRP into a
corresponding mathematical programming model or a
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linear programming problem and adopt with general
exact solvers, such as CPLEX optimizer or other com-
mercial software to solve it. Lin et al. [36] described the
EVRP considering vehicle loads as an MILP model and
used CPLEX to solve the problem. Experimental results
showed that CPLEX found the optimal solution for
small-scale instances with 13 customers. Xiao et al. [49]
considered the EVRPTW under nonlinear charging char-
acteristics and transferred it into an MILP model, also
using CPLEX to successfully solve the test instance with
25 customers. Recently, Yao et al. [50] decomposed the
EVRP into two linear programming problems, namely
the routing-related problem and the charging-related
problem. By iteratively solving these two subproblems
in stages, the algorithm can achieve an approximate op-
timal solution in polynomial time. Even so, the problem
scale in the experiment was also small with no more
than 50 customers. These studies showed that the exact
methods can always find the optimal solution for small-
scale instances, but it is not applicable or inefficient when
they handle large-scale instances.

Heuristic methods solve EVRPs by inductive reason-
ing from experience and experimental analysis, which
start from the initial solution and find a better one in
its neighborhood as the current solution, then repeat
the process until no better solution can be updated.
Heuristic algorithms can be divided into construction
heuristics and local improvement heuristics [33], [34].
The construction one starts with “zero” and constructs a
solution sequentially. The Clarke and Wright savings (C-
W) algorithm is one of construction heuristics commonly
used for EVRPs. Erdogan et al. [2] used a modified C-
W algorithm to solve the routing problem of renewable
fuel vehicles. Another widely used construction heuristic
is the two-phase heuristic algorithm. Felipe et al. [51]
used a two-phase heuristic to address an EVRP with
limited autonomy. Unlike the construction heuristics,
local improvement heuristics start with a complete initial
solution and iteratively improve the current solution to
obtain a better solution by the heuristic operators. The
typical one is the Local Search algorithm, which has
been already widely combined with other algorithms in
various EVRP studies [52]–[54].

Individual-based metaheuristic methods are mainly
based on different local search strategies, which can
obtain an approximate optimal solution in a reasonable
time for large-scale EVRPs. In 2014, Schneider et al. [21]
first proposed the EVRPTW model and combined tabu
search and variable neighborhood search to solve it.
Montoya et al. [30] proposed to solve EVRP-NL by using
the iterative local search (ILS) algorithm. Yang et al. [22]
proposed a hybrid heuristic method called SIGALNS to
solve the CEVRP, where the routing and charging prob-
lems are optimized by ALNS and iterated greedy (IG)
heuristic in stages. Along with the ALNS, Hof et al. [23]
designed a new facility-related neighborhood structure
in the shaking step of the ALNS for the fast search
for the EV routing plan. Schiffer et al. [55] developed

a hybrid of an ALNS and dynamic programming using
computational parallelization techniques to solve large-
scale test instances in a reasonable time. Generally, the
effectiveness of these algorithms is commendable but
their performance heavily depends on the local search
operators that are problem-related. For larger-scale test
problems, the choice of an operator can have a great
impact on the performance of the algorithm. If the
operator is not chosen properly, the algorithm can easily
fall into a local optimum.

Population-based metaheuristic algorithms are gener-
ally inspired by the natural evolutionary law or behav-
iors of living organisms and have shown the global
search ability for obtaining the optimal solution on a
wide range of complex problems. Several scholars have
tried to use them to solve EVRPs, such as GA [44], [45]
and ACO [26], [47], [48]. At the earliest, Guo et al. [44]
and Shao et al. [45] proposed to use the GA to solve the
two subproblems of EVRP simultaneously, by encoding
the orders for customers and charging stations together
in one evolution population. However, this solution
way leads to the search space being huge and also the
traditional local search operator like 2-opt is invalid since
they cannot handle the customer and station orders at
the same time, which eventually makes the proposed
GAs ineffective on large-scale EVRPs. Afterward, most
studies have turned to the two-stage optimization frame-
work that alternately optimizes the routing plan and the
charging scheme in stages. Mavrovouniotis et al. [26]
adopted a max-min ant system algorithm (MMAS) to
optimize the routing without considering the electricity
constraint and then used a simple repair method to add
charging stations into the obtained routing plan. Jia et al.
[47] proposed a bi-level ACO (BACO) to solve CEVRP
with the idea of bi-level optimization, where ACO is
used to optimize the routing plan without considering
the electricity constraint in the upper-level CVRP sub-
problem and the removal heuristic is designed to obtain
the charging schemes in the lower level. Recently, for
improving the efficiency of the BACO algorithm, Jia et
al. [48] proposed an improved confidence-based bi-level
ant colony optimization algorithm (CBACO), where only
promising routing plans were selected for lower-level
optimization based on confidence.

B. Motivation

It can be found that most of the existing heuris-
tic and metaheuristic algorithms usually decompose
CEVRP into two subproblems, i.e., the routing optimiza-
tion problem and the charging decision problem, and
alternately optimize them in stages. However, this two-
stage alternating optimization framework excessively
searches the optimal routing plan and the charging
scheme in each stage, which easily misses the best
matching between them and would make a lot of un-
promising searches when the problem scale increases.
Specifically, due to the complicated coupling relationship
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between them, there very likely exists that a suboptimal
routing plan but with an appropriate charging scheme
can achieve a better result than the combination of the
respective optimums in stages. To illustrate this situa-
tion, Fig. 1 plots the routing plans without consider-
ing charging stations and the final solutions obtained
by MMAS [26] and the proposed method on the R-
4-C-30 test instance [56]. From Fig. 1(a)(b), it can be
found that, although the routing plan and the charging
scheme obtained by MMAS are both optimal, the final
resultant solution is not optimal. While in Fig. 1(c)(d),
although the routing plan is not optimal, but with a
well-matched charging scheme, the solution quality can
be better. Therefore, in order to make the collaborative
optimization of routing and charging, this paper designs
a dual-population based co-evolutionary algorithm to
collaboratively search for the optimal solution of the
problem.

Note that the dual-population co-evolution strategy
has been widely used in the continuous optimization
field for solving the complex optimization problems
[57]–[59]. For example, for tackling multiobjective op-
timization problems with complicated Pareto-optimal
sets, Li et al. [57] used two separate and co-evolving
populations to deal with convergence and diversity si-
multaneously. For constrained multiobjective optimiza-
tion problems, Tian et al. [58] proposed to evolve one
population to solve the original problem and another
population to solve a helper problem without constraints
compared to the original problem. By sharing useful
information between the two populations, the complex
original problem can be solved efficiently. Recently, this
co-evolution optimization strategy also has been used
for solving combinational optimization problems [60]–
[62]. For instance, Wang et al. [62] used two populations
to collaboratively search the optimal solutions for multi-
objective location problems under uncertainty of facili-
ties, where the location population provides the high-
quality location schemes for the radius population in
evaluating the quality of radii of each location and the
radius population equips the proper radii for location
population in determining the good location schemes.
Therefore, this paper adopts this dual-population co-
evolution strategy to solve the CEVRP, where one pop-
ulation is for the routing optimization and another pop-
ulation is for the charging optimization.

III. PROBLEM FORMULATION

CEVRP can be defined on a fully connected weighted
graph G = (V,E), where V = {0} ∪ I ∪ F ′ is a set of
nodes, E = {(i, j) | i, j ∈ V, i ̸= j} is a set of arcs
connecting these nodes. Node 0 denotes the depot. I
is the set of n customers, each customer i has a fixed
cargo demand ci. F ′ denotes an extended set of charging
stations that includes δi copies of each charging station
in i ∈ F , where F is the set of m charging stations that
have been built. δi is set to 2|I| in the worst case and each

(a) (b)

(c) (d)

Fig. 1. The routing plans without consider charging stations and the
final solutions by MMAS and the proposed method on R-4-C-30 test
instance, where ◦, ▷ and □ represent the depot, the customer and the
charge station, respectively. (a) Routing plan by MMAS with the travel
distance 564.99. (b) Final solution by MMAS with the travel distance
737.62. (c) Routing plan by DPCA with the travel distance 610.01. (d)
Final solution by the proposed method with the travel distance 611.26.

charging station can be visited once, multiple times or
not. Each EV has a maximum capacity of cargo demand
C and a maximum battery capacity B. Additionally, an
EV has remaining carrying capacity ui and remaining
battery level yi when it arrives at node ∀i ∈ V . Assume
that the charge consumption rate does not change with
the load of EVs, the consumed energy is described as
h ∗ dij , where dij denotes the distance from node i to
node j and h denotes the constant charge consumption
rate.

According to existing studies [33]–[35], the basic as-
sumptions for the CEVRP are as follows:

1) EVs start from the depot and finally return to the
depot.

2) Each customer node is to be serviced by exactly
one electric vehicle.

3) Electric vehicle can visit a charging station for
recharging the battery between any two customers.

4) Each charging station can be visited by more than
one electric vehicle.

5) The locations of the depot, customers and charging
stations and the traveling distance from any node
to any charging station are known.

6) The battery level of an EV must always be between
0 and its battery capacity.

7) The total demand of customers in a route cannot
exceed the maximum capacity of an EV.

8) The battery of an EV is fully charged when leaving
the depot and charging stations.

Formally, the CEVRP can be formulated as follows:
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min
∑

i∈V,j∈V,i ̸=j

dijxij (1)

s.t. ∑
j∈V,i ̸=j

xij = 1,∀i ∈ I, (2)

∑
j∈V,i̸=j

xij ≤ 1,∀i ∈ F ′, (3)

∑
j∈V,i ̸=j

xij −
∑

j∈V,i ̸=j

xji = 0,∀i ∈ V, (4)

0 ≤ ui ≤ C, ∀i ∈ V, (5)

uj ≤ ui − cixij + C (1− xij) ,∀i ∈ V,∀j ∈ V, i ̸= j, (6)

0 ≤ yi ≤ B, ∀i ∈ V, (7)

yj ≤ B − hdijxij ,∀i ∈ F ′ ∪ {0},∀j ∈ V, i ̸= j, (8)

yj ≤ yi − hdijxij +B (1− xij) ,∀i ∈ I, ∀j ∈ V, i ̸= j, (9)

xij ∈ {0, 1},∀i ∈ V,∀j ∈ V, i ̸= j, (10)

Objective (1) is to minimize the total driving distance
of all EVs. Constraint (2) ensures that each customer
is visited by one EV. Constraint (3) guarantees that a
charging station can be visited multiple times. Constraint
(4) establishes the flow conservation by guaranteeing
that at each node, the number of incoming arcs is equal
to the number of outgoing arcs. Constraints (5)-(6) are
related to the EV loadings, which are called “capacity
constraints”. Constraint (5) requires that the load of the
EV is non-negative and cannot exceed the maximum
value when it reaches any node. Constraint (6) guaran-
tees that the cargo demand of all customers is satisfied.
Constraints (7)-(9) are related to the battery level of
EVs, which are called “electricity constraints”. Constraint
(7) requires that the remaining battery capacity of the
EV is non-negative and cannot exceed the maximum
battery capacity when it reaches any node. Constraint (8)
assumes that EVs are always fully charged in charging
stations or the depot. Constraint (9) links the amount
of energy available at node j to the amount of energy
available at node i. The quantity of electricity at node
j decreases with the consumption of the arc (i, j). In
constraint (10), xij is a binary variable that indicates
whether arc (i, j) is traveled or not.

As an extension of the well-known CVRP, CEVRP
needs to determine not only the customer orders but also
the charging station visits in a route. Since the number
of visits to charging stations is not restricted for a route,
an EV can make none, one or more visits to charging sta-
tions, which poses a challenge for the charging optimiza-
tion. Fig. 2 presents an illustrative example of a solution
to the CEVRP involving ten customers (C1,. . . ,C10), four
charging stations (S1,. . . ,S4), and the depot that can be
also used as a charging station. It can be found that one
EV visits the charging station twice during its journey,
one EV visits once and another EV does not visit any
charging station. Moreover, the charging decision for the

D

C1

C2

C3

C6

C4

S1

C5

S2 C7

C8
S4

C9

C10
S3

Customer Depot Charging station

Fig. 2. An illustrative example for the CEVRP.

Algorithm 1: Framework of the Proposed DPCA
Input: I (The set of customers), F ′ (The set of charging

stations), N (Population size)
Output: s (Final solution)

1 P ← Initialization(N);
2 Q← Initialization(N);
3 Initialize the best solution s and the pheromone matrix

Φ;
4 while the termination criterion is not met do
5 [P best, ls]← RoutingOptimization(Φ, I, F ′, N);
6 O ← ChargingOptimization(Q, ls);
7 [Q,Φ, s]← Interaction(Q,O, P best, s);

8 Adjust the charging scheme of s by the iterated greedy
(IG) algorithm;

9 return s;

EV is also a complex optimization problem. It needs to
determine the appropriate position for the EV visiting
the charging stations, meeting the electricity constraints
and avoiding the detour. For example, for the routes C7-
C8-S3-C9-C10 and C7-C8-S4-C9-C10 in Fig. 2, though
both two routes are electricity-feasible, the former can
achieve the better total distance than the later as it
effectively avoids the detour. In other words, when an
EV needs to recharge, the choice to the nearest charging
station is not always optimal as it is greatly influenced
by the routing plan. Therefore, the optimizations for
the routing plan and the charging scheme should be
considered at the same time for better dealing with the
coupling relationship between them.

IV. SOLUTION APPROACH AND ALGORITHM

In this section, the framework of the proposed algo-
rithm is first given. Then, the detailed evolution proce-
dures for the routing population and the charging popu-
lation are presented. Finally, the information interaction
method between two populations is detailed, which is
the main component of the proposed DPCA.

A. Framework of the Proposed DPCA
The framework of the proposed DPCA is summarized

in Algorithm 1. A population P is used for routing opti-
mization and each individual (ant) uses the integer en-
coding. Specifically, an ant x = (x1, x2, ..., xn+m) denotes
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the routing plan including orders for visiting customers
(1, 2, ..., n) and charging stations (n+1, ..., n+m). Another
population Q is used for the charging optimization and
each individual uses the binary encoding. Consider an
individual y = (y1, y2, ..., yn), the binary 1 in the ith bit
denotes that the EV needs charging after visiting the
ith customer in the given routing plan and the binary
0 otherwise. First of all, these two populations P and Q
with the size of N , the best solution s and the pheromone
matrix Φ (lines 1-3) are initialized. Afterward, at each
generation, the two populations are first evolved sepa-
rately, where the population P uses an improved max-
min ant system to optimize the routing plan (line 5) and
the population Q uses a binary genetic algorithm to opti-
mize the charging scheme (line 6). Then, the interaction
between them is implemented to exchange the useful
information to further improve the solution quality (line
7). These two processes are alternately implemented and
terminated when the termination criterion is met. At the
end of the evolution, the charging scheme in the final
solution of CEVRP is finally improved by the iterated
greedy (IG) algorithm [22] (line 8).

B. Routing Optimization Based on Improved ACO
Ant colony optimization (ACO) algorithm [63] is a

population-based metaheuristic algorithm that simulates
the real ant colony cooperation process based on the
study of the collective foraging behavior of real ant
colonies in nature. ACO does not depend on a specific
local search operator and has a good global search ability,
which has been widely used to solve EVRPs in recent
years [26], [47], [48], [63]–[65]. Among several ACO
variants, the max-min ant system (MMAS) is the most
studied one and has proven its good performance in
CEVRPs [26], [47], [48]. Hence, MMAS is also used to
optimize the EV routes in this study. Different from
the existing methods only considering the service order
of customers, this paper considers the influence of the
position of charging stations on planning the route and
pre-places the charging stations into the route construc-
tion, where the charging station is regarded as a king
of customer with no demand. Since both the customers
and the charging stations are considered, the size of the
pheromone matrix Φ is n′ ∗ n′, where n′ = n + m + 1
and each element φij ∈ Φ represents the pheromone
value of traveling from i to j. Besides, the boundaries
of pheromone values φmax and φmin are calculated as
suggested by [26]:

φmax =
1

(1− ρ) · Cbs
(11)

φmin =
φmax(1− n′√

0.05)

(n′/2− 1) n′√
0.05

(12)

where ρ is the evaporation rate and Cbs is the driving
distance of the best-so-far ant.

The routing optimization process is shown in Algo-
rithm 2. First, the routing r is constructed by selecting
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Fig. 3. Illustration of the process of inserting nodes by using the
proposed insertion operator.

nodes from the candidate nodes according to the roulette
wheel selection strategy (lines 4-12). In each step, the
probability of going to node j from the current node i
is calculated by:

pij =
φα
ij/d

β
ij∑

k∈Is
φα
ik/d

β
ik

(13)

where α, β are two parameters to adjust the weights of
the pheromone value and the distance value and Is is a
set of candidate nodes.

Then, the routing plan r is split into several capacity-
feasible routes by using the split algorithm proposed in
[66] (line 13). Afterward, the 2-opt local search operator
is used to further improve the routing quality (line 14).
After obtaining a population of routing plans denoted by
ants, the best ant in P is found, denoted as P best and then
improved by the proposed local search operator (lines
17-18). Besides, the associated charging scheme in P best,
denoted as ls, is extracted for guiding the evolution of
the charging population (line 19).

When conducting the local search on the P best, in or-
der to better match the charging scheme to finally make
up the high-quality solution, a new associative insertion
operator is proposed to generate the routing plan with
better stability, where the nodes are still removed from
the routing plan by using the continuous string removal
operator [67]. First, find all the associated nodes and
associated edges to the nodes that have been removed.
For example, in Fig. 3, for the node a to be inserted, its
associated node a1 is the node closest to a that has not
been removed, l1 is the associated edge of the node a
since it is closest to a among all the edges in the routing
after removing some nodes. c1 and l1 are the associated
node and the associated edge of node c, respectively.
Then, the nodes will be inserted in sequence according
to the following rules: If the associated node and the
associated edge belong to the same route (e.g., node a),
the node will be inserted into the route first without
violating the capacity constraint; If not (e.g., node c), the
node will be inserted into each of the two routes and
one with the shorter driving distance will be selected. If
the node violates the capacity constraint in both of the
above cases, a greedy insertion is attempted in all routes.
If there is no route to be inserted, a new route is opened.
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Algorithm 2: RoutingOptimization(Φ, I, F ′, N)

Input: I (Set of customers), F ′ (Set of charging
stations), Φ (Pheromone matrix), N (Population
size)

Output: P best (Best ant in P ), ls (Charging scheme in
P best)

1 Î = {0} ∪ I ∪ F ′;
2 k ← 1;
3 while k ≤ N do
4 Initialize r empty;
5 Randomly select a node i in Î ;
6 Append i to r;
7 Remove i from Î ;
8 while Î is no empty do
9 Find the last node i in r;

10 j ← RouletteWheelSelection(Î , i);
11 Append j to r;
12 Remove j from Î ;

13 x← Split(r);
14 Do 2-opt local search on x;
15 Add x into P ;
16 k ← k + 1;

17 P best ← Find the best ant in P ;
18 Improved P best by the proposed local search operator;
19 ls ← Extract the charging scheme in P best;
20 return P best, ls;

C. Charging Optimization Based on Binary GA

For the charging optimization, a binary GA is used to
generate a population of charging schemes for providing
the diverse charging schemes for the routing population.
First, an initialization method is proposed to produce the
initial charging schemes. To be specific, each customer
is assigned to its nearest charging station based on the
Euclidean distance. Suppose that the ith customer is
assigned to the jth charging station Sj , the probability of
going to Sj after visiting the ith customer is calculated
by:

pi,j =
dmax − di,j

(dmax + ξ)− dmin
(14)

where di,j is the distance from the ith customer to Sj ,
dmax (dmin) is the distance between Sj and the farthest
(closest) customer assigned to Sj . The constant ξ is
added to avoid the denominator being 0, which is set
to 1. For the ith bit of each individual in the population,
it is calculated as follows:

yi =

{
1, if rand()≤ pi

0, otherwise

Then, the offspring population Q is generated by using
the common uniform crossover and the bit-flip mutation
proposed in [68]. The difference is that the binary charg-
ing scheme ls contained by the best ant P best in the rout-
ing population is used as the parent, which aims to guide
the evolution of the charging population by the elite
information from the routing population. Through the
population-based search, the charging population can

always maintain a number of diverse charging schemes
that can well match the iteratively varying routing plans.

D. Interaction Between Two Populations
In order to better take into account the coupling be-

tween the subproblems in CEVRP, the interaction during
the evolution of two populations is implemented for
collaboratively searching for the optimal solution of the
problem. Algorithm 3 describes the detailed steps of
the interaction between the routing population P and
the charging population Q. First, the customer service
sequence rc in the best ant P best is taken as a basic
routing plan to match each charging scheme in Q ∪ O
and thus the quality of each charging scheme can be
evaluated (line 1). Then, the best charging scheme Qbest

can be determined and the first N best charging schemes
in Q ∪ O can be survived for the next generation (lines
2-3). Afterward, a new solution s′ can be constructed
by combining rc and Qbest (line 4). If the solution s′

is electricity-feasible and its quality is better than the
current best solution s, s is updated by s′ and the
pheromone matric Φ is updated by s′ (lines 5-7); Other-
wise, the pheromone matric Φ is updated by P best (lines
8-9). Specifically, the pheromone matrix is updated as
follows:

τij ← φij +∆φbest
ij ,∀(i, j) ∈ s or P best (15)

where ∆φbest
ij = 1/Cbest and Cbest is the quality of the

best solution s or P best.
For better understanding the interaction process, Fig. 4

illustrates the information exchange between two pop-
ulations in each generation. Assume that there exist
four customers and one charging station, the number
of customers is 1∼4 and the number of the charging
station is 5. First, the best ant P best = (1, 5, 2, 3, 4) in
the routing population is found and used to guide the
evolution of the charging population. The function of
the best ant mainly includes the following two aspects:
1) The customer service sequence rc = (1, 2, 3, 4) is taken
as a basic routing to evaluate the quality of charging
schemes, 2) The binary charging scheme ls = (1, 0, 0, 0)
contained by P best is used as the parent to generate the
offspring charging schemes. In this way, the charging
population can well match the best routing plan with
some diversity, which is helpful for preventing the so-
lution from the local optimum. Then, the best charging
scheme Qbest = (0, 1, 0, 0) can be determined to match
rc = (1, 2, 3, 4) and thus a new solution (1, 2, 5, 3, 4)
can be obtained by combining them. In return, this
new solution is used to update the pheromone matrix
Φ for the routing generation. Through the information
interaction during evolution, these two populations can
collaboratively search for the optimal solution of the
problem.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section first gives the related experimental set-
tings. Then, the performance of DPCA is compared with
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Algorithm 3: Interaction(Q,O, P best, s)
Input: Q (Charging population), O (Charging

offspring population), P best (The best ant in P ),
s (The best solution)

Output: Q, Φ, s
1 Evaluate each charging scheme in Q ∪O based on the

basic routing rc;
2 Q← Select first N charging schemes in Q ∪O;
3 Qbest ← Determine the best charging scheme in Q;
4 s′ ← Construct a new solution by combining rc and

Qbest;
5 if s′ is electricity-feasible and better than s then
6 s← s′;
7 Update pheromone matric Φ by s;

8 else
9 Update pheromone matric Φ by P best;

10 return Q, Φ, s;

0 1 0 0

1 0 1 0

Crossover, variation and 

selection 

Update the pheromone matric

The best ant

Routing Population

The best solution

Customer service sequence

1 3 421 3 42

1 5 3 421 5 3 42

1 2 3 451 2 3 45

The charging scheme 

1 0 001 0 00

1 0 0 0

0 0 1 0

...

The best charging scheme

3 2 1 453 2 1 45

4 5 3 124 5 3 12

...

Ants

Charging Population

Fig. 4. Illustration of the interaction process between two populations.

four state-of-the-art algorithms in the solution quality
and the time efficiency. Afterward, the effectiveness of
the dual-population coevolution strategy is verified by
comparing DPCA with its three variants. Finally, the ef-
fectiveness of the proposed associative insertion operator
in improving the quality of routes is validated.

A. Experimental Setup

1) Algorithms: The performance of the proposed DPCA
is verified by comparing it with four state-of-the-art
algorithms, namely, the hybrid ALNS heuristic algorithm
(SIGALNS) [22], the max-min ant system (MMAS) [26],
the bi-level ant colony optimization algorithm (BACO)
[47] and the confidence-based BACO (CBACO) [48].
Note that SIGALNS is an individual-based metaheuris-
tic algorithm while MMAS, BACO and CBACO are
population-based metaheuristic algorithms.

2) Test Problems: Two well-known test suites, namely
the R-C test suite [56] and the E-X test suite [26], are
chosen for the performance comparison of algorithms. R-
C test suite takes into account the impact of uncertainties
in actual logistics distribution by randomly scattering
the locations of customers and charging stations on a
100×100 grid. It includes 34 test instances with the num-
ber of customers varying from 30 to 200. The demand of
each customer is set as 5, 10, and 15, and the numbers
of charging stations are set to 2, 4, 6, and 8 in these
instances. The maximum capacity of the EV is set to

100 and the maximum battery capacity of the EV is
set to 150. E-X test suite [26] is recently proposed by
Mavrovouniotis et al., which covers a large number of
different scenarios concerning the characteristics of the
real problem, such as the distribution of consumers and
their demands, the number and distribution of charging
stations, the freight and battery capacities of vehicles.
Table-I in the supplementary file gives the detailed in-
formation of the E-X test instances.

3) Parameter Settings: Experiments are conducted on
a workstation computer with an Intel Core i7 3.4GHz
CPU with 64GB of memory. Each test instance performs
20 independent runs and the maximum number of gen-
erations is set to 5,000. For fair comparisons, all the
parameters are set to the same as suggested in the orig-
inal studies. Regarding the settings of DPCA, the used
MMAS follows the recommended setting as suggested
by Mavrovouniotis et al. [26], where the information
evaporation rate ρ is set to 0.98, α and β are set to 1, and
2, respectively. The population size is set to the number
of customers as suggested by Jia et al. [48].

B. Performance of the Proposed DPCA

To verify the performance of the proposed algorithm
in solving CEVRP, it is compared with the four state-of-
the-art algorithms on both R-C and E-X test suites. The
performance of DPCA is analyzed from the following
aspects.

1) Total Driving Distance Comparison: The min and
mean objective values obtained by MMAS, SIGALNS,
BACO, CBACO and DPCA in 20 independent runs are
compared, and the comparison results are given in Table
II and Table III in the supplementary file, where the
number in parentheses denotes the number of vehicles
used. The “w/t/l” denotes how many instances DPCA
wins, ties or loses to the other algorithms and the
“rank” row shows the overall rank of each algorithm
according to the Friedman test. For the R-C test suite
[56], DPCA obtains 12 best min objective values among
14 test instances with fewer charging stations (2 and 4).
BACO achieves 4 best min objective values among these
instances while the other two algorithms fail to achieve
the best value. For the test instances with fewer charging
stations, the coupling between the routing optimiza-
tion and the charging decision is stronger. SIGALNS,
MMAS, BACO, and CBACO optimize two subproblems
in stages, which cannot handle this strong coupling rela-
tionship well during the optimization process, resulting
in the poor performance. Specifically, for the “R-2-C-90”,
MMAS even cannot find a feasible solution since the
electricity constraint is hard to be met when the number
of charging stations is less. For the 20 test instances with
more charging stations (6 and 8), DPCA achieves a com-
parable performance in comparison to BACO in terms of
the mean value. In terms of the min value, DPCA obtains
12 best results among these instances, while BACO
obtains 7 and the other algorithms achieve only one or
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none. This indicates that DPCA is comparable in solving
CEVRP even when the coupling between the routing
optimization and the charging decision is weak. Overall,
on the R-C test suite, DPCA has a reduction of 3.34%,
6.79%, 2.74% and 3.30% compared to SIGALNS, MMAS,
BACO, and CBACO, respectively. For the E-X test suite
[26], due to the complex distribution of customers and
stations, the coupling between the routing optimization
and the charging decision becomes more complicated.
DPCA is clearly superior to other algorithms due to
the effectiveness of the dual-population co-evolution
strategy for this coupling problem. Specifically, it has a
reduction of 5.37%, 5.73%, 0.75% and 1.94% compared to
SIGALNS, MMAS, BACO, and CBACO, respectively.

2) Effectiveness of Route Adjustment During Iteration:
Fig. 5 shows the routes obtained by MMAS, BACO and
DPCA at different stages of the evolutionary process
on the “R-2-C-40” test instance, respectively. The routes
denoted by the dashed lines are obtained by ignoring
the charging stations and regarding the problem as a
CVRP. It can be found that, at the 200-th generation,
the initial routes obtained by MMAS, BACO and DPCA
almost overlap with those in the case that is solved as
a CVRP. At the 400-th or 600-th generation, the routes
obtained by MMAS, BACO and DPCA change under
the action of the pheromone. Among them, DPCA has
an obvious change. The reason is that, with the new
pheromone update rule, DPCA takes into account the
influence of the position of charging stations, and thus
the routing plan is gradually closer to the charging
stations. Meanwhile, the driving distance of going to the
charging station is gradually reduced. Finally, at the 800-
th generation, the routing plan obtained by DPCA has
little overlap with the case of CVRP. It is worth noting
that it is not the best routing plan for CVRP but for
CEVRP, which indicates the necessity of the collaborative
optimization of routing and charging.

3) Solution Comparison: Fig. 6 shows the final solutions
obtained by SIGALNS, MMAS, BACO and DPCA on
the “R-8-C-30” test instance. This run corresponds to the
result with the min objective value. As shown in Fig. 6(a),
EVs visit charging stations between customers 18 and
16, 28 and 29, even the nearest charging station is far
from the customer. The reason is that MMAS only allows
EVs to visit the charging station when the electricity
is not satisfied to reach the next customer. Making a
detour to the charging stations inevitably increases the
driving distance. As shown in Fig. 6(b), the route repair
method used by SIGALNS has some improvements on
the detour compared to MMAS. When encountering
insufficient electricity to reach the next customer, there
are more options for the position of the charging station
to be inserted in SIGALNS. However, the previously
inserted charging station in the routing will affect the
decision of the following charging stations, and when
the electricity is insufficient again, the best position of the
next charging station may also cause the detour, leading
to an increase in the total driving distance. As shown

in Fig. 6(c), BACO uses a removal heuristic approach to
optimize the charging scheme that is effective to avoid
the detour of EVs, but the optimization process is very
time-consuming as it needs to optimize the charging
scheme for each routing plan in the population. As
shown in Fig. 6(d), DPCA can obtain an appropriate
charging scheme to match the routing plan and thus
can effectively avoid the increase in the total driving
distance.

Fig. 7 plots one route in the final solution obtained
by the proposed method on R-6-C-40, involving nine
customers (C1,. . . ,C9), six charging stations (S1,. . . ,S6),
and the depot (D) that can be also used for recharging,
and at the same time records the remaining load and
battery level of the EV before and after the EV visits
each node (depot, charging station, or customer) during
its journey. The first item in bracket denotes the the
remaining load and the second is the remaining battery
level, and the value along the arc means the consumed
battery power of the EV. The cargo demands of C3 and
C4 are 5, the demands of C6, C7 and C8 are 10, and the
demands of C1, C2 and C9 are 15. EV starts from the
depot (D) with the remaining load 100 and the remaining
battery level 150. When the EV arrives at customer C1,
it consumes the battery power 9, and after visiting C1,
the remaining load of the EV is 85. When leaving C3, EV
chooses to go to S5 to recharge and then visit C4, even
though the EV still has enough energy to go from C3 to
C4. The reason is that there exists no charging station
available on the subsequent journey. When EV returns
to the depot, the remaining battery level is 2 and the
remaining load is 0. By recording the changes on the
remaining battery level and load of the EV, it can be
found that the proposed method makes the best use of
the available charging stations and embeds the routing
plan with the appropriate charging scheme, resulting in
a shorter driving distance.
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Fig. 7. Changes in the battery level and the load of the EV during
journey.

4) Convergence Speed: In order to analyse the conver-
gence ability of each algorithm, the objective value is
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Fig. 5. Illustration of solutions generated by MMAS, BACO and DPCA on “R-2-C-40” instance during the evolutionary process.
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Fig. 6. Illustration of final solutions obtained by MMAS, SIGALNS, BACO and DPCA on the ”R-8-C-30” test instance.

calculated by running each algorithm at a fixed CPU
time T , which can be determined as follows:

T = ϑ× |I|
100

(hr) (16)

where |I| is the total number of customers. For test
instances with less than 100 customers, ϑ is set to 0.5,
and for test instances with 100∼200 customers, ϑ is set
to 1.

Fig. 8 plots the convergence curves of the five algo-
rithms on different scales of test instances. It can be

found that, in terms of the final total driving distance,
DPCA can achieve a comparable performance to BACO
on “R-6-C-80”, and perform better on both “R-6-C-90”
and “R-6-C-120”. Also, DPCA has an obvious advantage
on large-scale test instances, such as “R-6-C-200”. Addi-
tionally, in terms of convergence speed, DPCA converges
faster than the other three algorithms on most of the test
instances.

5) Time Efficiency: Fig. 9 shows the CPU time con-
sumed by these five algorithms on the 34 test instances
from the R-C test suite. It can be found that the CPU
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Fig. 8. Convergence curves of SIGALNS, MMAS, BACO, CBACO and DPCA on the five test instances with different scales.
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Fig. 9. CPU time consumed by MMAS, SIGALNS, BACO, CBACO
and DPCA on the R-C test suite.

time consumed by DPCA is significantly less than that
consumed by BACO. Specifically, DPCA is faster than
BACO by about 2 times, even reaching 10 times on some
large-scale instance. For BACO, the lower-level charging
optimization for all ants consumes much time, while
DPCA only needs to optimize the charging scheme for
the best ant that can greatly save time. For CBACO, it
only selects some promising ants to execute the charging
optimization that can also reduce the CPU time, while
DPCA has a comparable computational efficiency to it.
For MMAS, it directly inserts the closest charging station
to make the solution electricity-feasible that has the
lowest computation complexity, but there is a significant
increase in the total driving distance. Overall, the pro-
posed DPCA maintains an acceptable and comparable
computational efficiency compared to other algorithms.

C. Effectiveness of the Dual-Population Co-evolution Strategy

To verify the effectiveness of the adopted dual-
population coevolution strategy, DPCA is compared
with its three variants on the R-C test suite. In Variant-I,
the charging scheme contained by the best ant is not used
to guide the evolution of the charging population, i.e.,
two individuals in the charging population are randomly
selected as the parents to generated the offspring, which
mainly verifies the effectiveness of the interaction from
the routing population to the charging population. In
Variant-II, GA is not used to generate a population of
charging schemes for the best ant, but using the IG
heuristic algorithm [22] to optimize the charging scheme

for each ant, which aims to verify the effectiveness of
maintaining the diverse charging schemes for jumping
out the local optimum. In Variant-III, charging stations
are not considered when planning the routing and only
the service order for customers is optimized, which
mainly verifies the effectiveness of pre-placing the charg-
ing stations into the routing plan for avoiding the detour
of EVs.

Table I shows the min objective values among 20 inde-
pendent runs obtained by DPAC and its three variants on
the R-C test suite. Fig. 10 shows the convergence curves
of DPCA and the three variants on ten R-C test instances
with six charging stations. The following observations
can be obtained from the results in Table I:

1) Compared with Variant-I, DPCA can perform bet-
ter on 20 out of 34 test instances. Moreover, from
Fig. 10, it can be found that the convergence perfor-
mance of DPCA is better than that of Variant-I on
all instances. This indicates that, when the charg-
ing scheme contained by the best ant is crossed
with individuals in the charging population, some
charging stations that are far away from customers
can be quickly removed and thus the solution
quality can be greatly improved.

2) Compared with Variant-II, DPCA can obtain the
better results on 22 out of 34 test instances. Also
in Fig. 10, DPCA can perform better convergence
ability than Variant-II on most of test instances.
The reason is that the dual-population coevolution
strategy can generate a suitable charging scheme
for the best routing plan to escape from the local
optimum. The IG algorithm focuses on providing
the optimal charging scheme for the fixed routing
plan. However, the combination of the respective
optimums in stages is not always the optimal so-
lution for the CEVRP, IG very likely makes the
solution fall into the local optimum.

3) Compared with Variant-III, DPCA can achieve bet-
ter results on 31 out of 34 test instances. The reason
is that pre-placing the charging stations into the
routing plan can better balance the objective mini-
mization and the electricity-constraint satisfaction,
avoiding that excessively seeking the minimization
of the driving distance among customers leads
to the detour of EVs to recharge. As shown in
Fig. 10, DPCA shows better convergence ability
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TABLE I
OBJECTIVE VALUES OBTAINED BY DPCA AND THREE VARIANTS ON R-C TEST SUITE. BEST RESULT IN EACH INSTANCE IS HIGHLIGHTED.

Variant-I Variant-II Variant-III DPCA Variant-I Variant-II Variant-III DPCA
R-2-C-30 596.45(4) 596.45(4) 596.45(4) 596.45(4) R-4-C-30 623.17(4) 634.29(4) 639.37(4) 611.26(4)
R-2-C-40 784.66(5) 766.31(5) 817.75(5) 769.05(5) R-4-C-40 738.91(5) 729.31(4) 779.97(4) 723.68(4)
R-2-C-50 817.00(5) 808.26(5) 844.06(5) 811.83(5) R-4-C-50 785.83(6) 785.83(6) 787.27(6) 785.45(6)
R-2-C-60 978.88(7) 978.88(7) 978.88(7) 978.88(7) R-4-C-60 900.84(7) 899.80(7) 933.69(7) 899.92(7)
R-2-C-70 1038.86(8) 1048.91(8) 1053.12(8) 1049.22(8) R-4-C-70 1115.47(8) 1114.23(8) 1130.73(8) 1113.84(8)
R-2-C-80 1206.36(9) 1154.14(9) 1165.30(9) 1152.13(9) R-4-C-80 1144.34(10) 1146.90(9) 1149.24(9) 1146.39(9)
R-2-C-90 1178.62(10) 1183.53(10) 1237.33(10) 1182.21(10) R-4-C-90 1182.79(10) 1182.79(10) 1241.42(10) 1181.84(10)
R-6-C-30 526.68(3) 526.68(3) 526.68(3) 526.68(3) R-8-C-30 613.70(4) 611.77(4) 617.50(4) 611.48(4)
R-6-C-40 688.14(5) 691.05(5) 710.16(5) 688.14(5) R-8-C-40 648.23(5) 648.23(5) 666.54(5) 648.23(5)
R-6-C-50 867.22(6) 883.57(6) 909.23(6) 863.18(6) R-8-C-50 801.07(6) 798.12(6) 808.23(6) 798.12(6)
R-6-C-60 979.11(6) 964.67(7) 979.11(6) 978.85(6) R-8-C-60 862.02(7) 874.91(6) 868.80(6) 864.65(6)
R-6-C-70 938.57(7) 941.36(7) 949.08(7) 941.07(7) R-8-C-70 1120.87(8) 1099.84(8) 1130.99(8) 1128.51(8)
R-6-C-80 1063.80(8) 1059.78(8) 1084.23(9) 1059.61(8) R-8-C-80 1108.55(9) 1114.06(9) 1122.55(9) 1108.55(9)
R-6-C-90 1052.72(11) 1071.03(11) 1069.07(10) 1063.72(10) R-8-C-90 1221.12(11) 1197.09(9) 1286.70(9) 1189.66(9)
R-6-C-120 1350.82(13) 1348.22(13) 1370.13(13) 1344.67(13) R-8-C-120 1597.80(13) 1576.42(13) 1601.73(12) 1590.36(12)
R-6-C-160 1572.04(17) 1561.81(17) 1593.35(17) 1553.89(16) R-8-C-160 1569.85(18) 1571.97(17) 1568.97(18) 1568.29(18)
R-6-C-200 2267.41(23) 2274.15(22) 2313.30(24) 2271.14(23) R-8-C-200 2034.83(23) 2021.17(22) 2067.77(23) 2015.33(23)

than Variant-III on almost of test instances.

D. Effectiveness of the Proposed Insertion Operator

To verify the effectiveness of the proposed insertion
operator in the routing optimization, it is compared with
the basic greedy insertion operator (BGI) and the regret-
2 insertion operator (Regret-2I) [69], while the string-
based removal operator [67] is still used to remove nodes
in the routing plan. Table II shows the min and mean
objective values on 10 R-C test instances with different
scales, where “Associate-I” denotes the proposed asso-
ciative insertion operator. It can be found that Associate-
I performs well on most of the test instances compared
to the BGI method and the Regret-2I method. Although
these two methods have been verified to be effective
for the vehicle routing optimization, they seem to be
unsuitable for the routing optimization with charging
stations in CEVRP. This is because CEVRP is not only
limited by the capacity constraint, but also the electricity
constraint. Without considering the electricity constraint,
the greedy selection of the least-cost insertion may not be
effective for generating the optimal solution for CEVRP,
even if the optimal routing plan is found. The proposed
Associate-I refers to the associated customers and the
associated edges. It first inserts customers belonging to
the same route, and then considers the best insertion
position for customers belonging to multiple routes.
Compared with the greedy or regret insertion, the pro-
posed operator can find a more suitable position to insert
nodes for CEVRP.

VI. CONCLUSIONS

In this paper, a dual-population based co-evolutionary
algorithm (DPCA) was proposed to solve the CEVRP.

TABLE II
OBJECTIVE VALUES OBTAINED BY APPLYING THREE INSERTION

OPERATORS ON THE R-C TEST INSTANCES WITH DIFFERENT SCALES.

Instance Associate-I BGI Regret-2I

R-6-C-30 min 526.68(3) 526.68(3) 526.68(3)
mean 526.68 526.68 526.68

R-6-C-40 min 688.03(5) 688.14(5) 688.14(5)
mean 688.84 689.70 691.76

R-6-C-50 min 863.18(6) 891.38(6) 894.09(6)
mean 888.31 897.38 897.09

R-6-C-60 min 978.85(6) 978.85(6) 969.40(7)
mean 979.19 980.23 977.05

R-6-C-70 min 941.07(7) 937.51(7) 941.29(7)
mean 948.28 946.17 947.66

R-6-C-80 min 1059.61(8) 1066.79(8) 1066.34(8)
mean 1066.23 1069.33 1071.39

R-6-C-90 min 1063.72(10) 1062.69(10) 1063.72(10)
mean 1071.26 1071.04 1073.12

R-6-C-120 min 1344.67(13) 1346.18(13) 1353.99(13)
mean 1354.64 1360.39 1363.99

R-6-C-160 min 1553.89(16) 1571.99(16) 1564.29(17)
mean 1581.02 1586.33 1584.43

R-6-C-200 min 2271.14(23) 2287.56(22) 2290.04(23)
mean 2296.77 2300.86 2306.14

The proposed algorithm considered the coupling be-
tween the routing optimization and the charging deci-
sion by running two co-evolution populations. In the
routing population, an improved ant colony optimiza-
tion algorithm was designed to generate high-quality
routing plans that can include the position information
of charging stations in advance. In the charging popula-
tion, a binary genetic algorithm was used to generate a
population of charging schemes whose qualities are eval-
uated based on the best ant obtained from the routing
population. Through the information interaction during
the evolution, these two populations can collaboratively
search for the optimal solution of the problem. Based on
the experiment, it is found that DPCA can outperform
four widely used metaheuristics in terms of the total

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2023.3294588

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on August 21,2023 at 22:25:23 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. , NO. , MONTH YEAR 13

0 1000 2000 3000 4000 5000
524

526

528

530

532

534

536

538

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(a) R-6-C-30

0 1000 2000 3000 4000 5000
680

700

720

740

760

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(b) R-6-C-40

0 1000 2000 3000 4000 5000
850

900

950

1000

1050

1100

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(c) R-6-C-50

0 1000 2000 3000 4000 5000

980

1000

1020

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(d) R-6-C-60

0 1000 2000 3000 4000 5000
920

960

1000

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(e) R-6-C-70

0 1000 2000 3000 4000 5000
1050

1080

1110

1140

1170

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(f) R-6-C-80

0 1000 2000 3000 4000 5000
1050

1080

1110

1140

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(g) R-6-C-90

0 1000 2000 3000 4000 5000
1360

1400

1440

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(h) R-6-C-120

0 1000 2000 3000 4000 5000

1600

1640

1680

1720

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(i) R-6-C-160

0 1000 2000 3000 4000 5000

2340

2520

2700

O
bi

ec
tiv

e 
V

al
ue

Generations

 Variant-
 Variant-
 Variant-
 DPCA

(j) R-6-C-200

Fig. 10. Convergence curves of DPCA and its three variants on test instances with different scales.

driving distance, which has a reduction of 3.82%, 5.83%,
1.62% and 2.57% compared to SIGALNS, MMAS, BACO,
and CBACO averaged over two test suites. Through the
observation on the route change during iteration, it can
be found that DPCA can effectively avoid falling into
the local optimum by matching the routing plan with
the appropriate charging scheme. In terms of the time
efficiency, DPCA has an obvious advantage over the
advanced BACO with twice the speed and a comparable
performance compared to SIGALNS.

In the future research, it will be interesting to develop
the dual-population based co-evolution framework for
more complex EVRP variants, such as EVRP with time
windows [21], [28] and EVRP with non-linear charging
(EVRP-NL) [30].
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