
Physica D 42 (1990) 228-234
North-Holland

CO-EVOLVING PARASITES IMPROVE SIMULATED EVOLUTION
AS A N OPTIMIZATION PROCEDURE

W. Daniel HILLIS
Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142-1214, USA

This paper shows an example of how simulated evolution can be applied to a practical optimization problem, and more
specifically, how the addition of co-evolving parasites can improve the procedure by preventing the system from sticking at
local maxima, Firstly an optimization procedure based on simulated evolution and its implementation on a parallel computer
are described. Then an application of this system to the problem of generating minimal sorting networks is described. Finally
it is shown how the introduction of a species of co-evolving parasites improves the efficiency and effectiveness of the
procedure.

1. Introduction

The process of biological evolution by natural
selection [5] can be viewed as a procedure for
finding better solutions to some externally im-
posed problem of fitness. Given a set of solutions
(the initial population of individuals), selection
reduces that set according to fitness, so that solu-
tions with higher fitness are over-represented. A
new population of solutions is then generated
based on variations (mutation) and combinations
(recombination) of the reduced population. Some-
times the new population will contain better solu-
tions than the original. When this sequence of
evaluation, selection, and recombination is re-
peated many times, the set of solutions (the popu-
lation) will generally evolve toward greater fitness.

A similar sequence of steps can be used to
produce simulated evolution within a computer [3,
4, 12, 17-19]. In simulated evolution the set of
solutions is represented by data structures on the
computer and the procedures for selection, muta-
tion, and recombination are implemented by algo-
rithms that manipulated the data structures.
Although the term "simulated evolution" deliber-
ately suggests an analogy to biological evolution,
it is understood that the real biological processes
are far more complex than the simulation; simu-

lated evolution represents only an idealization of
certain aspects of a biological system. Such simu-
lations are sometimes used as tools for under-
standing biological evolution [15], but this paper
will concentrate on the use of simulated evolution
for optimization; that is, as a practical method of
generating better solutions to problems. Biological
systems will serve as a source of metaphor and
inspiration, but no attempt will be made to apply
the lessons learned to biological phenomena.

As an optimization procedure, the goal of simu-
lated evolution is very similar to that of other
domain-independent search procedures such as
generate and test, gradient descent, and simulated
annealing [13, 16]. Like most such procedures,
simulated evolution searches for a good solution,
although not necessarily the optimal one. Whether
or not it will find a good solution will depend on
the distribution of solutions within the space.

These methods are all useful in searching solu-
tion spaces that are too large for exhaustive search.
As in gradient descent and simulated annealing
procedures, simulated evolution depends on infor-
mation gathered in exploring some regions of the
solution space to indicate which other regions of
the space should be explored. How well this works
obviously depends on the distribution of solutions
in the space. The types of fitness spaces for which

0167-2789/90/$03.50 ~ Elsevier Science Publishers B.V.
(North-Holland)

W.D. Hillis / Co-evolving parasites improve simulated evolution 229

simulated evolution produces good results are not
well understood, but one important type of space
for which it works is a space that is independently
a good domain for hill climbing in each dimen-
sion.

Another attractive property of simulated evolu-
tion is that it can be implemented very naturally
on a massively parallel computer. During the se-
lection step, for example, the fitness function can
be evaluated for every member of the population
simultaneously. The same is true for mutation,
recombination, and a computation of statistics
and graphics for monitoring the progress of the
system. In the system described below, we rou-
tinely simulate the evolution of populations of a
million individuals over tens of thousands of gen-
erations. Since these simulations take place on
several generations per second, such experiments
take only a few hours.

In these simulations, individuals are represented
within the computer 's memory as pairs of number
strings that are analogous to the chromosome pairs
of diploid organisms. The population evolves in
discrete generations. At the beginning of each
generation the computer begins by constructing a
phenotype for each individual, using the set of
number strings corresponding to an individual
(the "genome") as a specification. The function
used for the interpretation is dependent upon the
experiment, but typically a fixed region within
each of the chromosomes is used to determine
each phenotypic trait of the individual. Discrepan-
cies between the two bit strings of the pair are
resolved according to some specified rule of domi-
nance. This is similar to the diploid "genetic algo-
ri thms" studied by Smith and Goldberg [18].

To simulate selection, the phenotypes are scored
according to a set of fitness criteria. When the
system is being used to solve an optimization
problem, the traits are interpreted as solution pa-
rameters and the individuals are scored according
to the function being optimized. This score is then
used to cull the population in a way that gives
higher scoring individuals a greater chance of sur-
vival.

After the selection step, the surviving gene pool
is used to produce the next generation by a pro-
cess analogous to mating. Mating pairs are se-
lected by either random mating from the entire
population, some form of inbred mating, or as-
sortive mating in which individuals with similar
traits are more likely to mate. The pairs are used
to produce genetic material for the next genera-
tion by a process analogous to sexual reproduc-
tion. First, each individual's diploid genome is
used to produce a haploid by combining each pair
of number strings into a single string by randomly
choosing substrings from one or the other. At this
point, randomized point mutations or transposi-
tions may also be introduced. The two haploids
from each mating pair are combined to produce
the genetic specification for each individual in the
next generation. Each mating pair is used to pro-
duce several siblings, according to a distribution
normalized to ensure a constant total population
size. The entire process is repeated for each gener-
ation, using the gene pool produced by one gener-
ation as a specification for the next.

The experiments that we have conducted have
simulated populations ranging in size from 512 to
-106 individuals, with between 1 and 256 chro-
mosomes per individual. Chromosome lengths
have ranged from 10 to 128 bits per chromo-
some, mutation rates from 0 to 25% probability of
mutation per bit per generation, and crossover
frequencies ranged from 0 to an average of 4 per
chromosome. Using a Connection Machine ® #1
with 65 536 processors, a typical experiment pro-
gresses at about 100 to 1000 generations per
minute, depending on population size and on the
complexity of the fitness function.

2. Sorting networks

As an example of how simulated evolution can
be applied to a complex optimization problem, we
consider the problem of finding minimal sorting

~*XConnection Machine is a registered trademark of Think-
ing Machines Corporation.

230 W.D. Hillis / Co-evolving parasites improve simulated evolution

rllt
]

I]

1

lIT
]

Fig. 1. Sorting network. Fig. 2. Green's 60-comparison sorter.

networks for a given number of elements. A sort-
ing network [14] is a sorting algorithm in which
the sequence of comparisons and exchanges of
data take place in a predetermined order. Finding
good networks is a problem of considerable prac-
tical importance, since it bears directly on the
construction of optimal sorting programs, switch-
ing circuits, and routing algorithms in intercon-
nection networks. Because of this, the problem has
been well studied, particularly for networks that
sort numbers of elements that are exact powers of

two .

Sorting networks are typically implemented as
computer programs, but they have a convenient
graphical representation, as shown in fig. 1. The
drawing contains n horizontal lines, in this case
16, corresponding to the n elements to be sorted.
The unsorted input is on the left, and the sorted
output is on the right. A comparison-exchange of
the ith and j t h elements is indicated by an arrow
from the ith to the j t h line. Two specified ele-
ments are compared and they are exchanged if
and only if the element at the head of the arrow is
less than the element at the tail; the smallest
element will always end up at the tail. The sorting
network pattern shown in fig. 1 is a Batcher sort
[1], which requires n log2n - 1 exchanges to sort n
elements.

A useful property of sorting networks is that
they are relatively easy to test. A sorting network
that correctly sorts all sequences of 1 and 0 will

correctly sort any sequence, so it is possible to test
an n-input sorting network exhaustively with 2"

tests.
In this section we describe how simulated evolu-

tion is used to search for networks that require a
small number of exchanges for a given number of
inputs. In particular, the case n = 16 is of particu-
lar interest, and has a long history of successive
surprises. In 1962, Bose and Nelson [2] showed a
general method of sorting networks which re-
quired 65 exchanges for a network of 16 inputs.
They conjectured that this was the best possible.
In 1964, Batcher [1], and independently, Floyd
and Knuth [6], discovered the network shown in
fig. 1, which requires only 63 exchanges. Again, it
was thought by many to be the best possible, but
in 1969, Shapiro [14] discovered a network using
only 62 exchanges. Later that year, Green [14]
discovered a 60-comparison sorter, shown in fig. 2,
which stands as the best known. These results are
summarized in table 1. For a lively and more
detailed account of these developments, the reader
is referred to the book by Knuth [14, pp. 227-229].

There are two ways to cast the search for mini-
mal sorting networks as an optimization problem.
The first is to search the space of functional sort-
ing networks for one of minimal length. The sec-
ond is to search the space of short sequences of
comparison/exchanges for ones that sort best.
The difficulty with the first approach is that there
is no obvious way of mutating a working sorting

W.D. Hillis / Co-evolving parasites improve simulated evolution 231

Table 1
Summary of number of exchanges required for best known
sorting networks with 16 inputs.

Best known networks

1962 Bose and Nelson 65
1964 Batcher, Knuth 63
1969 Shapiro 62
1969 Green 60

Networks found by simulated evolution

without parasites 65
with parasites 61

network into another one that is guaranteed to
work, so almost all mutations and recombinations
will create a network that is outside of the search
space. It is much easier in the second approach to
produce mutations and variations of a small pro-
gram that stay within the space of small programs.
Mutation can be implemented by changing the
position of one of the exchanges, and recombi-
nation by splicing the first part of one sorting
network with the last part of another. This is
essentially the approach we have adopted.

One difficulty with this approach is that even if
the solution is in the space of small networks, the
easiest paths to the solution may not be. It may be
easier, for example, to produce a short correct
network by optimizing a slightly longer correct
network than by fixing a bug in a short uncor-
rect network. For this reason, we have taken
advantage of the diploid representation of a geno-
type to allow longer networks to be generated as
intermediate solutions.

The genotype of each individual consists of 15
pairs of chromosomes, each consisting of 8 codons,
representing the digits of 4 chromosome pairs.
Each codon is a 4-bit number, representing an
index into the elements, so the genotype of an
individual is represented as 30 strings of 32 bits
each. The phenotype of each individual (an in-
stance of a sorting network) is represented as an
ordered sequence of ordered pairs of integers.
There is one pair for each exchange within the
network. The elements of the pair indicate which

elements are to be compared and optionally ex-
changed. Each individual has between 60 and 120
pairs in its phenotype, corresponding to sorting
networks with 60 to 120 exchanges.

The phenotype is generated from the genotype
by traversing the chromosomes of the genotype in
fixed order, reading off the pairs to appear in the
phenotype. If a pair of chromosomes is homozy-
gous at a given position (if the same pair is speci-
fied in both chromosomes), then only a single pair
is generated in the phenotype. If the site is het-
erozygous, then both pairs are generated. Thus the
phenotype will contain between 60 and 120 ex-
changes, depending on the heterozygosity of the
genotype. Sixty was chosen as the minimum size
so that a completely homozygous genotype would
produce a sorting network that matches the best
known solution. Because most of the known mini-
mal 16-input networks begin with the same pat-
tern of 32 exchanges, the gene pool is initialized to
be homozygous for these exchanges. The rest of
the sites are initialized randomly.

Once a phenotype is produced, it is scored
according to how well it sorts. One measure of
ability to sort is the percentage of input cases for
which the network produces the correct output.
This measure is convenient for two reasons. First,
it offers partial credit for partial solutions. Second,
it can be conveniently approximated by trying out
the network on a random sample of test cases.
After scoring, the population is culled by trunca-
tion selection at the 50% level; only the best
scoring half of the population is allowed to con-
tribute to the gene pool of the next generation.

To implement recombination, the gamete pool
is generated by crossover among pairs of chromo-
somes. For each chromosome pair in the surviving
population, a crossover point is randomly and
independently chosen, and a haploid gamete is
produced by taking the codons before the cross-
over point from the first member of each chromo-
some pair, and the codons after the crossover
point from the second member. Thus, there is
exactly one crossover per chromosome pair per
generation. Point mutations are then introduced in

232 W.D. Hillis / Co-evolving parasites improve simulated evolution

the gamete pool at a rate of one mutation per one
thousand sites per generation.

The next stage is the selection of mates. One
way to do this would be to choose pairs randomly,
but our experience suggests that it is better to use
a mating program with some type of spatial local-
ity. This increases the average inbreeding coeffi-
cient and allows the population to divide into
locally mating demes. The sorting networks evolve
on a two-dimensional grid with torroidal bound-
ary conditions. Mating pairs are chosen to be
nearby in the grid. Specifically, the x and y dis-
placement of an individual from its mate is a
binomial approximation of a Gaussian distribu-
tion. Mating consists of the exchange of haploid
gametes. After a pair mates, they are replaced by
their offspring in the same spatial location, so the
genetic material remains spatially local.

Simulations were performed using the proce-
dure on populations of 65 536 individuals for up
to 5000 generations. Typically, one solution, or a
few equal scoring solutions, were discovered rela-
tively early in the run. These solutions and their
variants then spread until they accounted for most
of the genetic material in the population. In cases
where there was more.than one equally good solu-
tion, each "species" dominated one area of the
grid. The areas were separated by a boundary
layer of non-viable crosses. Once these boundaries
were established, the population would usually
make no further progress. The successful networks
tend to be short because the descendant of het-
erozygotes tended to be missing crucial exchanges
(recessive lethals). The best sorting networks found
by this procedure contained 65 exchanges.

3. The co-evolution of parasites

While the evolution of the sorting networks
produced respectable results, it was evident on
detailed examination of the runs that a great deal
of computation was being wasted. There were two
major sources of inefficiency. One was a classical
problem of local optima: once the system found a

reasonable solution, it was difficult to make
progress without temporarily making things worse.
The second problem was an inefficiency in the
testing process. After the first few generations,
most of the tests performed were sorted success-
fully by almost all viable networks, so they pro-
vided little information about differential fitness.
Many of the tests were too "easy." Unfortunately,
the discriminative value of a test depends on the
solutions that initially evolve, and in the case
where several solutions evolve, the value of a given
test varies from one sub-population to another.

To overcome these two difficulties, various
methods were implemented for accelerating
progress by encouraging a wider diversity of solu-
tions and limiting the number of redundant test
cases. Three general methods were investigated:
varying the test cases over time, varying the test
cases spatially, and varying the test cases automat-
ically by independent evolution. Because the third
case has yielded the most interesting results, only
it will be described in detail.

The co-evolution of test cases is analogous to
the biological evolution of a host parasite, or of
prey and predator. Hamilton has used both com-
puter simulation and mathematical/biological ar-
guments to show that such co-evolution can be a
generator of genetic diversity [7-11]. The im-
proved optimization procedure uses this idea to
increase the efficiency of the search.

In the improved procedure, there are two inde-
pendent gene pools, each evolving according to
the select ion/mutat ion/recombination sequence
outlined above. One population, the "hosts", rep-
resents sorting networks, while the other popula-
tion, the "parasites", represents test cases. (These
two populations might also be considered as
"p rey" and "predator" , since their evolution rates
are comparable.) Both populations evolve on the
same grid, and their interaction is through their
fitness functions. The sorting networks are scored
according to the test cases provided by the para-
sites at the same grid location. The parasites are
scored according to how well they find flaws in
sorting networks. Specifically, the phenotype of

14/. D. ttillis / Co-evolving parasites improve simulated evolution 233

TI IT
'll ! l ,l, T l

l I I l
TI I I

l I II
TI

Fig. 3. 61 exchanges.

each parasite is a group of 10 to 20 test cases, and
its score is the number of these tests that the
corresponding sorting network fails to pass. The
fitness functions of the host sorting networks and
the parasitic sets of test patterns are complemen-
tary in the sense that a success of the sorting
network represents a failure of the test pattern

and vice versa.
The benefits of allowing the test cases to co-

evolve are twofold. First, it helps prevent large

portions of the population from becoming stuck in
local optima. As soon as a large but imperfect
sub-populat ion evolves, it becomes an attractive
target toward which the parasitic test cases are
likely to evolve. The co-evolving test cases imple-
ment a frequency selective fitness function for the
sorting networks that discourages large numbers
of individuals from adopting the same non-opti-
mal strategy. Successive waves of epidemic and
immunity keep the population in a constant state
of flux. While systems with a fixed fitness criteria
tended to get stuck in a few non-optimal states
after a few hundred generations, runs with co-
evolving test cases showed no such tendency, even

after tens of thousands of generations.
The second advantage of co-evolving the para-

sites is that testing becomes more efficient. Since
only test-case sets that show up weaknesses are
widely represented in the population, it is suffi-
cient to apply only a few tests to an individual

each generation. Thus, the computation time per
generation is significantly less. These two factors
taken together make it both more practical and
more productive to allow the system to run for
larger numbers of generations.

The runs with co-evolving parasites produced
consistently better and faster results than those
without. Fig. 3 shows the best result found to date,
which requires 61 exchange elements. This is an

improvement over Batcher's and Shapiro's solu-
tions, and over the results of the simulation with-
out parasites. It is still not the opt imum network,
since it requires one more sorting exchange than

the construction of Green.
These preliminary results are encouraging. They

demonstrate that simulated evolution of co-evolv-
ing parasites is a useful procedure for finding good
solutions to a complex optimization problem. We
are currently applying similar techniques to other
applications in an at tempt to understand the range
of applicability. It is ironic, but perhaps not sur-
prising, that our attempts to improve simulated
evolution as an optimization procedure continue
to take us closer to real biological systems.

Acknowledgements

The author would like to thank Chuck Taylor,
Bill Hamilton, Stuart Kaufmann, Steve Smith, and
the reviewers for helpful discussions and com-
ments in the preparation of this paper.

References

[1] K.E. Batcher, A new internal sorting method, Goodyear
Aerospace Report GER-11759 (1964).

[2] R.C. Bose and R.J. Nelson, A sorting problem, J. Assoc.
Computing Machinery 9 (1962) 282-296.

[3] D.G. Bounds, New optimization methods from physics
and biology, Nature 329 (1987) 215-219.

[4] H.J. Bremermann, Optimization through evolution and
recombination, in: Self-Organizing Systems, eds. M.C.

234 W.D. Hillis / Co-evolving parasites improve simulated evolution

Yovits, G.D. Goldstein and G.T. Jacobi (Spartan, Wash-
ington, DC, 1962) pp. 93-106.

[5] C. Darwin, The Origin of the Species by Means of Natu-
ral Selection: or, The Preservation of Favoured Races in
the Struggle for Life (Murray, London, 1859).

[6] R.W. Floyd and D.E. Knuth, Improved constructions for
the Bose-Nelson sorting problem, Notices Am. Math.
Soc. 14 (I967) 283.

[7] W.D. Hamilton and J. Seger, Parasites and sex, in The
Evolution of Sex, eds. R.E. Micmod and B.R. Levin
(Sinauer, Sunderland, MA, 1988) ch. 11.

[8] W.D. Hamilton, Pathogens as causes of genetic diversity
in their host populations, in: Population Biology of Infec-
tious Diseases, eds. R.M. Anderson and R.M. May,
Dahlem Konferenzen (Springer, Berlin, 1982) pp. 269-296.

[9] W.D. Hamilton, Sex versus non-sex versus parasite,
OIKOS (Copenhagen) 35 (1980) 282-290.

[10] W.D. Hamilton, P. Henderson and N. Moran, Fluctuation
of environment and coevolved antagonist polymorphism
as factors in the maintenance of sex, in: Natural Selection
and Social Behavior: Recent Research and Theory, eds.
R.D. Alexander and D.W. Tinkle (Chiron Press, New
York, 1980) ch. 22.

[11] W.D. Hamilton, Gamblers since life began: barnacles,
aphids, elms, Quart. Rev. Biol. 50 (2) (1975) 175-180.

[12] J.H. Holland, Adaption in Natural and Artificial Systems
(University of Michigan, Ann Arbor, 1975).

[131 S. Kirkpatrick, C. Gelatt Jr. and M. Vecchi, Optimization
by simulated annealing, Science 220 (I983) 671-680.

[14] D. Knuth, Sorting and Searching, Vol. 3. The Art of
Computer Programming (Addison-Wesley, New York,
1973).

[151 R. Lewontin and I. Franklin, Is the gene the unit of
selection?, Genetics 65 (1970) 707-734.

[16] N. Metropolis, A. Rosenbhith, M. Rosenbhith, A. Teller
and E. Teller. J. Chem. Phys. 21 (1953) 1807.

[17] I. Rechenberg, Evolutionsstrategie: Optimierung Technis-
cher Systeme nach Prinzipien der Biologischen Evolution
(Frommann-Holzboog, Stuttgart, 1973).

[18] R. Smith and D. Goldberg, Nonstationary function opti-
mization using genetic algorithms with dominance and
diploidy, in: Genetic Algorithms and Their Applications,
Proceedings of the Second International Conference on
Genetic Algorithms, July 1987.

[19] Q. Wang, Optimization by simulating molecular evolu-
tion, Biol. Cybern. 57 (1987) 95-101.

