
COMMUNICATIONS OF THE ACM January  2002/Vol. 45, No. 1 27

Six-figure workstations and custom soft-
ware are not producing the best graphics
or virtual reality simulations anymore.
Today, the only way to have the fastest,
most realistic simulations and sophisti-

cated graphics is to trade down from the expensive
gear to standard PCs running game software. Vir-
tual reality (VR), augmented reality (AR), and
high-fidelity physical simulation have long posed
too high a barrier to entry for any but the most gen-
erously funded researchers. Significant advances in
computer graphics in these areas have traditionally
depended on expensive, specialized graphics hard-
ware running on scientific workstations. High-
fidelity simulation/graphics software has also
remained an expensive niche market largely the

province of the military and high-end VR labs seek-
ing to drive costly peripherals such as Caves, data-
gloves, and head-mounted displays (HMDs). In
the past two years, however, the situation has
changed remarkably. Now the mass market for
computer games, grown even larger than the movie
industry, has expropriated the best in computer
hardware and software for itself. The most sophisti-
cated rendering pipelines are now found not on
specialized scientific machines but on PC video
cards costing less than $500. The most sophisti-
cated, responsive interactive simulations are now
found in the engines built to power games. 

Despite the stigma of violence and gore associ-
ated with first-person games, there has been a long
history of unpublicized cooperation between com-
puter scientists and the game industry [1, 2].
Games have provided the first and sometimes the
only market for advanced graphics techniques,
demonstrating the extent to which realism could
be conjured up even from relatively weak graphics

SERIOUS COMPUTATIONAL

RESULTS ARE DERIVED FROM

COMPUTER-BASED GAMES.

Michael Lewis and Jeffrey Jacobson

�

GAMEENGINES
IN SCIENTIFIC RESEARCH



environments using artistry and
texture maps.

The cost of developing ever
more realistic simulations has
grown so huge that even game
developers can no longer rely on
recouping their entire investment
from a single game. This has led
to the emergence of game
engines—modular simulation
code—written for a specific game
but general enough to be used for
a family of similar games. This
separability of function from content is what now
allows game code to be repurposed for scientific
research.

Early computer games consisted of little more than
the event-loop, state tables, and graphic routines
needed by simple 2D games such as Space Invaders,
Galaxians, or Raptor. The 1993 release of Doom by id
Software ushered in a new era of game design and play.
Although not the first game to offer an immersive first-
person perspective, Doom was the first to do so suc-
cessfully. It achieved a sense of realism even on the
80486-based PCs of the day by assiduous use of texture
maps, 2-1/2 D/4 DF animation, and other program-
ming tricks. This tradition of coaxing more realism
than possible by brute force continues to distinguish
gaming simulations from their scientific counterparts.
Two other features significant to scientific users intro-
duced by Doom were multiplayer play over a network
and user/third-party programmability. 

Because Doom and its descendants have been
designed from inception for network play, their archi-
tectures have more in common with large-scale distrib-
uted military simulations such as SimNet or ModSAF
than VR systems such as World Toolkit or languages
such as VRML. By elevating the problems of updating
and synchronization to a primary concern, game
engines provide superior platforms for rendering mul-
tiple views and coordinating real and simulated scenes
as well as supporting multiuser interaction. Despite its
initial success, Doom’s peer-to-peer architecture with
parallel games updating in lockstep proved cumber-
some and has been replaced by client/server schemes in
later games. The Doom engine offered only the mini-
mal degree of programmability by providing a generic
game executable to which the user could add data in a
prescribed format. The new levels had changed layouts
but continued to look and play just like Doom. Later
games have significantly expanded programmability.

Quake [1] was a lessons-learned follow-on from id
Software. It was truly 3D with environment and actors
made from texture-mapped polygons, although a

clever split of rendering pipelines between entities and
environment was needed to attain sufficient speed. In
place of peer-to-peer networking it provided a
client/server architecture with the game state main-
tained on the server while the compute-intensive 3D
engine ran on the client. Quake also extended its pro-
grammability to provide the first game-independent
game engine providing both a level editor for changing
layouts and QuakeC, a byte-compiled scripting lan-
guage, for changing behavior in the simulation. 

Quake II extended the performance and fidelity of
Quake, adding support for hardware-accelerated
graphics that were just beginning to appear on PC
video cards. With the release of Quake III Arena and
Epic Games Unreal Tournament in 1999, game
engines reached their present mature state. Both games
are strictly multiplayer with single-user play simulated
through play against a synthetic opponent. They each
provide extensive support for hardware acceleration,
and support user modifications through level editors
and scripting languages. As with Quake II, Quake III
Arena makes the C language game source code avail-
able, keeping only the graphics engine code propri-
etary. Unreal Tournament is set up in much the same
way, except that its open source game code is written in
UnrealScript, a bytecode-compiled scripting language
similar to Java. Although there are more than 600 com-
mercial game engines including the high-concept
graphics of Everquest’s LithTech engine, Quake III
Arena and Unreal Tournament provide the most devel-
oped, flexible, and usable engines for research purposes.

What are Game Engines? 
In today’s modularly constructed games, the game’s
engine refers to that collection of modules of simula-
tion code that do not directly specify the game’s behav-
ior (game logic) or game’s environment (level data).
The engine includes modules handling input, output
(3D rendering, 2D drawing, sound), and generic
physics/dynamics for game worlds. The figure here
shows this overall structure. 

28 January  2002/Vol. 45, No. 1 COMMUNICATIONS OF THE ACM

Virtual  Worlds
Level editing

Reprogramming
behaviors To other

instances
of the game

Game Code

Server

Modular game engine structure.

Operating System

Engine
Net-
work
Code

Graphics Drivers



At the top level are the virtual worlds or scenarios
with which the players interact. They come in a wide
range of appearances and rules of interaction, even dif-
ferent types of simulated physics. Many are authored by
fans of the game, who primarily use an advanced pro-
gram development environment that comes free with
the game itself. Often they include components of
existing worlds or are built using knowledge the authors
freely exchange via the Web.

The level below is the game code, which handles
most of the basic mechanics of game itself, like simple
physics, display parameters, networking, and the base-
or atomic-level actions for animations such as
autonomous agents or behaviors in the player’s own
avatar. Altering the game at this level requires a more
detailed knowledge of its internals and is accomplished
using a game-specific scripting language.

The rendering engine is the
crown jewel of the game. It incor-
porates all of the complicated code
needed to efficiently identify and
render the player’s view from a
complex 3D model of the environ-
ment. The rendering engine is a
proprietary black box and not open
to any kind of user modification.

The networking code supports
a robust, built-in networking pro-
tocol similar to DIS/HLA, which
allows several users in remote loca-
tions to explore and interact in the
same virtual environment (VE).
One computer acts as the server or host for the envi-
ronment, while the others support the individual users.
Networking code is so efficient and well-developed in
Unreal Tournament and Quake III that players on a
low-latency local-area network can expect to get syn-
chronization that exceeds frame rate of their displays.

The graphics drivers translate generic requests from
the rendering engine to the underlying graphics library,
using APIs such as DirectX, OpenGL, and others.
Because the drivers are open source they can easily be
modified to accommodate new display types such as
Caves or HMDs.

Finally, the server is a separate process, usually on a
different machine, which maintains information on
whichever virtual world it is supporting at the time. It
communicates with the game clients used by the play-
ers to maintain global information about shared envi-
ronments, player interactions (such as damage) and
synchronization information. For example, each player
has a different window into their shared VE. The scenes
presented to the players must be consistent so if one
player changes the state of some object, for example,

that object must exist for all the other players and be in
the same state.

Scientific Use of Game Engines 
While control is the key to science, game engines are by
design opaque. Speed-up strategies such as swapping
texture maps as distance increases produce the illusion of
reality but can leave the experimenter without cleanly
manipulatable parameters. Precise behavior of control
systems, as found in Microsoft Flight Simulator, or
response of materials to stress are not usually part of the
worlds simulated by game engines. If, on the other
hand, ecological validity is crucial to the research, pho-
torealistic game engine graphics and animations will
work far better than well-controlled but more primitive
scenes constructed in a principled way. If research
requires only faithful maintenance of player, object, and

terrain locations then game engine
fidelity is completely adequate.

While precise multimodal VE
simulations such as those required
for remote surgery will continue
to demand custom solutions, for
most VE applications a game
engine can add value by perform-
ing 3D bookkeeping, providing
networking and synchronization,
or driving high-fidelity hardware-
accelerated graphics.

The research projects described
in the short articles in this section
illustrate the variety of ways in

which game engine capabilities can be repurposed for
research. Gal Kaminka’s GameBots, Bylund and
Espinoza’s QuakeSim, and John Laird’s artificial intelli-
gence systems all de-emphasize game graphics in favor
of game engines’ capabilities as general-purpose 3D
simulations for keeping track of players, locations, and
objects in complex 3D worlds. 

Research in robotic coordination requires common
environments for simulating sensor data and motoric
responses. The popular Robocup [3] soccer simulation
does not provide the degree of complexity or challenge
needed to prepare teams of robots for real-life tasks. By
defining socket-based interfaces to connect simulated
robots to an Unreal Tournament server, Kaminka
opened up the entire library of Unreal Tournament
worlds to robotic play, test, and evaluation. QuakeSim
takes advantage of this same access to simulated sensor
data but uses it to test software concepts involving con-
text-aware services. John Laird’s game-based research is
closest in spirit to the games themselves. Working in
both Quake and Unreal Tournament, he and his team
at the University of Michigan are seeking to use the

COMMUNICATIONS OF THE ACM January  2002/Vol. 45, No. 1 29

Coaxing more 
realism than possible

by brute force 
continues to 

distinguish gaming 
simulations from 
their scientific 
counterparts.



Soar learning architecture to develop and test human-
level artificial intelligence through controlling synthetic
characters within the games.  

The other two research projects exploit both the
modeling and graphics capabilities of the game
engines. In the augmented reality game ARQuake,
game levels are written to match actual physical loca-
tions and players wearing see-through HMDs
encounter and do battle with monsters superimposed
over real scenery. CaveUT takes advantage of both the
graphical and networking capabilities of the Unreal
engine by using multiple players’ viewpoints to con-
struct a panoramic Cave-like display. There are proba-
bly as many potential applications for game engines as
there are research problems requiring medium-fidelity
3D simulation or high-fidelity interactive graphics.
Our hope is to raise awareness of the high-power/low-
cost alternative game engines can offer. 

Choosing an Engine
A researcher’s choice between the Quake and Unreal
engines is similar to that between Coke and Pepsi. Both
are more than adequate for their intended purpose yet
each has its avid fans and detractors. An examination of
contributors here indicates our researchers are evenly
divided with Kaminka and Jacobson lining up with the
Unreal engine, Bylund and Espinoza choosing Quake
III, and John Laird and colleagues working with both.

For research purposes it is hard to imagine an applica-
tion for which one would be suited and the other not.
However, because a choice must be made there are
some differences that should be considered.

As the older game, the Quake III engine has devel-
oped a large collection of customized levels and modi-
fications to play. Quake III also has a large cadre of
users and user sites to use as resources for programming
questions and assistance. It is not unlikely that some-
one in your organization may have Quake program-
ming experience. The Quake engine has been
optimized to the point where it is the fastest-running
game engine and has what many believe the best over-
all polygonal architecture.

As the newer engine, Unreal benefits from current
trends in programming and technology—see the side-
bar “The New Cards.” Unlike Quake, which has
descended from a succession of C language implemen-
tations, the Unreal engine is strictly object-oriented.
This pays big dividends through mutators and other
programming constructs that allow a programmer to
make robust changes in game behavior without requir-
ing detailed knowledge of the involved code. The Java-
like scripting language, Unreal Script, is easy to use and
well documented as is the well-designed UnrealEd
development environment. Although the Quake
engine offers true curves and direct access to graphics
functions such as deformation shading, the Unreal

30 January  2002/Vol. 45, No. 1 COMMUNICATIONS OF THE ACM

T he most significant recent development in gaming
and graphics-intensive computing has been the

availability of supercomputer-level graphics on com-
modity-priced graphics processing units (GPUs).
Leapfrogging earlier limits, Nvidia’s Quadro2 Pro GPU
delivers 31 million polygons per second at a fill rate of
over one  billion texture-mapped pixels per second,
which makes it the world’s fastest GPU by some mea-
sures. This speed comes despite a raft of new hardware
operations including multiple shadings per pixel, mul-
titexturing, texture and lighting, bump mapping and
other compute-intensive operations not found until
recently in animated PC graphics. The new Nvidia chips
are so effective they have found outside applications
as the graphical heart of Microsoft’s new Xbox game
player and at the core of the multifunction avionics
display for the F-22 fighter aircraft. 

The really big graphics applications like Caves,
Power Walls (high-resolution wall-size displays), and

open-canopy flight simulators, however, rely not on a
single GPU but on systems built from many graphics
pipelines working together in parallel. The top-of-the-
line Silicon Graphics Onyx 3800, for example, manages
up to 16 simultaneous graphics pipelines for an upper
limit of 210 million polygons per second and a fill rate
of 12 billion pixels per second. Achieving coherent
graphics on this scale requires elaborate coordination
and management to rebalance loads among pipelines
at the crucial transition in processing between object
parallelism and image parallelism. The SGI InfiniteRe-
ality architecture designs graphics pipelines to accept
broadcast primitives at just this point. General-pur-
pose GPUs designed for PC graphics and embedded
applications do not have the luxury of this “sort-mid-
dle architecture” because they are designed to work as
self-contained standalone units.

Making the transition from competing with desktop
workstations to taking on refrigerator-sized, rack-
mounted capital investments requires solving the
problem of parallel processing using commodity GPUs.

The New Cards

✮ Michael Lewis



engine encapsulates a broader range of sophisticated
graphics including bump maps and other tweaks
recently added to graphics hardware. In the balance, the
Unreal engine is slightly slower, has more sophisticated
graphics, and is probably an easier environment for the
inexperienced game programmer.  

Getting Started 
Now that you have chosen your engine all you need to
get started is a copy of the base game. Depending on
where you shop the game may cost anywhere from
$20–$50. You will need a license for each machine you
use so, for instance, a QuakeSim simulation would take
a single license, a GameBot installation with two teams
would require two licenses, while a five-screen CaveUT
installation would require six licenses. A crucial feature
of the game engines is that almost all code, except the
proprietary graphics engine, is open source. Under its
GNU license, this code may be freely distributed,
copied, and modified. Several of the systems discussed
here are already available online. CaveUT can be down-
loaded from www2.sis.pitt.edu/~jacobson/ut/-
CaveUT.html and GameBot code, documentation,
discussion, and even opponents, are located at
www.planetunreal.com/gamebots/. While not game-
based, the WireGL code for building PC-
based Power Walls is available at graphics.
stanford.edu/software/wiregl/. The primary Quake site

is www.idsoftware.com, while www.averstar.com/
~bowditch/QUAKE2/links.html contains links to
many secondary Quake sites. The manufacturer’s site
for Unreal Tournament is www.epicgames. com; a “get-
ting started” FAQ is available at www.unreality.
org/Cleaned/FAQ/FaqMain.htm. A quick search will
turn up a multitude of sites with information, tools,
and programming tips for either of these engines.
While neither id Software nor Epic Games is in the
business of supporting research, their user communities
can provide active sources of help and information for
game-using researchers.  

References
1. Abrash, M. Quake’s game engine: The big picture. Dr. Dobb’s Journal

(Spring, 1997). 
2. Bishop, L., Eberly, D., Whitted, T., Finch, M., and Shantz, M. Designing a

PC game engine. IEEE Computer Graphics and Applications (1998), 46–53. 
3. Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa, E.,

Matsubara, H., Noda, I., and Asada, M. The RoboCup synthetic agent chal-
lenge ’97. In Proceedings of the Fifteenth International Joint Conference on Arti-
ficial Intelligence, Nagoya, Japan, (1997).

Michael Lewis (ml@sis.pitt.edu) is an associate professor in the
Department of Information Science and Telecommunications at the
University of Pittsburgh. 
Jeffrey Jacobson (jacobson@sis.pitt.edu) is a Ph.D. candidate in
the Department of Information Science and Telecommunications at the
University of Pittsburgh. 

© 2002 ACM 0002-0782/02/0100 $5.00

c

COMMUNICATIONS OF THE ACM January  2002/Vol. 45, No. 1 31

Because the graphics pipelines themselves are inac-
cessible and closely tied to other parts of the PC archi-
tecture, the most convenient approach lies in
clustering PCs to achieve “sort-first” machine-wise
parallelization. While this architecture is limited by
network bandwidth and is less efficient than the
“sort-middle” approach of high-end graphics vendors,
the huge cost savings and the speed advantage of
commodity GPUs makes it hard to resist.

We are aware of two such solutions. WireGL (now
Chromium),1 developed at Stanford University, is a
general-purpose system for scalable interactive ren-
dering on a cluster of workstations. WireGL replaces the
OpenGL libraries, which allows OpenGL calls to be paral-
lelized and rendered through the cluster. Reported per-
formance of 70 million triangles per second for a 32-PC
configuration (16 compute and 16 rendering nodes)
compares well with the achievable performance esti-

mate of 29 million polygons per second for a 16-
pipeline SGI InfiniteReality configuration. Using PCs and
data projectors found in most labs, WireGL can allow
researchers to experiment with previously rare and
expensive large-scale high-resolution displays. 

The same hardware can be used to run CaveUT
(described in this issue by Jacobson and Hwang) to cre-
ate an immersive panoramic Cave-like display. CaveUT
follows the same cluster rendering approach as WireGL
but takes advantage of the Unreal engine’s networking
and graphics synchronization capabilities to do the
processing. Because game players’ views must be com-
puted independently by clients, the opportunity for
load balancing is lost. Nevertheless, given lightweight
communication protocols, the power of the new com-
modity GPUs and gigahertz-plus GPUs, display refresh
rates have become the limiting factor.

Michael Lewis (ml@sis.pitt.edu) is an associate professor in 
the Department of Information Science and Telecommunications 
at the University of Pittsburgh. 

c

1Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M., and Hanrahan, P.
WireGL: A scalable graphics system for clusters. In Proceedings of the 2001 Conference
on Computer Graphics (Los Angeles, CA, 2001), 129–140.


