
A Meta Heuristic Genetic Algorithm for
Multi-Depot Routing in Autonomous Bridge

Inspection
Bryan Dedeurwaerder

Dept. of Computer Science
University of Nevada, Reno Reno, NV, USA

bdedeurwaerder@nevada.unr.edu

Sushil J. Louis
Dept. of Computer Science

University of Nevada, Reno Reno, NV, USA
sushil@unr.edu

Abstract—We attack the problem of routing autonomous
climbing robots for steel truss bridge inspection using a meta-
heuristic genetic algorithm. These robots, deployed from four
depots at the four corners of the bridge, must traverse every
member of the bridge truss while minimizing distance traveled
and balancing tours among robots. This problem maps to the well
known NP-Hard Min-Max Multi-Depot k (robot) Chinese Post-
man Problem. We constructed 20 benchmark bridge instances
of four different types of truss configurations using realistic
dimensions as a testbed for comparison. Compared to the best
known direct encoded genetic algorithm approach, our meta-
heuristic genetic algorithm produces routes that are on average
25% better quality, and does so 22x faster. On the four depot
version of the problem, the MetaGA on average performs 42%
better. These results on our benchmarks show evidence our meta-
heuristic genetic algorithm provides high-quality tours in realistic
time for real-world robot bridge inspection scenarios and has the
potential to generalize to vehicle routing and the broader class
of arc-routing problems.

Index Terms—MM k-CPP, Genetic Algorithms, Arc Routing,
Metaheuristic, Bridge Inspection

I. INTRODUCTION

Bridge inspection is critical to bridge maintenance and
public safety. The high cost of bridge inspection in terms of
time, resources, and traffic disruption has over time resulted
in a significant number of bridges being deemed functionally
obsolete in the US [25]. Recent research in climbing and
flying autonomous robots for bridge inspection has resulted
in a number of designs that can climb bridge trusses in
order to inspect truss members through visual, ultrasonic, eddy
current and other sensors [23]. Multiple such robots working
in parallel can significantly reduce bridge inspection times and
costs. Routing such inspection robots to traverse every member
of a bridge truss maps to the NP hard Multi-Depot Min Max k
robot Chinese Postman Problem (MDMM k-CPP). Although
there is prior work on single depot min max k-CPPs, this
research provides new results on the four depot MM k-CPP.
Specifically, this paper compares two genetic algorithm based
approaches to attack the MDMM k-CPP problem and shows
that a new Meta Heuristic Genetic Algorithm (MetaGA) signif-
icantly outperforms a prior Direct Encoded Genetic Algorithm
(DEGA) on this problem.

Work on inspection robots has been ongoing for some
time [20], [23] and several climbing, rolling, and flying robots
and sensors have been developed. Based on this, given a team
of climbing robots, this paper addresses the question of routing
the robots for efficient bridge inspection. Specifically, given a
team of k bridge inspecting robots, can we generate optimal
and balanced routing for each robot, starting at different
locations, to minimize total inspection time. The underlying
optimization problem of generating such routes for a team of
robots belongs to the family of Arc Routing Problems (ARPs).
Although arc routing problems are not as well known as the
related traveling salesperson problem, a good approach to arc
routing has many applications in transportation and logistics.
Specifically, given k robots, generating optimal routes for
bridge inspection maps well to the multi-depot NP -hard Min-
Max k-Chinese Postman Problem (MM k-CPP). Being NP -
hard, finding the globally optimal solution is intractable in
reasonable time for large problem instances [6]. The MDMM
k-CPP is a well know variant of the MM k-CPP.

This paper therefore describes a new meta-heuristic genetic
algorithm approach for attacking arc-routing problems in order
to find near-optimal solutions in reasonable time. Genetic
and other evolutionary computing algorithm have had much
success with NP -hard combinatorial optimization problems,
in general, and have been used for arc-routing problems in
the past [9], [18], [19]. Unlike other evolutionary computing
approaches to the MM k-CPP, MDMM k-CPP, or ogther
related routing problems, the MetaGA uses just four simple
heuristics encoded in its chromosomes to search through the
space of heuristic application sequences to generate optimal
tours for k robots inspecting a bridge truss. We also assume
that robots start at the four corners (four depots) of a bridge
truss corresponding to the most easily accessible locations on
the two sides of the bridge span on either side of the road.
We generated a set of twenty (20) different truss structures
over four (4) different truss types and five (5) sizes each to
act as benchmarks. Figure 1 shows sample trusses used in
many bridge designs and their mapping to the corresponding
MDMM k-CPP graph on which the MetaGA runs. The figure
shows how the four extreme vertices correspond to the four

(a) Howe Truss (b) Pratt Truss

(c) K-Truss (d) Warren Truss

Fig. 1: Four truss types and their corresponding MDMM k-
CPP graphs.

corners of the truss and map to more easily accessible locations
on the two sides of the span.

Results using k = 2, 4, and 8 robots show that the MetaGA
generates routes that are well balanced among the k robots
and 25% better in quality compared to DEGA. Furthermore
the MetaGA produces these results 22x faster than the DEGA,
making a significant difference in real-world applications.
Furthermore, the MetaGA’s performs, on average, 41.72%
better than the DEGA on the 4 Depot MM k-CPP (4DMM
k-CPP). Finally, the performance difference against the DEGA
increases for larger values of k on the 4DMM k-CPP with the
difference reaching 61% for k = 8. These results show the
potential for a meta heuristic genetic algorithm approach for
attacking MDMM k-CPPs and other arc routing problems.

The paper contributes four simple new meta-heuristics for
arc the MM k-CPP, MDMM k-CPP, and other arc routing
problems. In addition, it contributes a set of new benchmarks
from bridge routing to the field [8].

The rest of this paper is structured as follows. The next
section provides background and prior work in bridge in-
spection and arc-routing problems. Section III describes our
representation and the heuristics used by our meta heuris-
tic genetic algorithm. Subsequently we provide results and
discuss possible improvements in heuristics and techniques
for improving running time. The last section summarizes our
conclusions and gives directions for possible future work.

II. BACKGROUND AND PRIOR WORK

Arc Routing Problems (ARPs) include a broad range of
problems with differing constraints. The Chinese Postman
Problem (CPP) is polynomially solvable but many of its
variants are NP -Hard. These include the Mixed CPP, the
Windy Postman Problem, the Rural Postman Problem (RPP),
the MinMax k-CPP, the Capacitated Arc Routing Problem
(CARP) and many other variants [1], [3], [5], [14], [17], [21],
[24]. ARPs are related to the more famous Traveling Salesman
Problem (TSP) and the more general Vehicle Routing Problem
(VRP), where a set of vertices or nodes of a graph must be
traversed in the most efficient manner. In ARPs, we need to
traverse instead, the set of edges of a graph that may not be
fully connected. This class of problems and their solutions
have been shown to have multiple practical applications in the
real world [3], [14], [17], [21], [24]. We map inspection route
traversal by multiple robots to the Multi Depot Min Max k-
CPP (MDMM k-CPP) where the objective is to minimize the
length of the longest route in order to generate balanced routes
staring at multiple depots.

Common approaches to these problems typically use heuris-
tic search. Lacomme et al. examined the use of a Genetic
Algorithm (GA) in a bi-objective Capacitated Arc Routing
Problem (CARP) [21]. In CARPs, as in our problems, the
covering of the graph is split into multiple routes, and the
GA was made to minimize both the total cost of the routes
and the length of the longest route simultaneously using the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [7].
The GA proved to be a competitive approach to even the
single-objective problem, often finding the optimal solution.
Additionally, other evolutionary algorithms have seen use in
stochastic arc routing problems [12]. For example, memetic
algorithms, which combine a GA with local search have
produced good results [11], [13], [22].

Closer to the work in this paper, Ahr combined complex
domain specific heuristics with tabu search [1], [2]. Unlike
that work which assumes a single starting and ending vertex,
bridge inspection routing has multiple depots and we distribute
our robots equally among depots when the number of robots
exceeds the number of depots. More specifically, we assume
four depots for the four vertices denoting the four bridge truss
anchors on the two sides to be spanned. Moreover, Ahr’s
heuristics are complex and well suited for arc routing and
lead to near-optimal routing for single depot MM k-CPPs. The
MetaGA, in contrast, uses four simple heuristics to generate
near-optimal routes for the 4-Depot MM k-CPPs considered
in this paper.

To the best of our knowledge, the most closely related
prior research is work by Harris and Liu on using a direct
encoded genetic algorithm to attack MM k-CPPs where the
start and end vertices are not pre-specified. Robots may start
and end at any graph vertex but must collectively traverse
every edge of the graph [16]. The authors used a direct
sequential encoding where the chromosome listed edges to be
traversed and non-adjacent edges were connected by shortest

routes using Dijsktra’s algorithm. They used order crossover
and swap mutation to obtain good results on this problem but
their approach required impractical run times. We compare
our MetaGA performance against this Direct Encoded Genetic
Algorithm (DEGA) using their code available on Github [15].
The MetaGA shows significant quality and speed advantages
compared to DEGA.

We represent a steel truss bridge as a graph and describe
this mapping in the next section. In addition, we specify the
heuristics used by our genetic algorithm and their simple
binary encoding.

III. METHODOLOGY AND HEURISTICS

We have written a bridge truss generator as part of a larger
effort in developing simulation training software for future
bridge inspection operators. We used this bridge generator
to generate the 3D bridges in Figure 1 and can generate
four different types of bridge trusses with varying numbers
of sections to span distances of varying lengths. The bridge
truss to graph mapping is straightforward and we simply map
each truss joint to a graph vertex and each truss member to an
edge between mapped vertices. The bridge truss generator is
available on github and may be used as a problem generator
by our research community [4]. Figure 2 shows a better view
of the full 3D bridge and its mapping to a problem graph for
a small truss with 37 edges and 18 vertices. The mapping is
generated automatically so that we may run the MetaGA to
generate routes during operator training on inspection scenar-
ios. Vertices and edges are automatically labelled making it
easy to feed to an optimizer like the MetaGA and DEGA in
order to quickly generate comparable results. We next describe
the heuristics used by the MetaGA to generate tours on a
mapped bridge truss.

We use four simple heuristics to specify the next edge
chosen to be added to a tour. Since two bits can specify
one of four heuristics and given a graph with e edges, the
chromosome consists of 2e bits specifying the sequence of
heuristics to apply for choosing the next edge to be added to
a tour. The chromosome encodes tours for all k robots and we
add the heuristic chosen edge to the current shortest length (or
cost) tour. If multiple robots’ tours have the same length, we
select the first available robot tour.

The decoder algorithm keeps track of edges already in
existing tours. Thus, more specifically, the heuristic specifies
the next unvisited edge (ei) to be added to the current shortest
tour (Tk). Since we cannot guarantee that ei is adjacent to the
last edge of Tk, we add the shortest path to ei as found by
Dijkstra’s algorithm to Tk. Additionally, since there are two
paths from the end vertex of Tk to the two vertices of ei, we
pick the shorter of these two paths.

The full decoder works by first finding all Dijsktra paths
to unvisited edges. These paths are sorted by length (or cost)
with shortest paths first. If there exists only one such shortest
path, the current heuristic is discarded and this shortest path is
added to the tour and we move on to decode the next heuristic
in the chromosome. If there are multiple such shortest paths to

Fig. 2: 3D render of a procedural generated Pratt truss bridge
mapped to the corresponding 2D graph.

multiple unvisited edges denoted by the set (Eu), the heuristic
picks the path to one of these edges to be added to the tour.
The four heuristics pick the edge in Eu with

• The lowest cost
• The highest cost
• The median cost
• A random edge in Eu

If there are no unvisited edges but we have not reached the
end of the chromosome, we simply find the shortest Dijkstra
paths for each tour back to the depot from which we started to
complete the path and then discard the rest of the chromosome.
Figure 3 shows the decoding for one allele in the chromosome.

In the figure, each pair of bits in the chromosome at
the top represents a heuristic. The decoded string below the
chromosome indicates that heuristic 1 was chosen earlier to
build a partial tour. There are currently two partial tours
under construction and both tours start at the filled black
vertex on the lower left. Tour0 consists of edge 0 followed by
edge 1 while tour1 consists of edge 3. The current decoded
chromosome heuristic (highlighted) is heuristic 2 which will
be used to expand the shorter of tour0 or tour 1. Tour1 is the
shorter tour and so heuristic 2 is used to find the next set of
edges for tour1. Let us suppose that heuristic 2 picks edge 10.

Fig. 3: Decoding a MetaGA chromosome.

Note however that we cannot directly connect edge 3 and 10
since edge 3 and edge 10 do not form a continuous path. To
grow tour1 with edge 10 we use Dijkstra’s algorithm (cached
results) to find a path between the two closest vertices of edges
3 and 10 and connect edge 3 to 10 using this path. In this case,
the shortest Dijkstra path is the single edge 9. Tour1 therefore
now comprises the edges 3, 9 and 10 as shown in the figure.

This representation and decoding algorithm has three note-
worthy properties. First, it guarantees that every edge will
be traversed at least once but does not preclude an edge
being used multiple times in one or more tours. Second,
the decoding algorithm produces highly greedy tours as it
discards chromosome information in two cases; when there
is one shortest path to an unvisited edge and when there are
no unvisited edges left. And finally, the heuristics are simple
to understand and easy to specify.

Although Dijsktra’s algorithm can run in O(E+V log(V))
it tends to dominate the time needed to construct and evaluate
a tour from a chromosome. This was shown by [16], who
used caching to reduce this burden. We thus pre-process the
graph data and store the paths between all pairs of vertices in
a memory cached table making Dijsktra path finding an O(1)
lookup.

With this representation, the objective function is to mini-
mize the length of the longest tour. Mathematically, given an

undirected graph G = {V,E} where V is the set of vertices
and E the set of edges, we want to minimize the length of
the longest tour. Denoting the kth robot’s (Rk) tour as the
sequence of edges Ek = E1

k, E
2
k, ...E

kn

k where kn is the
number of edges in the tour, we want to minimize the length
of the longest tour. Our objective function is therefore

Obj = Minimize

(
Argmaxk

{
k | f(k) =

kn∑
i=0

cost(Ei
k)

})
where cost(Ei

k) is the cost, in this case length, of the ith edge
in Rk’s tour and Argmaxk returns the maximum cost over
the k robots.

We conducted a series of experiments to compare a direct
encoded genetic algorithm approach against the MetaGA on
the MM k-CPP and the 4DMM k-CPP. The next section
provides results.

IV. RESULTS AND DISCUSSION

We compared a DEGA with a population size of 1000 run
for 1000 generations against a MetaGA with a population
of 100 run for 150 generations. This population size and
number of generations as well as other GA parameters for
the DEGA were set from the DEGA paper [15]. Although the
MetaGA uses much smaller population sizes, we get better
performance than the DEGA and, of course, the algorithm runs
significantly faster although each MetaGA evaluation takes
longer. All reported results are from 30 runs of each genetic
algorithm over 30 different random seeds. The MetaGA uses
linear fitness scaling and both use strong selection pressure
where N parents produce N offspring and we choose the best
individuals from the combined 2N parent offspring pool.

We generated 5 different sizes of trusses of 4 types for a
total of 20 problems to serve as our basis for comparison.
The first three columns in Table I specify the type of truss
and the size of the problem in terms of the number of edges
and number of vertices. In addition to comparing against the
DEGA, we also compare solution quality against a theoret-
ical lower bound for the MM k-CPP. The theoretical lower
bound uses the optimal CPP solution length divided by the
number of robots, k to compute this bound. Since the optimal
CPP solution can be obtained in polynomial time using the
Edmunds algorithm [10], the theoretical lower bound can be
easily computed for all our problems. Note however that this
lower bound can never be achieved in practice because some
edges must be traversed more than once. For example, when
r robots start at the same graph node with degree less than r.

Column four in Table I compares MetaGA performance
on the 4-depot MM k-CPP against the 1-depot MM k-CPP
averaging over k = 2, 4 and 8 robots. In these experiments
the four depots version of the problem has the four depots
located at the four extreme (corners) vertices of the bridge
graph, while in the one depot version, the start vertex is the
lower left corner vertex.

Columns 4, 5, and 6 in the table reports performance dif-
ferences computed as 100× (x− 4D MetaGA)/4D MetaGA,

Instance |E| |V | 1D Meta vs 4D DEGA vs CPP/k-LB vs
4D Meta 4D Meta 4D Meta

howe1 37 18 8.84% 19.63% -12.69%
howe2 63 28 -0.79% 30.09% -13.22%
howe3 89 38 -1.93% 37.52% -12.98%
howe4 115 48 -2.17% 41.24% -12.98%
howe5 141 58 -2.12% 51.63% -12.65%
ktruss1 45 22 4.92% 25.42% -13.54%
ktruss2 79 36 -2.14% 36.44% -13.30%
ktruss3 113 50 -2.82% 43.17% -11.98%
ktruss4 147 64 -2.27% 56.26% -11.85%
ktruss5 181 78 -1.84% 73.98% -11.91%
pratt1 37 18 4.22% 21.13% -14.05%
pratt2 63 28 -2.44% 30.14% -12.27%
pratt3 89 38 -2.09% 37.84% -11.13%
pratt4 115 48 -1.43% 42.37% -10.88%
pratt5 141 58 -1.28% 50.49% -11.29%
warren1 59 26 6.08% 31.84% -8.59%
warren2 85 36 3.66% 39.64% -8.66%
warren3 111 46 2.19% 45.84% -9.17%
warren4 137 56 1.65% 54.43% -9.48%
warren5 163 66 1.23% 65.29% -9.86%
Averages 100.5 43 0.47% 41.72% -11.62%

TABLE I: All truss instance information and MetaGA 4 corner
depot percent improvement against MetaGA 1 depot, DEGA
4 corner deployment and CPP/k lower bound.

the percentage difference in objective function values, where
x is the either the 1 depot MetaGA performance, DEGA
performance, or the theoretical lower bound described above.
Here the GA performance metric is the average best objective
function value over 30 runs. Thus, positive numbers indicate
better performance for the 4D MetaGA.

In column four, we use the 1-depot MM k-CPP to com-
pare against in order to better study the gains provided by
increasing the number of depots. Does using more depots
in our bridge inspection application and therefore having to
deploy robots in more locations, lead to gains in inspection
time? The fourth column indicates that the total distance
traveled is not significantly different and we thus expect to
see significantly less (by a factor of k) inspection time as the
distance gets distributed across the k robots. The fifth column
compares performance against the DEGA again averaging over
2, 4 and 8 robots. Here we see a significant 42% quality
performance improvement in terms of objective function value
corresponding to tour length. We break this out for different
values of k in subsequent tables. The last column compares
MetaGA performance against the lower bound and we see that
we are within 12% of the unachievable theoretical lower bound
averaged over k.

Figure 4 compares run times for different numbers of robots
(different values of k) across the problem instances. The x-
axis plots problem instance and y-axis plots runtime in seconds
needed to find the best solution. Although runtimes increase
as problem size increases for both DEGA and MetaGA, the
difference is significant. The figure shows that MetaGA is
significantly faster and that the difference in runtime is larger
for larger problem sizes.

The growth in runtimes is better depicted in Figure 5. The
figure shows how runtimes grow with problems size over our

Fig. 4: Average k=2,4,8 average per seed time in seconds to
reach best objective

problem set for different values of k. Runtimes increase slowly
and linearly for the MetaGA with a significantly smaller slope
than for DEGA. Since all three subplots share the same y-
axis, time to best solution, the figure indicates that runtimes
are dominated by problem size in terms of the number of
edges (x-axis). The value of k, the number of robots seems to
make little difference. These results provide evidence that the

Ave Var (σ2) Ave SD (σ)
MetaGA 3.63 1.73
DEGA 119.28 9.82

TABLE II: Variation in convergence time averaged across k =
2, 4, 8 robtos and averaged over all truss instances.

MetaGA performs significantly better in quality and in speed
over the DEGA. Furthermore, when we compute the variance
in reliability we see that the MetaGA again does better. Table II
shows much lower MetaGA variance and standard deviation
for our reliability metric compared to DEGA.

Tables III, IV, and V break out performance differences
for different numbers of robots. Table III compares MetaGA
performance on the 4-depot MM k-CPP against MetaGA
found solutions on the 1-depot MM k-CPP and against DEGA
across all 20 problem instances for k = 2. As expected, there
is no significant difference in tour length as the last row shows
that tour-lengths seem to be statistically indistinguishable from
those on the 1-depot problem. It is also difficult to see a strong
correlation with problem size, However, there is a significant
21.8% improvement over DEGA. Finally, with small k, we do
not expect to see a large deviation from the theoretical lower
bound and we see this reflected in the insignificant average
difference of −1.98% in the last row and column.

Table IV follows the same trend with no significant differ-
ence in objective function value between the 1 and 4 depot
versions for k = 4 robots. MetaGA still performs better

(a) Average 30 seed k = 2 results (b) Average 30 seed k = 4 results (c) Average 30 seed k = 8 results

Fig. 5: k = 2, 4, 8 average time to reach best objective value vs number of edges on all truss instances.

Instance 1D MetaGA 4D DEGA CPP/k-LB
howe1 -0.17% 7.24% -0.18%
howe2 -0.88% 13.52% -1.33%
howe3 -0.86% 18.79% -2.06%
howe4 -1.04% 20.96% -2.95%
howe5 -0.86% 28.51% -3.46%
ktruss1 -0.18% 12.28% -0.20%
ktruss2 -0.72% 17.28% -2.39%
ktruss3 -0.58% 21.77% -1.93%
ktruss4 -0.56% 31.04% -2.94%
ktruss5 -0.53% 48.48% -3.56%
pratt1 -2.33% 7.25% -2.35%
pratt2 -0.62% 14.64% -1.06%
pratt3 -0.05% 17.14% -1.29%
pratt4 -0.15% 19.51% -1.99%
pratt5 -0.20% 27.28% -2.86%
warren1 -1.38% 15.24% -1.53%
warren2 -0.44% 21.49% -1.45%
warren3 0.24% 27.24% -1.57%
warren4 0.19% 30.00% -2.06%
warren5 0.12% 36.49% -2.51%
Averages -0.55% 21.81% -1.98%

TABLE III: k = 2 MetaGA 4 corner depot best result per-
cent improvement against MetaGA 1 depot, DEGA 4 corner
deployment and CPP/k lower bound.

(41.88% better) than DEGA with four robots but somewhat
worse against the theoretical lower bound. Finally, Table V,
shows the same trend although the 4D MetaGA seems to do
better on Warren trusses compared to the 1D MetaGA. This
warrants more investigation.

Figure 6 shows tour differences between the 1-depot and
4-depot tours with k = 8 robots on the howe2 problem
instance. Tours start at the lower left for the 1 depot version,
while tours start at the four corners on the 4-depot MM k-CPP.
The top row shows 4-depot tours generated by the MetaGA
with 2 robots starting from each depot. Thicker and redder
lines indicate that the member is traversed more times and
may appear in more tours than in thinner and blue lines. The
tours are different although they share some commonality with
edges connected to depots in generally heavier use compared
to interior edges. The bottom row of figures shows 1-depot
tours for k = 8 robots all starting at the bottom left vertex.
We can clearly see that the edges connected to this vertex are
heavily traversed while edges further away are less heavily

Instance 1D MetaGA 4D DEGA CPP/k-LB
howe1 -1.21% 20.21% -10.67%
howe2 -3.61% 28.91% -12.66%
howe3 -3.69% 36.15% -11.95%
howe4 -4.74% 39.48% -12.63%
howe5 -3.69% 50.14% -11.21%
ktruss1 -4.48% 24.19% -11.47%
ktruss2 -4.70% 37.54% -11.54%
ktruss3 -3.61% 44.70% -10.32%
ktruss4 -2.58% 56.67% -10.05%
ktruss5 -2.26% 72.54% -10.08%
pratt1 -9.00% 20.14% -12.63%
pratt2 -4.53% 32.84% -10.05%
pratt3 -2.75% 39.48% -8.94%
pratt4 -1.51% 43.06% -8.71%
pratt5 -1.67% 48.32% -9.44%
warren1 4.51% 34.04% -5.47%
warren2 2.90% 39.72% -5.93%
warren3 1.92% 46.92% -6.53%
warren4 1.32% 55.53% -6.79%
warren5 0.87% 67.02% -7.10%
Averages -2.13% 41.88% -9.71%

TABLE IV: k = 4 MetaGA 4 corner depot best result per-
cent improvement against MetaGA 1 depot, DEGA 4 corner
deployment and CPP/k lower bound.

used. In these solutions, we note that the sum of the tours
travelled by the k robots is approximately 10% shorter for
the 4D MM k-CPP compared to the 1D MM k-CPP. This is
in contrast to the insignificant difference in objective function
value (which is the length of the longest tour) between 1D and
4D tours. We plan to investigate this issue further on larger
problems and with larger k and with different sets of heuristics.

V. CONCLUSION AND FUTURE WORK

We described a new meta heuristic genetic algorithm ap-
proach to the Multi-Depot Min Max k-Chinese Postman and
similar arc routing problems. Using four simple heuristics
and sorting Djikstra paths to unvisited edges, the MetaGA
described in the paper, produces 41.72% better tours 22x
faster than a directly encoded genetic algorithm approach on
4D MM k-CPPs. Results indicate that with k = 8 robots,
the MetaGA on 4 depots on a specific type of truss (the
Warren trusses) produced tours (routes) that were, on average,
better than MetaGA tours with 1 depot. In practical terms, we

Fig. 6: MetaGA per seed best solution overlap comparison between 1 depot and 4 depots on Howe2 with 8 robots (tours).
The top row of images is 4 depot overlap and the bottom row is 1 depot overlap. The overlap is indicated in two ways, line
width which represents a edge’s sum of visits from all tours and edge color which highlights edges of importance. Color is
determined by a gradient blue to red based on the relative amount of visits compared to all other edges visits. Thin blue lines
indicate at least one tour includes the edge while thick red lines indicate one or multiple tours visit the edge, one or multiple
times.

Instance 1D MetaGA DEGA CPP/k-LB
howe1 27.90% 31.43% -27.21%
howe2 2.12% 47.86% -25.68%
howe3 -1.25% 57.62% -24.93%
howe4 -0.74% 63.28% -23.36%
howe5 -1.80% 76.24% -23.28%
ktruss1 19.44% 39.81% -28.95%
ktruss2 -0.99% 54.51% -25.98%
ktruss3 -4.28% 63.05% -23.70%
ktruss4 -3.68% 81.08% -22.56%
ktruss5 -2.73% 100.91% -22.08%
pratt1 23.98% 36.00% -27.16%
pratt2 -2.17% 42.96% -25.71%
pratt3 -3.47% 56.89% -23.15%
pratt4 -2.64% 64.54% -21.93%
pratt5 -1.98% 75.86% -21.58%
warren1 15.10% 46.23% -18.77%
warren2 8.52% 57.70% -18.60%
warren3 4.42% 63.35% -19.41%
warren4 3.44% 77.76% -19.60%
warren5 2.69% 92.35% -19.96%
Averages 4.09% 61.47% -23.18%

TABLE V: k = 8 MetaGA 4 corner depot best result percent
improvement against MetaGA 1 depot, DEGA 4 corner de-
ployment and CPP/k lower bound.

expect less congestion when starting from multiple depots and
thus even a small difference in average performance seems to
indicate some utility for multiple robots starting at multiple
locations for our bridge inspection problem - at least on

some types of trusses. Closer inspection of the results indicate
that the largest gains were on smaller problem instances and
Warren trusses seem to be the one truss type that exhibited
the most consistent performance gains with k = 8 robots. We
thus plan to investigate different heuristics for different truss
types to develop truss specific heuristics that lead to consistent
performance gains.

Since bridge trusses often have highly repeatable structures,
in future work, we also plan to explore scaling up to large
bridge instances using this modularity. That is, solving a
smaller instance of a repeated (modular) truss structure may
indicate the tours for a much larger problem based on tours
produced for a smaller problem. Finally, we plan to investigate
whether these simple heuristics generalize to other types of
less structured graphs and to investigate new heuristics.

REFERENCES

[1] Dino Ahr and Gerhard Reinelt. New heuristics and lower bounds
for the min-max k-chinese postman problem. In Rolf Möhring and
Rajeev Raman, editors, Algorithms — ESA 2002, pages 64–74, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[2] Dino Ahr and Gerhard Reinelt. A tabu search algorithm for the min–max
k-chinese postman problem. Computers & Operations Research,
33(12):3403 – 3422, 2006. Part Special Issue: Recent Algorithmic
Advances for Arc Routing Problems.

[3] S.K. Amponsah and S. Salhi. The investigation of a class of capacitated
arc routing problems: The collection of garbage in developing countries.
Waste Management, 24(7):711–721, 2004.

[4] Sushil J Louis Bryan Dedeurwaerder. A meta heuristic genetic algorithm
for multi-depot routing code, 2021. http://github.com/sushillouis/Stacs.

[5] Corberán and Prins. Recent results on arc routing problems: an annotated
bibliography. Networks, 56(1):50–69, 2010.

[6] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[7] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii. Lecture notes in computer science, 1917:849–858, 2000.

[8] Bryan Dedeurwaerder. metaga-for-mmmdcpp, January 2022.
https://github.com/BryanDedeur/metaga-for-mmmdcpp.

[9] Aditya Dixit, Apoorva Mishra, and Anupam Shukla. Vehicle routing
problem with time windows using meta-heuristic algorithms: a survey.
In Harmony search and nature inspired optimization algorithms, pages
539–546. Springer, 2019.

[10] Jack Edmonds and Ellis L. Johnson. Matching, euler tours and the
chinese postman. Mathematical Programming, 5(1):88–124, Dec 1973.

[11] Liang Feng, Yew-Soon Ong, Meng-Hiot Lim, and Ivor W Tsang.
Memetic search with interdomain learning: A realization between cvrp
and carp. IEEE Transactions on Evolutionary Computation, 19(5):644–
658, 2014.

[12] G. Fleury, P. Lacomme, and C. Prins. Evolutionary algorithms for
stochastic arc routing problems. Lecture Notes in Computer Science,
3005:501–512, 2002.

[13] Gérard Fleury, Philippe Lacomme, Christian Prins, and Marc Sevaux.
A memetic algorithm for a bi-objective and stochastic carp. Proceeding
of the MIC, pages 22–26, 2005.

[14] Gianpaolo Ghiani, Francesca Guerriero, and Gennaro Improta. Waste
collection in southern italy: Solution of a real-life arc routing problem.
Int Trans Oper Res, 12(2):135–144, 2005.

[15] Nicholas Harris. Direct Encoded Genetic Algorithm,
using CUDA and caching improvements, May 2020.
https://github.com/nicholasharris/MMkCPP-GA-research.

[16] Nicholas Harris, Siming Liu, Sushil J. Louis, and Jim Hung La. A
genetic algorithm for multi-robot routing in automated bridge inspection.
In Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, pages 369–370, Prague Czech Republic, July 2019.
ACM.

[17] Geir Hasle. Chapter 16: Arc Routing Applications in Newspaper
Delivery, pages 371–395. Siam, 10 2013.

[18] Yantao Huang and Kara M Kockelman. Electric vehicle charging
station locations: Elastic demand, station congestion, and network equi-
librium. Transportation Research Part D: Transport and Environment,
78:102179, 2020.

[19] Sašo Karakatič. Optimizing nonlinear charging times of electric vehicle
routing with genetic algorithm. Expert Systems with Applications,
164:114039, 2021.

[20] Hung Manh La, Tran Hiep Dinh, Nhan Huu Pham, Quang Phuc Ha,
and Anh Quyen Pham. Automated robotic monitoring and inspection
of steel structures and bridges. Robotica, 37(5):947–967, 2019.

[21] Lacomme, Prins, and Sevaux. A genetic algorithm for a bi-objective
capacitated arc routing problem. Computers & Operations Research,
33(12):3473–3493, 2006.

[22] Philippe Lacomme, Christian Prins, and Wahiba Ramdane-Cherif. Com-
petitive memetic algorithms for arc routing problems. Annals of
Operations Research, 131(1-4):159–185, 2004.

[23] David Lattanzi and Gregory Miller. Review of robotic infrastructure
inspection systems. Journal of Infrastructure Systems, 23(3):04017004,
2017.

[24] L. Muyldermans, D. Cattrysse, D. Van Oudheusen, and Lotan T. Dis-
tricting for salt spreading operations. European Journal of Operational
Research, 139(3):521–532, 2002.

[25] United States Department of Transportation. National bridge in-
ventory - bridge inspection - safety - bridges & structrues, 2019.
http://www.fhwa.dot.gov/bridge/nbi.cfm Accessed: 12/19/16.

