
Genetic Local Search for the TSP: New ResultsPeter Merz and Bernd FreislebenDepartment of Electrical Engineering and Computer Science (FB 12)University of SiegenH�olderlinstr. 3, D{57068 Siegen, GermanyE-Mail: fpmerz,freislebg@informatik.uni-siegen.deAbstract|The combination of local search heuristics and ge-netic algorithms has been shown to be an e�ective approachfor �nding near-optimum solutions to the traveling sales-man problem. In this paper, previously proposed geneticlocal search algorithms for the symmetric and asymmetrictraveling salesman problem are revisited and potential im-provements are identi�ed. Since local search is the centralcomponent in which most of the computation time is spent,improving the e�ciency of the local search operators is cru-cial for improving the overall performance of the algorithms.The modi�cations of the algorithms are described and thenew results obtained are presented. The results indicatethat the improved algorithms are able to arrive at bettersolutions in signi�cantly less time.I. IntroductionConsider a salesman who wants to start from his homecity, visit each of a set of n cities exactly once, and thenreturn home. Since the salesman is interested in �ndingthe shortest possible route, this problem corresponds to�nding a shortest hamiltonian cycle in a complete graphG = (V;E) of n nodes. Thus, the traveling salesman prob-lem (TSP) [22], [32] consists of �nding a permutation � ofthe set f1; 2; 3; : : : ; ng that minimizes the quantityC(�) = n�1Xi=1 d�(i);�(i+1) + d�(n);�(1) (1)where dij denotes the distance between city i and j. In thesymmetric TSP (STSP), dij = dji holds for all i; j, while inthe asymmetric TSP (ATSP) this condition is not satis�ed.The TSP is among the best{known combinatorial op-timization problems. It has attracted many researchersfrom various �elds, perhaps because it is easy to state butextremely hard to solve. Since it belongs to the class ofNP{hard problems [14], fast approximation techniques for�nding optimum or near{optimum solutions to large TSPinstances in a given time limit are required.In addition to the classical heuristics developed espe-cially for the TSP [32], there are several problem inde-pendent search algorithms which have been applied to theTSP, such as ant colonies [13], genetic algorithms [17], localsearch [20], neural networks [30], simulated annealing [21],and tabu search [9]. The results published in the litera-ture indicate that it is necessary to combine some of thesemethods in order to arrive at high quality solutions, par-ticularly for large problem instances. For example, localsearch has been used in [7], [8], [18], [33], [34] to improvegenetic algorithms (GAs) for the TSP. As a consequence,

Gorges-Schleuter and M�uhlenbein [15], [16], [27] have pro-posed a GA where all individuals of the population are localminima with respect to the embedded local search method.Ulder et al. [35] compared this genetic local search (GLS)approach with other heuristics and observed that GLS issuperior to simulated annealing as well as multi{start lo-cal search. In [11], [12] we proposed new operators for GLSwhich are designed to produce better (locally optimal) indi-viduals from existing ones, with the ability to �nd optimalsolutions for symmetric TSP instances of up to 1400 cities.In this paper, the GLS algorithms for the symmetric andthe asymmetric TSP proposed in [11], [12] are revisited.Since the central component of the algorithms is the localsearch operator, and improving the e�ciency of this opera-tor consequently improves the overall performance, we willtake a closer look at the hill{climbers used in our approachand discuss how they can be tuned for speed as well asfor quality. The results obtained indicate that comparedto our winning algorithm of the First International Con-test on Evolutionary Optimization held as part of the 1996IEEE International Conference on Evolutionary Compu-tation in Nagoya, Japan [4], the computation times couldbe reduced signi�cantly, and the solution qualities couldfurther be improved.The paper is organized as follows. Section 2 gives a gen-eral description of the GLS approach to the TSP. Section3 presents genetic operators for the symmetric TSP, whilesection 4 is devoted to the asymmetric case. Section 5summarizes the improvements made in our implementa-tion. The computational results are presented in section 6.Section 7 concludes the paper and outlines areas for futureresearch.II. The GLS Algorithm for the TSPIn the GLS algorithm, all individuals represent local min-ima. Therefore, after applying a genetic operator, the localsearch procedure must be applied to the resulting individ-ual. The GLS algorithm proposed to solve the TSP is pre-sented in Fig. 1.First, the initial population is created by a tour construc-tion technique, which in our case is the nearest{neighborheuristic [22]. Then, a suitable local search procedure isapplied to each individual. In the main loop, crossoverand mutation operators are applied to randomly selectedindividuals a prede�ned number of times. To achieve localoptimality, the hill{climber is employed after each applica-tion of an operator, and the newly created individuals are

procedure GLS;begininitialize population P with a construction heuristic;foreach individual i 2 P do i := Local-Search(i);repeatfor i := 1 to #crossovers dobeginselect two parents ia; ib 2 P randomly;ic := DPX(ia; ib);ic := Local-Search(ic);add individual ic to P ;end;for i := 1 to #mutations dobeginselect an individual i 2 P randomly;im := Mutate(i);im := Local-Search(im);add individual im to P ;end;P := select(P);until P converged;end; Fig. 1. The GLS Algorithm for the TSPinserted into the population. In the last step of each gen-eration, the population is reduced to its initial size by �rsteliminating old individuals which are similar to the newlycreated individuals, and then selecting the individuals withthe highest �tness until the population size is reached.Unlike classical genetic algorithms, where mutation isrefered to as a background operator, GLS makes equaluse of both crossover and mutation operators. The goalof the operators used in conjunction with the local searchmethod is to produce hopefully better individuals from ex-isting ones by utilizing the information already containedin the current population. The approach is motivated bythe observation [5], [28] that near{optimum and optimalsolutions are quite similar: they have many edges in com-mon. To describe the similarity of solutions more precisely,we de�ne the distance between tours corresponding to [6],[24]. Let G = (V;E) be the graph of a given TSP instanceand T1; T2 feasible tours, then the distance D between thetours is de�ned asD(T1; T2) = jfe 2 E j e 2 T1 ^ e 62 T2gj: (2)Since optima and near{optimum local minima lie rela-tively close to each other in the search space, it seems tobe reasonable to explore the regions around the best solu-tions collected so far during the search.As described in [11], [12], crossover and mutation per-form \jumps" in the search space, and it is di�cult to �nda diversi�cation scheme that leads to promising regions ofthe search space without degrading to an uncontrolled ran-dom walk.The crossover introduced in [11], [12] is called the dis-tance preserving crossover (DPX). Here, a child ic is cre-ated by copying the edges to the o�spring that are foundin both parents ia and ib, and reconnecting the resulting

tour fragments without reinserting the edges that are dif-ferent in the parents. Thus, the child has equal distance toboth parents, and this distance is also equal to the distancebetween the parents themselves:D(ic; ia) = D(ic; ib) = D(ia; ib): (3)The DPX is motivated by the observation of Boese [5],that for the symmetric 532-cities instance of Padberg andRinaldi [29] the optimum lies more or less in a single valleyof near{optimum local minima and the average distancebetween these near{optimum solutions is similar to theirdistance to the optimum. Another motivation is that byidentifying the edges that are not shared by the parents, thesearch will be focused on particular regions of the searchspace. By inheriting the shared edges, we assume thatthese edges are likely to be contained in the optimum aswell, because they have been proven to be \building blocks"during the search. With these ideas in mind, the proposedcrossover operator neither depends on a particular problem(as long as the distance criterion (3) can be ful�lled), noron the type of local search subsequently used.On the other hand, the mutation operator is highly de-pending on the hill{climber chosen. Since it is a unaryoperator, we must decide at a single point in the searchspace which region to explore next. It is reasonable to re-place only a few edges in the individual in a way that thepermutation will not be reversed by the subsequent localsearch. Therefore, some knowledge about the incorporatedhill{climber might be helpful.III. The Operators for the STSPThe local search method used for symmetric TSP in-stances is the variable k-change heuristic suggested by Linand Kernighan [23]. In each step, a varying number ofedges is exchanged, until no exchange will reduce the tourlength further, i.e. when a local minimum is reached. Thisheuristic produces quite good results even when appliedalone. For most instances de�ned in the TSPLIB [31], theaverage percentage excess is about 2% above the optimum,although there are instances with topographical structuresfor which the results are much worse, such as the instancefl3795 [20].The mutation operator used in the symmetric TSP iscalled the non-sequential four-change [23] which has alsobeen used in the large step Markov chain algorithm pro-posed by Martin et al. [25] and the iterated Lin-Kernighanheuristic suggested by Johnson [19]. Since in the Lin-Kernighan heuristic only sequential changes are performed,the e�ects of this kind of mutation cannot be reversed ina single step, and there is a high probability for ending upwith a new solution after the local search phase. Since onlyfour edges are exchanged, most information coded in thegenotype will be preserved.IV. The Operators for the ATSPIn the ATSP, the distance value associated with edge(i; j) is di�erent from the one of edge (j; i), such that local

search procedures developed for symmetric instances arenot very e�ective. The 2-opt algorithm, for instance, triesto �nd pairs of edges for which an exchange results in areduction of the total tour length. For example, considerthe individual A shown in Fig. 2, which represents a tourfrom city 5 to city 3 to city 7 and so on.
5 3 4 6 1 7 2 8 0 9

7 2 8 0 9 1 6 45 3C:

P1 P3 P2

B:

P

5 3 7 1 6 4 2 8 0 9A:

P1 P2 P3

P

Fig. 2. Illustration of Inversion and Local Search OperatorsIf the exchange of the edges (3; 7) and (4; 2) by (3; 4) and(7; 2) will lead to a shorter tour, the 2-opt algorithm willperform the swap by reversing the order of the subpathfrom city 7 to 4, as shown by the tour B in Fig. 2.In the ATSP the reversal of the subpath leads to a k-change. In the above example, the distance between tourA and B is D = 5, because edges (3; 4); (4; 6); (6; 1); (1; 7)and (7; 2) are not contained in tour A. It is easy to seethat for the ATSP the minimum distance between tours isD = 3. Individual C in Fig. 2 represents a tour with adistance D = 3 to tour A. As illustrated, tour C can beobtained by swapping subpath P2 and P3 in tour A, whichis equivalent to a 3-opt move. Analogously, it is possibleto perform a valid 4-opt move by rearranging a tour thatconsists of subpaths P1P2P3P4 in a way that the order ofthe subpaths in the resulting tour is P1P4P3P2.The local search procedure used in our GA for the ATSPperforms both 3-opt and 4-opt moves. To reduce the run-ning time for �nding a 4-opt move, information obtainedfrom previous iterations of the search is used: the fouredges to exchange in a step consist of a pair of edges iden-ti�ed as candidates in the current step and a pair of edgesidenti�ed in a previous iteration. This enables us to per-form 4-changes without increasing the running times com-pared to 3-opt without additional 4-changes.Mutation is performed by reversing a randomly chosensubpath of length 6 analogously to the example shown inFig. 2. Thus, by the reversal of a subpath the mutationoperator performs a random 7-change on the current tour.V. Implementation IssuesThe e�ciency of the embedded local search algorithmhas a large impact on the performance of the entire algo-rithm, since about 95% { 99% of the total CPU time isspent in the local search procedure. Thus, the main goal

is to optimize the local search procedure in order to runmuch faster without losing too much quality. A completeenumeration of the neighborhood is not very e�ective, sincethe size of the k-opt neighborhood grows polynomially withk, i.e. the neighborhood de�ned asNkopt(T) = fT 0 jD(T; T 0) � kg (4)is of size O(nk). Even for small k, the computation timesmay increase considerably. To obtain computation timesthat grow subquadratically in practice, a small portion ofthe neighborhood may be inspected where good solutionsare most likely to be found. This can be achieved by main-taining a list of nearest neighbors for each node [20], [32].If an edge in the current tour is considered for replacement,only candidates drawn from the nearest neighbor list areexamined. If the size of the neighbor list is bound by aconstant, it is possible to identify an improving k-opt moveassociated with a given starting node in constant time, andhence the time for checking an improving move is O(n).Further reductions result from performing a �xed radiusnearest neighbor search, as proposed by Bentley [1], [3].Another mechanism to speed up local search algorithmsis to incorporate a \don't look bit" for each node, in orderto reduce the time for checking the interesting neighbors [1].With the don't look bit set to 1, the node is not consideredas a starting point for �nding an improving move. Initially,all bits are set to 0. If an improving move could not befound starting at node i, the don't look bit for that node isset. On the other hand, the don't look bit will be clearedif an improving move has been found that inserts an edgeincident to node i.In our implementation, we use a nearest neighbor list ofsize m = 100 for each node, which is initialized by nearestneighbor queries on a two-dimensional binary search tree[2] in case of the algorithm for the STSP. In the ATSP, weadapted the recursive quicksort algorithm to sort the �rstm entries of the rows of the distance matrix. In both localsearch procedures, a data structure for maintaining don'tlook bits is incorporated, with the local search for the initialpopulation starting with all don't look bits set to zero.After the crossover has been performed, only the don't lookbits of the nodes that are incident to the edges not sharedby both parents are cleared. Similarly, after mutation, onlynodes incident to the edges newly included in the tour havetheir don't look ags set to zero. This focuses the searchof the hill-climber to the promising regions of the searchspace and also reduces the time for checking the interestingmembers of the neighborhood.Additionally, in the algorithm for the STSP, somechanges have been made to deal with large instances ofup to 100.000 cities. Since for large instances it is not pos-sible to store the entire distance matrix in main memory,the Euclidean distances are computed online. Since this isa rather expensive operation, a distance cache of size 3 � nis maintained, where the �rst n entries are used to cachethe distances of the edges in the current tour and the re-maining 2 �n entries are organized as described in [2]. Theaverage hit rate of the cache varies between 80% and 95%.

STSP Resultsinstance gen best average t in sd198 40 15780 (0.00 %) 15780.1 (0.00 %) 163lin318 60 42029 (0.00 %) 42029.0 (0.00 %) 168pcb442 140 50778 (0.00 %) 50778.0 (0.00 %) 178att532 140 27686 (0.00 %) 27698.4 (0.04 %) 290rat783 300 8806 (0.00 %) 8806.2 (0.00 %) 424fl1577 300 22249 (0.20 %) 22250.5 (0.21 %) 12762fl3795 400 28776 (0.18 %) 28868.5 (0.51 %) 17824ATSP Resultsinstance gen best average t in sp43 60 5620 (0.00 %) 5620.1 (0.00 %) 11ry48p 700 14422 (0.00 %) 14451.2 (0.20 %) 72ft70 40 38673 (0.00 %) 38674.2 (0.00 %) 111kro124p 200 36230 (0.00 %) 36231.5 (0.00 %) 35ftv170 400 2755 (0.00 %) 2762.2 (0.26 %) 100Fig. 3. The Computational ResultsAnother target for optimizations is the Lin-Kernighanheuristic itself. Most of the computation time is spentin submoves that will be reversed later in the algorithm.Hence, it is pro�table to distinguish between tentative andpermanent moves. Applegate and Cook have proposed asegment tree data structure for e�ciently managing tenta-tive moves, as described in [10]. Our approach is similar:instead of using a segment tree, we operate on a segmentlist that represents a tentative tour. Operations perform-ing a ip on this tentative tour are highly optimized, suchthat a high performance gain compared to the simple arrayrepresentation can be achieved. The running times for alloperations are in O(1), since the data structure is limitedto perform 20 ips only. In practice, this has been provento be su�cient. VI. ResultsThe algorithms presented in this paper have been im-plemented in C++ on a DEC Alphastation 255 runningDigital Unix V4.Detailed information about the development of the solu-tion qualities in each of the experiments conducted is givenin the appendix. Fig. 3 summarizes the results obtained forseveral STSP and ATSP instances taken from the TSPLIB[31]. In the �gure, gen denotes the number of generationsperformed, best shows the length of the best tour found to-gether with its deviation from the known optimum in per-cent, average displays the same information for the averageof 20 runs, and t in s shows the average computation times(in seconds) for a single run on a DEC Alpha CPU with233 MHz. For the instances fl1577 and fl3795, we pro-vide the deviation from the best known lower bound. Forthe STSP instances, a population size of P = 20 was usedin our experiments, except for d198 where the populationcontained P = 10 individuals. All runs on the asymmetricinstances were performed with P = 40. For both the STSPand the ATSP, we used a mutation and a crossover rate of0:5, i.e. P individuals were created in each iteration.The computation times could be reduced signi�cantly

compared to the results in [11] for all STSP instances. Bet-ter qualities could be achieved for all instances except forinstance d198. Obviously, the average quality (0.00 %)cannot be improved further.For example, the average running times for the 783-citiesproblem rat783 were reduced from 14880 seconds to 424seconds (a factor of more than 35), while the quality ofthe results increased: the average percentage excess overthe optimum has dropped from 0:04% to 0:0023%. Re-markable results have also been obtained for the smallestyet unsolved problem de�ned in the TSPLIB, fl1577. Theaverage time for a local search could be reduced by a factorof 48 to 2:12 seconds. This enabled us to run the algorithmfor an increased number of generations, ending up with abest �nal tour length of 22249, which is the best knownupper bound for this instance. The gain in quality for theaverage �nal tour length is also worth mentioning: the per-centage excess over the lower bound dropped from 0:46%to 0:21%.The optimum for instance fl3795 is known to lie in theinterval [28723; 28772]. The best tour found by our algo-rithm for this instance has a tour length of 0:014% abovethe upper bound. The relatively high average tour lengthafter 400 generations may be improved by running the al-gorithm for a longer time.The reasons for the strong increases of the computa-tion times for the instances fl1577 and fl3795 are notthe problem sizes itself, but the characteristics of these in-stances. They are pathologically clustered, making it muchharder to optimize them by neighborhood search. For ex-ample, for another problem of comparable size (pcb3038),the average running time for a local search is about 0:30seconds and thus more than a factor of 7 faster than in thecase of fl3795 (2:22 seconds).For the ATSP, the results in Fig. 3 represent a consid-erable performance gain in comparison to the results pre-sented in [11]. For all instances except ry48p, the averagequality could be improved. For the largest instance investi-gated, the average percentage excess over the optimum hasdropped from 0:40% to 0:26% using less than half of thecomputation time. An even higher reduction of the com-putation time could be achieved for problem ft70, whichis known to be a relatively hard problem for a hill{climber[26]. In this case, the new algorithm is about 5.75 timesfaster, and in almost all runs the optimum is found. Withthe discussed modi�cations, the running times for all ATSPinstances are less than two minutes.The improvements of our algorithms have led to muchfaster local search procedures which produce slightly worsetours than before. However, for both types of instances ithas proven to be more e�ective to produce more genera-tions in the GA than to use more powerful embedded localsearch methods. VII. ConclusionsIn this paper, improvements of GLS algorithms for theTSP have been presented. The results presented for sev-

eral symmetric and asymmetric TSP instances have shownthat some �ne tuning of the local search procedures in theGLS algorithms has a signi�cant impact on the overall per-formance. Sophisticated data structures and hill{climberswith subquadratic runtime characteristics are the keys toe�cient neighborhood searches, in particular if large prob-lem instances are considered. The experiments conductedhave demonstrated that a slightly weaker but considerablyfaster local search method has the advantage of getting ex-ecuted more often in a given time, which leads to a morerobust search algorithm that is able to carefully explore thesearch space.There are several issues for future research, such as in-vestigating the e�ects of a parallel implementation of theGLS approach, analyzing the individual performance gainsprovided by the crossover and mutation operators, and con-ducting further tests of the algorithms on other possiblymore complex TSP instances.References[1] J. L. Bentley, \Experiments on Traveling Salesman Heuristics,"in Proceedings of the First Annual ACM-SIAM Symposium onDiscrete Algorithms, pp. 91{99, 1990.[2] J. L. Bentley, \K-d-Trees for Semidynamic Point Sets," in Pro-ceedings of the Sixth Annual ACM Symposium on Computa-tional Geometry, pp. 187{197, 1990.[3] J. L. Bentley, \Fast Algorithms for Geometric Traveling Sales-man Problems," ORSA Journal on Computing, vol. 4, no. 4,pp. 387{411, 1992.[4] H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. Gam-bardella, \Results of the First International Contest on Evolu-tionary Optimisation (1st ICEO)," in Proceedings of the 1996IEEE International Conference on Evolutionary Computation,(Nagoya, Japan), pp. 611{615, 1996.[5] K. Boese, \Cost versus Distance in the Traveling Salesman Prob-lem," Tech. Rep. TR-950018, UCLA CS Department, 1995.[6] K. Boese, A. Kahng, and S. Muddu, \A New Adaptive Multi-start Technique for Combinatorial Global Optimizations," Op-erations Research Letters, vol. 16, pp. 101{113, 1994.[7] R. M. Brady, \Optimization Strategies Gleaned from BiologicalEvolution," Nature, vol. 317, pp. 804{806, 1985.[8] T. G. Bui and B. R. Moon, \A New Genetic Approach for theTraveling Salesman Problem," in Proceedings of the First IEEEConference on Evolutionary Computation, pp. 7{12, 1994.[9] C.-N. Fiechter, \A Parallel Tabu Search Algorithm for LargeTraveling Salesman Problems," Discrete Applied Mathematicsand Combinatorial Operations Research and Computer Science,vol. 51, pp. 243{267, 1994.[10] M. L. Fredman, D. S. Johnson, L. A. McGeoch, and G. Ost-heimer, \Data Structures for Traveling Salesmen," Journal ofAlgorithms, vol. 18, pp. 432{479, 1995.[11] B. Freisleben and P. Merz, \A Genetic Local Search Algo-rithm for Solving Symmetric and Asymmetric Traveling Sales-man Problems," in Proceedings of the 1996 IEEE InternationalConference on Evolutionary Computation, (Nagoya, Japan),pp. 616{621, 1996.[12] B. Freisleben and P. Merz, \New Genetic Local Search Operatorsfor the Traveling Salesman Problem," in Proceedings of the 4thConference on Parallel Problem Solving from Nature - PPSNIV, (H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,eds.), pp. 890{900, Springer, 1996.[13] L. M. Gambardella and M. Dorigo, \Ant-Q: A Reinforce-ment Learning Approach to the Traveling Salesman Problem,"in Proc. 12th International Conference on Machine Learning,pp. 252{260, Morgan Kaufmann, 1995.[14] M. R. Garey and D. S. Johnson, Computers and Intractability:A Guide to the Theory of NP-Completeness. Freeman, NewYork, 1979.[15] M. Gorges-Schleuter, \ASPARAGOS: An Asynchronous ParallelGenetic Optimization Strategy," in Proceedings of the Third In-

ternational Conference on Genetic Algorithms, (J. D. Scha�er,ed.), pp. 422{427, Morgan Kaufmann, 1989.[16] M. Gorges-Schleuter, Genetic Algorithms and Population Struc-tures - A Massively Parallel Algorithm. PhD thesis, Universityof Dortmund, Germany, 1991.[17] J. Grefenstette, R. Gopal, B. Rosimaita, and D. V. Gucht, \Ge-netic Algorithms for the Traveling Salesman Problem," in Pro-ceedings of an International Conference on Genetic Algorithmsand their Applications, pp. 160{168, 1985.[18] A. Homaifar, S. Guan, and G. E. Liepins, \A New Approachto the Traveling Salesman Problem by Genetic Algorithms," inProceedings of the 5th International Conference on Genetic Al-gorithms, pp. 460{466, Morgan Kaufmann, 1993.[19] D. S. Johnson, \Local Optimization and the Traveling Sales-man Problem," in Proceedings of the 17th International Collo-quium on Automata, Languages and Programming, pp. 446{461,Springer, Berlin, 1990.[20] D. S. Johnson and L. A. McGeoch, \The Traveling SalesmanProblem: A Case Study in Local Optimization," in Local Searchin Combinatorial Optimization, (E. H. L. Aarts and J. K.Lenstra, eds.), Wiley and Sons, New York, 1996. to appear.[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, \Optimizationby Simulated Annealing," Science, vol. 220, pp. 671{680, 1983.[22] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B.Shmoys, The Traveling Salesman Problem: A Guided Tour ofCombinatorial Optimization. New York: Wiley and Sons, 1985.[23] S. Lin and B. Kernighan, \An E�ective Heuristic Algorithm forthe Traveling Salesman Problem," Operations Research, vol. 21,pp. 498{516, 1973.[24] K.-T. Mak and A. J. Morton, \Distances between TravelingSalesman Tours," Discrete Applied Mathematics and Combi-natorial Operations Research and Computer Science, vol. 58,pp. 281{291, 1995.[25] O. Martin, S. W. Otto, and E. W. Felten, \Large-Step MarkovChains for the Traveling Salesman Problem," Complex Systems,vol. 5, pp. 299{326, 1991.[26] P. Merz, Genetische Algorithmen f�ur kombinatorische Opti-mierungsprobleme. Master's thesis, University of Siegen, Ger-many, 1996.[27] H. M�uhlenbein, M. Gorges-Schleuter, and O. Kr�amer, \Evolu-tion Algorithms in Combinatorial Optimization," Parallel Com-puting, vol. 7, pp. 65{88, 1988.[28] H. M�uhlenbein, \Evolution in Time and Space { The Paral-lel Genetic Algorithm," in Foundations of Genetic Algorithms,(G. J. E. Rawlins, ed.), pp. 316{337, Morgan Kaufmann Pub-lishers, 1991.[29] M. Padberg and G. Rinaldi, \Optimization of a 532-city Sym-metric Traveling Salesman Problem by Branch and Cut," Oper-ations Research Letters, vol. 6, pp. 1{7, 1987.[30] J.-Y. Potvin, \The Traveling Salesman Problem: A NeuralNetwork Perspective," ORSA Journal on Computing, vol. 5,pp. 328{348, 1993.[31] G. Reinelt, \TSPLIB|A Traveling Salesman Problem Library,"ORSA Journal on Computing, vol. 3, no. 4, pp. 376{384, 1991.[32] G. Reinelt, The Traveling Salesman: Computational Solutionsfor TSP Applications. Vol. 840 of Lecture Notes in ComputerScience, Springer-Verlag, Berlin, Germany, 1994.[33] J. Y. Suh and D. V. Gucht, \Incorporating Heuristic Informationinto Genetic Search," in Genetic Algorithms and their Applica-tions: Proceedings of the Second International Conference onGenetic Algorithms, pp. 100{107, Lawrence Erlbaum, 1987.[34] A. Y. C. Tang and K. S. Leung, \A Modi�ed Edge Recombina-tion Operator for the Travelling Salesman Problem," in ParallelProblem Solving from Nature - Proceedings of the Third Work-shop, PPSN III, (H.-P. Schwefel and R. M�anner, eds.), (Berlin,Germany), pp. 180{188, Springer, 1994.[35] N. L. J. Ulder, E. H. L. Aarts, H. J. Bandelt, P. J. M. vanLaarhoven, and E. Pesch, \Genetic Local Search Algorithms forthe Traveling Salesman Problem," in Parallel Problem Solvingfrom Nature - Proceedings of 1st Workshop, PPSN I, (H. P.Schwefel and R. M�anner, eds.), (Berlin, Germany), pp. 109{116,Springer, 1991.

AppendixI. Computational Results for the STSPd198.tspeval/gen best average t in s20/ 1 15787 (0.04 %) 15797.6 (0.11 %) 860/ 5 15780 (0.00 %) 15782.2 (0.01 %) 30110/ 10 15780 (0.00 %) 15780.5 (0.00 %) 49210/ 20 15780 (0.00 %) 15780.2 (0.00 %) 87410/ 40 15780 (0.00 %) 15780.1 (0.00 %) 163lin318.tspeval/gen best average t in s40/ 1 42029 (0.00 %) 42244.5 (0.51 %) 5220/ 10 42029 (0.00 %) 42083.3 (0.13 %) 39420/ 20 42029 (0.00 %) 42061.2 (0.08 %) 68820/ 40 42029 (0.00 %) 42040.4 (0.03 %) 1181220/ 60 42029 (0.00 %) 42029.0 (0.00 %) 168pcb442.tspeval/gen best average t in s40/ 1 50950 (0.34 %) 51075.7 (0.59 %) 2220/ 10 50833 (0.11 %) 50889.6 (0.22 %) 20820/ 40 50778 (0.00 %) 50791.4 (0.03 %) 652020/100 50778 (0.00 %) 50780.1 (0.00 %) 1352820/140 50778 (0.00 %) 50778.0 (0.00 %) 178att532.tspeval/gen best average t in s40/ 1 27835 (0.54 %) 27902.3 (0.78 %) 4420/ 20 27710 (0.09 %) 27727.5 (0.15 %) 63820/ 40 27703 (0.06 %) 27707.7 (0.08 %) 1061620/ 80 27686 (0.00 %) 27699.4 (0.05 %) 1832420/120 27686 (0.00 %) 27698.6 (0.05 %) 2552820/140 27686 (0.00 %) 27698.4 (0.04 %) 290rat783.tspeval/gen best average t in s40/ 1 8876 (0.80 %) 8893.5 (0.99 %) 3820/ 40 8815 (0.10 %) 8820.2 (0.16 %) 902020/100 8806 (0.00 %) 8809.4 (0.04 %) 1744020/200 8806 (0.00 %) 8807.3 (0.01 %) 2986020/300 8806 (0.00 %) 8806.2 (0.00 %) 4241577.tspeval/gen best average t in s40/ 1 22362 (0.71 %) 22527.2 (1.46 %) 115820/ 40 22257 (0.24 %) 22270.0 (0.30 %) 25822020/100 22250 (0.21 %) 22254.7 (0.23 %) 51344020/200 22249 (0.20 %) 22251.0 (0.21 %) 89816020/300 22249 (0.20 %) 22250.5 (0.21 %) 127623795.tspeval/gen best average t in s40/ 1 30102 (4.80 %) 30691.6 (6.85 %) 184820/ 40 28872 (0.52 %) 29237.0 (1.79 %) 35032020/100 28795 (0.25 %) 28971.0 (0.86 %) 64044020/200 28783 (0.21 %) 28893.8 (0.59 %) 102596020/300 28778 (0.19 %) 28878.7 (0.54 %) 140978020/400 28776 (0.18 %) 28868.5 (0.51 %) 17824Fig. 4. The Results for Symmetric TSP Instances

II. Computational Results for the ATSPp43.atspstep/gen best average t in s80/ 1 5621 (0.02 %) 5622.6 (0.05 %) < 1240/ 5 5620 (0.00 %) 5621.2 (0.02 %) 1440/ 10 5620 (0.00 %) 5620.9 (0.02 %) 2840/ 20 5620 (0.00 %) 5620.5 (0.01 %) 42440/ 60 5620 (0.00 %) 5620.1 (0.00 %) 11ry48p.atspstep/gen best average t in s80/ 1 14765 (2.38 %) 14901.2 (3.32 %) 11640/ 40 14422 (0.00 %) 14525.8 (0.72 %) 58040/200 14422 (0.00 %) 14479.5 (0.40 %) 2116040/400 14422 (0.00 %) 14462.0 (0.28 %) 4128040/700 14422 (0.00 %) 14451.2 (0.20 %) 72ft70.atspstep/gen best average t in s80/ 1 38782 (0.28 %) 39072.9 (1.03 %) 4240/ 5 38736 (0.16 %) 38842.7 (0.44 %) 23440/ 10 38677 (0.01 %) 38737.6 (0.17 %) 41840/ 20 38675 (0.01 %) 38680.5 (0.02 %) 681640/ 40 38673 (0.00 %) 38674.2 (0.00 %) 111kro124p.atspstep/gen best average t in s80/ 1 38281 (5.66 %) 38616.6 (6.59 %) 11640/ 40 36326 (0.27 %) 36487.5 (0.71 %) 114040/100 36230 (0.00 %) 36264.8 (0.10 %) 217240/180 36230 (0.00 %) 36232.5 (0.01 %) 338040/200 36230 (0.00 %) 36231.5 (0.00 %) 35ftv170.atspstep/gen best average t in s80/ 1 2866 (4.03 %) 2936.1 (6.57 %) 1840/ 20 2800 (1.63 %) 2818.7 (2.31 %) 71640/ 40 2767 (0.44 %) 2780.7 (0.93 %) 124040/100 2755 (0.00 %) 2764.3 (0.34 %) 2716040/400 2755 (0.00 %) 2762.2 (0.26 %) 100Fig. 5. The Results for Asymmetric TSP Instances

