
A Computationally Efficient Evolutionary
Algorithm for Real-Parameter Optimization

Kalyanmoy Deb deb@iitk.ac.in
Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology
Kanpur, Kanpur, PIN 208 016, India

Ashish Anand ashi@iitk.ac.in
Kanpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology
Kanpur, Kanpur, PIN 208 016, India

Dhiraj Joshi djoshi@cse.psu.edu
Department of Computer Science and Engineering, Pennsylvania State University, 2307
Plaza Drive, State College, PA 16801, USA

Abstract
Due to increasing interest in solving real-world optimization problems using evo-
lutionary algorithms (EAs), researchers have recently developed a number of real-
parameter genetic algorithms (GAs). In these studies, the main research effort is spent
on developing an efficient recombination operator. Such recombination operators use
probability distributions around the parent solutions to create an offspring. Some op-
erators emphasize solutions at the center of mass of parents and some around the par-
ents. In this paper, we propose a generic parent-centric recombination operator (PCX)
and a steady-state, elite-preserving, scalable, and computationally fast population-
alteration model (we call the G3 model). The performance of the G3 model with the
PCX operator is investigated on three commonly used test problems and is compared
with a number of evolutionary and classical optimization algorithms including other
real-parameter GAs with the unimodal normal distribution crossover (UNDX) and the
simplex crossover (SPX) operators, the correlated self-adaptive evolution strategy, the
covariance matrix adaptation evolution strategy (CMA-ES), the differential evolution
technique, and the quasi-Newton method. The proposed approach is found to consis-
tently and reliably perform better than all other methods used in the study. A scale-up
study with problem sizes up to 500 variables shows a polynomial computational com-
plexity of the proposed approach. This extensive study clearly demonstrates the power
of the proposed technique in tackling real-parameter optimization problems.

Keywords
Real-parameter optimization, simulated binary crossover, self-adaptive evolution
strategy, covariance matrix adaptation, differential evolution, quasi-Newton method,
parent-centric recombination, scalable evolutionary algorithms.

1 Introduction

Over the past few years, there has been a surge of studies related to real-parameter
genetic algorithms (GAs), despite the existence of specific real-parameter evolutionary
algorithms (EAs), such as evolution strategy and differential evolution. Although, in
principle, such real-parameter GA studies have been shown to have a similar theoret-
ical behavior on certain fitness landscapes with proper parameter tuning in an earlier
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study (Beyer and Deb, 2001), in this paper we investigate the performance of a cou-
ple of popular real-parameter genetic algorithms and compare extensively with the
above-mentioned real-parameter EAs and with a commonly used classical optimiza-
tion method.

A good description of different real-parameter GA recombination operators can
be found in Herrara et al. (1998) and Deb (2001). Of different approaches, the unimodal
normal distribution crossover (UNDX) operator (Ono and Kobayashi, 1997), the simplex
crossover (SPX) operator (Higuchi et al., 2000), and the simulated binary crossover (SBX)
(Deb and Agrawal, 1995) are well studied. The UNDX operator uses multiple parents
and creates offspring solutions around the center of mass of these parents. A small
probability is assigned to solutions away from the center of mass. On the other hand,
the SPX operator assigns a uniform probability distribution for creating offspring in a
restricted search space around the region marked by the parents. These mean-centric
operators have been applied with a specific GA model (the minimum generation gap
(MGG) model suggested by Satoh et al. (1996)). The MGG model is a steady-state GA
in which 200 offspring solutions are created from a few parent solutions and only two
solutions are selected. Using this MGG model, a recent study (Higuchi et al., 2000)
compared both UNDX and SPX and observed that the SPX operator performs better
than the UNDX operator on a number of test problems. Since the SPX operator uses
a uniform probability distribution for creating an offspring, a large offspring pool size
(200 members) was necessary to find a useful progeny. On the other hand, the UNDX
operator uses a normal probability distribution to create an offspring, giving more em-
phasis to solutions close to the center of mass of the parents. Therefore, such a large
offspring pool size may not be optimal with the UNDX operator. Despite the exten-
sive use of these two recombination operators, we believe that adequate parametric
studies were not performed in any earlier study to establish the best parameter settings
for these GAs. In this paper, we perform a parametric study by varying the offspring
pool size and the overall population size and report interesting outcomes. For a fixed
number of function evaluations, the UNDX operator with a biased (normal) probability
distribution of creating offspring solutions around the centroid of parents works much
better with a small offspring pool size and outperforms the SPX operator, which uses a
uniform probability distribution over a simplex surrounding the parents.

Working with nonuniform probability distribution for creating offspring, it is not
intuitively clear whether biasing the centroidal region (mean-centric approach as in the
UNDX operator) or biasing the parental region (parent-centric approach as in the SBX
or fuzzy recombination) is a better approach. A previous study (Deb and Agrawal,
1995) has shown that the binary-coded GAs with the single-point crossover operator,
when applied to continuous search spaces, use an inherent probability distribution bi-
asing the parental region, rather than the centroidal region. Using variable-wise recom-
bination operators, a past study (Deb and Beyer, 2000) has clearly shown the advantage
of using a parent-centric operator (SBX) over a number of other recombination opera-
tors. Motivated by these studies, in this paper, we suggest a generic parent-centric
recombination (PCX) operator, which allows a large probability of creating a solution
near each parent, rather than near the centroid of the parents. In order to make the
MGG model computationally faster, we also suggest a generalized generation gap (G3)
model, which replaces the roulette-wheel selection operator of the MGG model with
a block selection operator. The proposed G3 model is a steady-state, elite-preserving,
and computationally fast algorithm for real-parameter optimization. The efficacy of the
G3 model with the proposed PCX operator is investigated by comparing it with UNDX
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and SPX operators on three test problems.
To further investigate the performance of the proposed G3 model with the PCX op-

erator, we also compare it to the correlated self-adaptive evolution strategy and the dif-
ferential evolution method. To really put the proposed GA to the test, we also compare
it to a commonly used classical optimization procedure – the quasi-Newton method
with BFGS update procedure (Reklaitis et al., 1983). Finally, the computational com-
plexity of the proposed GA is investigated by performing a scale-up study on three
chosen test problems having as many as 500 variables.

Simulation studies show remarkable performance of the proposed GA with the
PCX operator. Since the chosen test problems have been well studied, we also com-
pare the results of this paper with past studies where significant results on these test
problems have been reported. The extensive comparison of the proposed approach
with a number of challenging competitors chosen from evolutionary and classical op-
timization literature clearly demonstrates the superiority of the proposed approach. In
addition, the polynomial computational complexity observed with the proposed GA
should encourage the researchers and practitioners to test and apply it to more com-
plex and challenging real-world search and optimization problems.

2 Evolutionary Algorithms for Real-Parameter Optimization

Over the past few years, many researchers have been paying attention to real-coded
evolutionary algorithms, particularly for solving real-world optimization problems.
In this context, three different approaches have been popularly practiced: (i) self-
adaptive evolution strategies (Bäck, 1997; Hansen and Ostermeier, 1996; Rechenberg,
1973; Schwefel, 1987), (ii) differential evolution (Storn and Price, 1997), and (iii) real-
parameter genetic algorithms (Deb, 2001; Herrera et al., 1998). However, some recent
studies have shown the similarities in search principles between some of these differ-
ent approaches (Beyer and Deb, 2001; Kita et al., 1999) on certain fitness landscapes.
Details of all these different evolutionary techniques can be found in respective stud-
ies. Here, we discuss some fundamental approaches to real-parameter GAs, as our
proposed optimization algorithm falls in this category.

Among numerous studies on the development of different recombination opera-
tors for real-parameter GAs, blend crossover (BLX), SBX, UNDX, and SPX are commonly
used. A number of other recombination operators, such as arithmetic crossover, inter-
mediate crossover, and extended crossover are similar to the BLX operator. A detailed
study of many such operators can be found elsewhere (Deb, 2001; Herrara et al., 1998).
In the recent past, GAs with some of these recombination operators have been demon-
strated to exhibit self-adaptive behavior similar to that observed in evolution strategy
and evolutionary programming approaches.

Beyer and Deb (2001) argued that a variation operator (a combination of the re-
combination and the mutation operator) should have the following two properties:

1. Population mean decision variable vector should remain the same before and after
the variation operator.

2. Variance of the intramember distances must increase due to the application of the
variation operator.

Since variation operators usually do not use any fitness function information explic-
itly, the first argument makes sense. The second argument comes from the realization
that the selection operator has a tendency to reduce the population variance. Thus,
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population variance must be increased by the variation operator to maintain adequate
diversity in the population. In the context of real-parameter optimization, a recombina-
tion operator alone can introduce arbitrary diversity in the offspring population. Since
in this study we have not used any mutation operator, a real-parameter recombination
operator should satisfy the above two properties.

It is interesting that the population mean can be preserved in several ways. One
method would be to have individual recombination events producing offspring near
the centroid of the participating parents. We call this approach mean-centric recombi-
nation. The other approach would be to have individual recombination events biasing
offspring to be created near the parents, but assigning each parent an equal probability
of creating offspring in its neighborhood. This will also allow that the expected popula-
tion mean of the entire offspring population is identical to that of the parent population.
We call this latter approach parent-centric recombination.

Recombination operators such as UNDX and BLX are mean-centric approaches,
whereas the SBX and fuzzy recombination (Voigt et al., 1995) are parent-centric ap-
proaches. Beyer and Deb (2001) have also shown that these operators may exhibit simi-
lar performance if the variance growth under recombination operation can be matched
by fixing their associated parameters. In this paper, we treat the UNDX operator as a
representative mean-centric recombination operator and a multiparent version of the
SBX operator as a parent-centric recombination operator.

2.1 Mean-Centric Recombination

In the UNDX operator, (µ − 1) parents are randomly chosen and their mean ~g is com-
puted. From this mean, (µ − 1) direction vectors (~d(i) = ~x(i) − ~g) are formed. Let the
direction cosines be ~e(i) = ~d(i)/|~d(i)|. Thereafter, from another randomly chosen parent
~x(µ), the length D of the vector (~x(µ) −~g) orthogonal to all ~e(i) is computed. Let ~e(j) (for
j = µ, . . . , n, where n is the size of the variable vector ~x) be the orthonormal basis of
the subspace orthogonal to the subspace spanned by all ~e(i) for i = 1, . . . , (µ−1). Then,
the offspring is created as follows:

~y = ~g +

µ−1
∑

i=1

wi|~d(i)|~e(i) +

n
∑

i=µ

viD~e(i), (1)

where wi and vi are zero-mean normally distributed variables with variances σ2
ζ and

σ2
η , respectively. Kita and Yamamura (1999) suggested σζ = 1/

√
µ − 2 and ση =

0.35/
√

n − µ − 2, respectively and observed that µ = 3 to 7 performed well. It is inter-
esting to note that each offspring is created around the mean vector ~g. The probability
of creating an offspring diminishes with the distance from the mean vector, and the
maximum probability is assigned at the mean vector. Figure 1 shows three parents and
a few offspring created by the UNDX operator. The complexity of the above procedure
in creating one offspring is O(µ2), governed by the Gram-Schmidt orthonormalization
needed in the process.

The SPX operator also creates offspring uniformly around the mean but restricts
them within a predefined region (in a simplex similar but γ =

√
µ + 1 times bigger

than the parent simplex). A distinguishing aspect of the SPX from the UNDX operator
is that the SPX assigns a uniform probability distribution for creating any solution in a
restricted region (called the simplex). Although, in its true sense, it is not a mean-centric
operator, because of its emphasis to solutions around the centroid of the participating
parents we put this operator in the category of the mean-centric operators. Figure 2
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Figure 1: UNDX. Figure 2: SPX. Figure 3: PCX.

shows the density of solutions with three parents for the SPX operator. The compu-
tational complexity for creating one offspring here is O(µ), thereby making the SPX
operator faster than the UNDX operator.

2.2 Parent-Centric Recombination (PCX)

The SBX operator assigns a higher probability for an offspring to remain closer to the
parents than away from parents. We use this parent-centric concept and modify the
UNDX operator as follows. The mean vector ~g of the chosen µ parents is computed.
For each offspring, one parent ~x(p) is chosen with equal probability. The direction vec-
tor ~d(p) = ~x(p) − ~g is calculated. Thereafter, from each of the other (µ − 1) parents,
perpendicular distances Di to the line ~d(p) are computed and their average D̄ is found.
The offspring is created as follows:

~y = ~x(p) + wζ
~d(p) +

µ
∑

i=1, i6=p

wηD̄~e(i), (2)

where ~e(i) are the (µ − 1) orthonormal bases that span the subspace perpendicular to
~d(p). Thus, the complexity of the PCX operator to create one offspring is O(µ), instead
of O(µ2) required for the UNDX operator. The parameters wζ and wη are zero-mean
normally distributed variables with variance σ2

ζ and σ2
η , respectively. The important

distinction from the UNDX operator is that offspring solutions are centered around
each parent. The probability of creating an offspring closer to the parent is higher.
Figure 3 shows the distribution of offspring solutions with three parents. The moti-
vation of the PCX operator is as follows. Since individual parents have qualified the
“fitness test” in the selection operator, it can be assumed that solutions close to these
parents are also potential good candidates, particularly in the context of continuous
search space problems. On the contrary, it may be quite demanding to assume that the
solutions close to the centroid of the participating parents are also good, especially in
cases where parents are well sparsed in the search space. Creating solutions close to
previously found good solutions, as emphasized by the PCX operator, should make a
more reliable search. It is also intuitive that the convergence towards a local optimum
can be made faster by always choosing ~x(p) as the best parent.
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Figure 4: Best fitness for different λ on Felp using the MGG model with SPX and UNDX
operators.

3 Evolutionary Algorithm Models

Besides the recombination operator, researchers have also realized the importance of
a population alteration model different from a standard genetic algorithm for real-
parameter optimization. In the following, we describe a commonly used model origi-
nally suggested by Satoh et al. (1996) and later used in a number of studies (Kita et al.,
1999; Tsutsui et al., 1999).

3.1 Minimal Generation Gap (MGG) Model

This is a steady-state model, where recombination and selection operators are inter-
twined in the following manner:

1. From the population P , select µ parents randomly.

2. Generate λ offspring from µ parents using a recombination scheme.

3. Choose two parents at random from the population P .

4. Of these two parents, one is replaced with the best of λ offspring and the other
is replaced with a solution chosen by a roulette-wheel selection procedure from a
combined population of λ offspring and two chosen parents.

The above procedure completes one iteration of the MGG model. A recent study
(Higuchi et al., 2000) used µ = n + 1 and λ = 200 for the SPX operator and µ = 3
and λ = 200 for the UNDX operator. No mutation operator was used. With the above
parameters, that study showed that the MGG model with the SPX operator and a popu-
lation size of 300 was able to solve a number of test problems better than that using the
UNDX operator. However, that study did not show any justification for using λ = 200
and for using a population size of N = 300. Here, we use the MGG model with both
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Figure 5: Best fitness on Fsch using the MGG model with SPX and UNDX.

recombination operators and perform a parametric study with λ on three standard test
problems:

Felp =

n
∑

i=1

ix2
i (ellipsoidal function) (3)

Fsch =
n

∑

i=1





i
∑

j=1

xj





2

(Schwefel’s function) (4)

Fros =

n−1
∑

i=1

(

100(x2
i − xi+1)

2 + (xi − 1)2
)

(generalized Rosenbrock’s function) (5)

In all problems, we have used n = 20. The first two problems have their minimum at
x∗

i = 0 with F ∗ = 0, and the third function has its minimum at x∗
i = 1 with F ∗ = 0. In

order not to bias the search, we have initialized the population in xi ∈ [−10,−5] for all
i in all problems.

First, we fix N = 300 and vary λ from 2 to 300. All other parameters are kept as
they were used in the original study (Higuchi et al., 2000), except that in UNDX, µ = 6
is used, as this value was found to produce better results. In all experiments, we ran the
MGG model until a predefined number of function evaluations F T elapsed. We used
the following values of F T for different functions: F T

elp = 0.5(106), F T
sch = 1(106), and

F T
ros = 1(106). In all experiments, 50 runs with different initial populations were taken

and the smallest, median, and highest best fitness values recorded. Figure 4 shows the
best fitness values obtained by the SPX and the UNDX operators on Felp with different
values of λ. The figure shows that λ = 50 produced the best reliable performance for
the SPX operator. Importantly, the MGG model with λ = 200 (which was suggested in
the original study) did not perform as well. Similarly, for the UNDX operator, the best
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Figure 6: Best fitness on Fros using the MGG model with SPX and UNDX.

performance is observed at λ = 4, which is much smaller than the suggested value of
200.

Figure 5 shows that in Fsch, best performances are observed with identical values
for λ with SPX and UNDX. Figure 6 shows the population best fitness for the MGG
model with SPX and UNDX operators applied to the Fros function. Here, the best per-
formance is observed at λ = 100 to 300 for the SPX operator and λ = 6 for the UNDX
operator.

Thus, it is clear from the above experiments that the suggested value of λ = 200
(which was recommended and used in earlier studies (Satoh et al., 1996; Kita et al.,
1999)) is not optimal for either recombination operator (UNDX or SPX). Instead, a
smaller value of λ has exhibited better performance. It is also clear from the figures
that the SPX operator works better with a large offspring pool size, whereas the UNDX
works well with a small offspring pool size. This fact can be explained as follows. Since
a uniform probability distribution is used in the SPX operator, a large pool size require-
ment is intuitive. With a biased probability distribution, the UNDX operator does not
rely on the sample size, rather it relies on a large number of iterations, each providing
a careful choice of an offspring close the center of mass of the chosen parents.

3.2 Generalized Generation Gap (G3) Model

Here, we modify the MGG model to make it computationally faster by replacing the
roulette-wheel selection with a block selection of the best two solutions. This model
also preserves elite solutions from the previous iteration.

1. From the population P , select the best parent and µ − 1 other parents randomly.

2. Generate λ offspring from the chosen µ parents using a recombination scheme.

3. Choose two parents at random from the population P .
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Figure 7: Function evaluations needed to find a solution of fitness 10−20 on Felp using
the G3 model with PCX, UNDX, and SPX. For PCX and UNDX operators, a population
size of 100 is used, and for the SPX operator, a population size of 300 is used.

4. From a combined subpopulation of two chosen parents and λ created offspring,
choose the best two solutions and replace the chosen two parents (in Step 3) with
these solutions.

The above G3 model can also be modified by choosing only one parent in Step 3 (in-
stead of two parents) and replacing the parent with the best of the combined subpopu-
lation of λ offspring and the parent. At first, we do not make this change and continue
with the above G3 model in order to keep the structure of the model similar to the MGG
model. Later, we shall investigate the efficacy of this modified G3 model.

3.2.1 Simulation Results
In all experiments with the G3 model, we record the number of function evaluations
needed to achieve the best fitness value equal to 10−20. Figure 7 shows the perfor-
mance of the G3 model with all three operators (PCX, UNDX, and SPX) on the ellip-
soidal problem. For the PCX and UNDX operators, N = 100 is used, and for the SPX
operator, N = 300 is used. A large population for SPX is found to be essential for better
performance. In all PCX runs, we have used ση = σζ = 0.1. For a faster convergence,
the best parent is always used to calculate the direction vector d(p) in Equation 2. In
PCX and UNDX runs, we have used µ = 3, and in SPX runs, we have used µ = n + 1
or 21 (as suggested by the developers of SPX).

The minimum, median, and maximum number of required function evaluations,
as shown in the figure, suggest the robustness of the G3 model with the PCX operator.
The G3 model with the PCX operator has performed better (minimum required func-
tion evaluations is only 5,818) than that with the UNDX operator (minimum required
function evaluations is 16,602). For the SPX operator, not all 50 runs have found a so-
lution having a fitness value as small as the required value of 10−20 for λ = 12 and 15.
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Figure 8: Function evaluations to reach a fitness 10−20 versus population sizes on Felp

using the G3 model with PCX, UNDX, and SPX.

The number of runs (out of 50) where such a solution was found are marked on the
plot. For λ < 12, the SPX operator did not find the target solution in any of the 50 runs.
The best run of the SPX operator (with λ = 12) required 163,380 function evaluations.

The figure shows that with smaller offspring pool size (λ), better performance with
PCX and UNDX operators is achieved. Thus, we choose λ = 2 for these operators and
perform a parametric study with the population size. For the SPX operator, we use
λ = 15, below which satisfactory results were not found. Figure 8 shows that there
exists an optimum population size at which the performance is the best for PCX (with
5,744 function evaluations) and UNDX (with 15,914 function evaluations). For the 20-
variable ellipsoidal problem, N ∼ 100 seems to be optimum for these two operators.
It is also interesting to note that the optimal population size requirement for the PCX
operator is larger than that for the UNDX operator. However, the solution accuracy
achieved by the PCX operator is almost an order of magnitude better than that obtained
by the UNDX operator. Another interesting aspect is that for the SPX operator with
λ = 15, all runs with population size smaller than 300 did not find the desired solution.
Since SPX creates solutions within a fixed range proportional to the location of the
parents, its search power is limited. Moreover, since random samples are taken from a
wide region in the search space, the success of the algorithm relies on the presence of a
large population size.

Next, we apply the G3 model with all three recombination operators to Fsch. Fig-
ures 9 and 10 show the parametric studies with λ and the population size for the PCX
and the UNDX operators, respectively. Once again, N = 100 and λ = 2 are found
to perform the best for both operators. However, the PCX operator is able to find the
desired solution with a smaller number of function evaluations (14,643 for PCX ver-
sus 27,556 for UNDX). However, the SPX operator does not perform well at all on the
Schwefel’s function. The minimum function evaluations needed with any parameter
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Figure 9: Function evaluations needed to find a solution of fitness 10−20 on Fsch using
the G3 model with PCX and UNDX. N = 100 is used.
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Figure 10: Function evaluations to reach a fitness 10−20 versus population sizes on Fsch

using the G3 model with PCX and UNDX. λ = 2 is used.
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Figure 11: Best fitness versus function evaluations for Fsch.

Table 1: Three minima (or near minima) for the 20-variable Rosenbrock’s function.

f(~x) xi, i = 1, 2, . . . , 20
0 1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1

3.986624 −0.993286 0.996651 0.998330 0.999168 0.999585 0.999793 0.999897
0.999949 0.999974 0.999987 0.999994 0.999997 0.999998 0.999999
0.999999 0.999999 0.999999 0.999997 0.999995 0.999989

65.025362 −0.010941 0.462100 0.707587 0.847722 0.922426 0.960915 0.980415
0.990213 0.995115 0.997563 0.998782 0.999387 0.999682 0.999818
0.999861 0.999834 0.999722 0.999471 0.998953 0.997907

setting of the SPX operator to find the desired solution is 414,350, which is an order of
magnitude more than the best results obtained using the PCX and the UNDX operators.
Thus, we have not presented any simulation result for the SPX operator.

Figure 11 shows the population best fitness values (of 50 runs) of Fsch with number
of function evaluations in the case of the G3 model with the best-performing parame-
ters for PCX (λ = 2 and N = 150), UNDX (λ = 2 and N = 70), and SPX (λ = 70 and
N = 300) operators. The figure shows the superiority of the PCX operator in achieving
a desired accuracy with the smallest number of function evaluations.

Next, we attempt to solve the Fros function. This function is more difficult to solve
than the previous two functions. Here, no implementation is able to find a solution
very close to the global optimum (with a fitness value 10−20) in all 50 runs each within
one million function evaluations. Runs with PCX and UNDX operators sometimes get
stuck to a local optimum solution. Interestingly, this function is claimed to be unimodal
in a number past of studies. However, for n > 3, this function has more than one min-
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Figure 12: Function evaluations needed to find a solution of fitness 10−20 for different
λ values on the Fros using the G3 model with PCX and UNDX operators.

imum, of which the solution xi = 1 (for all i) is the global minimum. For 20 variables,
we have identified three minima with function values 0, 3.98662, and 65.025362, re-
spectively. The corresponding variable values are tabulated in Table 1. In the figures
(to be described next) involving Fros, whenever a GA did not find the global minimum,
it was always attracted to the best local optimum (with the function value 3.98662). It
is also important to highlight that the SPX operator failed to find the required solution
in any of the 50 runs. However, Figures 12 and 13 show that the PCX operator (with a
minimum of 14,847 function evaluations) has performed much better than the UNDX
operator (with a minimum of 58,205 function evaluations). The number of times where
a run has converged near the global optimum is also marked in the figures. Once again,
a small λ (∼ 4) and an adequate population size (100 to 150) are found to produce op-
timum behavior for PCX and UNDX operators in this problem.

To compare the performance of the UNDX operator when applied with the MGG
and the G3 model, we compare the number of function evaluations needed to achieve a
solution with fitness 10−20 on all three test problems. In both cases, results are obtained
with their best parameter settings. The following table shows that the G3 model is an
order of magnitude better than the MGG model.

Function MGG G3
Felp 2,97,546 18,120
Fsch 5,03,838 30,568
Fros 9,38,544 73,380

The careful creation of new solutions near successful parents and the dependence of the
actual distance of new solutions from parents on the diversity of the parent population
allow the PCX operator to have a self-adaptive yet efficient search. The combination
of such a search operator along with a fast population alteration procedure makes the
overall approach much better than the previous real-parameter EAs.
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Figure 13: Function evaluations to reach a fitness 10−20 versus population sizes on Fros

using the G3 model with PCX and UNDX operators. For PCX and UNDX operators,
a population size of 100 is used, and for the SPX operator, a population size of 300 is
used.

Table 2: Comparison of the original and the modified G3 model on three test problems.

G3 Felp Fsch

model Best Median Worst Best Median Worst
Original 5,744 6,624 7,372 14,643 16,326 17,712
Modified G3 5,826 6,800 7,728 13,988 15,602 17,188
G3 Fros

model Best Median Worst
Original 14,847 22,368 25,797
Modified G3 16,508 21,452 25,520

3.2.2 Modified G3 Model
In this subsection, we show simulation results on all three test problems using the mod-
ified G3 model in which, instead of two parents, only one parent is chosen in Step 3 and
updated in Step 4. Table 2 presents the best, median, and worst function evaluations
of 50 runs for the original G3 and the modified G3 models to obtain a function value
equal to 10−20 for all three problems. For each problem, 20 variables are used. The table
shows that in the ellipsoidal function, the original G3 model performed better, and in
the Schwefel’s function, the modified G3 performed better. On Rosenbrock’s function,
the original G3 model found a better overall best solution over 50 runs, but the mod-
ified G3 found a better median solution. Based on these results, we cannot conclude
which of the two G3 models is better. However, in the rest of the paper, we compare
simulation results of other optimization algorithms with the modified G3 model.
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Table 3: Comparison of correlated ES and CMA-ES with the proposed approach.

Felp Fsch

EA Best Median Worst Best Median Worst
(1, 10)-ES 28,030 40,850 87,070 72,330 105,630 212,870
(15, 100)-ES 83,200 108,400 135,900 173,100 217,200 269,500
CMA-ES 8,064 8,472 8,868 15,096 15,672 16,464
Modified G3 5,826 6,800 7,728 13,988 15,602 17,188

Fros

EA Best Median Worst
(1, 10)-ES 591,400 803,800 997,500
(15, 100)-ES 663,760 837,840 936,930
CMA-ES 29,208 33,048 41,076
Modified G3 16,508 21,452 25,520

4 Self-Adaptive Evolution Strategies

Besides the real-parameter genetic algorithms, self-adaptive evolution strategies have
also been applied to solve real-parameter optimization problems. In this section, we
apply these two methods to the above three test problems and compare the results
with that obtained using the proposed GA model. In all cases, we have initialized each
variable xi in the range [−10,−5], so that the initial population does not bracket the
global optimum solution.

There exist a number of different self-adaptive evolution strategies (ESs) (Beyer,
2001; Schwefel, 1987; Hansen and Ostermeier, 1996) for solving problems with strong
linkages among parameters. In this study, we first use the correlated self-adaptive ES,
in which the extra strategy parameters, such as the mutation strength of each vari-
able and correlations between pair-wise variable interactions, are also updated along
with the problem variables. Using the standard guidelines of choosing the learning
rate (Beyer, 2001) for self-adaptive ES, we use (1, 10)-ES and (15, 100)-ES on all three
test problems having 20 variables. Table 3 shows the best, median, and worst number
of function evaluations (of 50 independent runs) needed to achieve a solution with a
function value of 10−20 using the above two correlated ESs and the modified G3 model
with the PCX operator on the three test problems. It is clear from the table that both
correlated ESs require at least an order of magnitude more function evaluations than
the proposed approach to achieve the same accuracy in the obtained solutions for all
three test problems.

Next, we try the covariance matrix adaptation evolution strategy (CMA-ES) developed
by Hansen and Ostermeier (1996). Collecting the information of previous mutations,
the CMA-ES determines the new mutation distribution providing a larger probability
for creating better solutions. The procedure is quite involved mathematically, and in-
terested readers are encouraged to refer to the original study or Hansen and Ostermeier
(2000). In this study, we use the MATLAB coded from the developer’s website along
with the recommended parameter settings. For the 20-variable test problems, we have
used (3I , 12)-CMA-ES with solutions initialized in xi ∈ [−10,−5]. Table 3 shows the
number of function evaluations needed to find a solution (in 50 runs) with a function
value of 10−20 in all three test problems. Although the required function evaluations

Evolutionary Computation Volume 10, Number 4 385



K. Deb, A. Anand, and D. Joshi

DE

PCX
4 30

38 47

1000

10000

100000

1e+06

5 10 50 100 150 200 300N
u
m
b
e
r
 
o
f
 
F
u
n
c
t
i
o
n
 
E
v
a
l
u
a
t
i
o
n
s

Population Size

Figure 14: Function evaluations needed
with differential evolution for the ellip-
soidal problem.
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Figure 15: Function evaluations needed
with differential evolution for the
Schwefel’s function.
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Figure 16: Function evaluations needed with differential evolution for the Rosenbrock’s
function.

are much better than those needed for the correlated self-adaptive ES, they are some-
what worse than those needed for the modified G3 model with the PCX operator. It is
worth mentioning that the CMA-ES requires setting of many parameters, some reason-
able values of which are suggested in the original study. However, in the case of the G3
model, there are two parameters ση and σζ (in Equation 2) that a user has to set. In all
studies here, we have used a constant value of 0.1 for these two parameters.

5 Differential Evolution

Differential evolution (DE) (Storn and Price, 1997) is a steady-state EA in which for every
offspring a set of three parent solutions and an index parent are chosen. Thereafter,
a new solution is created either by a variable-wise linear combination of three parent
solutions or by simply choosing the variable from the index parent with a probability.
The resulting new solution is compared with the index parent and the better of them is
declared as the offspring. We have used the C-code downloaded from the DE website
http://http.icsi.berkeley.edu/˜storn/ and used strategy 1 with all param-
eters set as suggested in the code. Moreover, this strategy is also observed to perform
better than other DE strategies in our limited experimental study.
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Figures 14, 15, and 16 compare the function evaluations needed with DE to achieve
a solution with a function value of 10−20 on three test problems with the modified G3
model and the PCX operator. We have applied DE with different population sizes each
performed with 50 independent runs. It is interesting to note that in all three problems,
an optimal population size is observed. In the case of the Rosenbrock’s function, only
a few runs out of 50 runs find the true optimum with a population size smaller than
20. All three figures demonstrate that the best performance of the modified G3 with
the PCX operator is better than the best performance of the DE. To highlight the best
performances of both methods, we have tabulated corresponding function evaluations
in the following table:

Felp Fsch

Method Best Median Worst Best Median Worst
DE 9,660 12,033 20,881 102,000 119,170 185,590
Modified G3 5,826 6,800 7,728 13,988 15,602 17,188

Fros

Method Best Median Worst
DE 243,800 587,920 942,040
Modified G3 16,508 21,452 25,520

The table shows that except for the ellipsoidal function, the modified G3 requires an
order of magnitude less number of function evaluations than DE.

6 Quasi-Newton Method

The quasi-Newton method for unconstrained optimization is a popular and efficient
approach (Deb, 1995; Reklaitis et al., 1983). Here, we have used the BFGS quasi-Newton
method along with a mixed quadratic-cubic polynomial line search approach available
in MATLAB (Branch and Grace, 1996). The code computes gradients numerically and
adjusts step sizes in each iteration adaptively for a fast convergence to the minimum.
This method is found to produce the best performance among all optimization proce-
dures coded in MATLAB, including the steepest-descent approach.

In Table 4, we present the best, median, and worst function values obtained from
a set of 10 independent runs started from random solutions with xi ∈ [−10,−5]. The
maximum number of function evaluations allowed in each test problem is determined

Table 4: Solution accuracy obtained using the quasi-Newton method. FE denotes the
maximum allowed function evaluations. In each case, the G3 model with the PCX
operator finds a solution with a function value smaller than 10−20.

Func. FE Best Median Worst
Felp 6,000 8.819(10−24) 9.718(10−24) 2.226(10−23)
Fsch 15,000 4.118(10−12) 1.021(10−10) 7.422(10−9)
Fros 15,000 6.077(10−17) 4.046(10−10) 3.987

Felp 8,000 5.994(10−24) 1.038(10−23) 2.226(10−23)
Fsch 18,000 4.118(10−12) 4.132(10−11) 7.422(10−9)
Fros 26,000 6.077(10−17) 4.046(10−10) 3.987

Evolutionary Computation Volume 10, Number 4 387



K. Deb, A. Anand, and D. Joshi

slope = 1.88

100

1000

10000

100000

1e+06

1e+07

5 50 100 200 500
Number of Variables

N
u
m
b
e
r
 
o
f
 
F
u
n
c
t
i
o
n
 
V
a
r
i
a
b
l
e
s

Figure 17: Scale-up study for the ellipsoidal function using the modified G3 model and
the PCX operator.

from the best and worst function evaluations needed for the G3 model with the PCX
operator to achieve an accuracy of 10−20. These limiting function evaluations are also
tabulated. The tolerances in the variables and in the function values are set to 10−30.
The table shows that the quasi-Newton method has outperformed the G3 model with
PCX for the ellipsoidal function by achieving a better function value. Since the el-
lipsoidal function has no linkage among its variables, the performance of the quasi-
Newton search method is difficult to match with any other method. However, it is
clear from the table that the quasi-Newton method is not able to find the optimum
with an accuracy of 10−20 within the allowed number of function evaluations in more
epistatic problems (Schwefel’s and Rosenbrock’s functions).

7 Scalability of the Proposed Approach

In the above sections, we have considered only 20-variable problems. In order to inves-
tigate the efficacy of the proposed G3 model with the PCX operator, we have attempted
to solve each of the three test problems with a different number of variables. For each
case, we have chosen the population size and variances (ση and σζ ) based on some
parametric studies. However, we have kept λ to a fixed value. In general, it is observed
that for a problem with an increasing number of variables, a large population size and
small variances are desired. The increased population size requirement with increased
problem size is also in agreement with past studies (Goldberg et al., 1992; Harik et al.,
1999). The reduced requirement for variances can be explained as follows. As the num-
ber of variables increases, the dimensionality of the search space increases. In order to
search reliably in a large dimensional search space, smaller step sizes in variables must
be chosen. Each case is run 10 times from different initial populations (initialized in
xi ∈ [−10,−5] for all variables) and the best, median, and worst function evaluations
needed to achieve a function value equal to 10−10 are presented.
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Figure 18: Scale-up study for the Schwefel’s function using the modified G3 model and
the PCX operator.

Figure 17 shows the experimental results for the ellipsoidal test problem having
as large as 500 variables. The use of two offspring (λ = 2) is found to be the best in
this case. The figure is plotted in a log-log scale. A straight line is fitted through the
experimental points. The slope of the straight line is found to be 1.88, meaning that
the function evaluations vary approximately polynomially as O(n1.88) over the entire
range of the problem size in n ∈ [5, 500].

Next, we do a similar scale-up study for the Schwefel’s function. Figure 18 shows
the outcome of the study with λ = 2. A similar curve-fitting finds that the number of
function evaluations required to obtain a solution with 10−10 varies as O(n1.71) over
the entire range n ∈ [5, 500] of problem size.

Finally, we apply the modified G3 with PCX on the Rosenbrock’s function. Be-
cause of the large number of function evaluations needed to solve a 500-variable Rosen-
brock’s function, we limit our study to a maximum of 200 variables. Figure 19 shows
the simulation results and the fitted straight line on a log-log plot. The function evalu-
ations needed to obtain a function value of 10−10 varies as O(n2). Interestingly, all the
above experiments on three test problems show that the modified G3 model with the
PCX operator needs a polynomially increasing number of function evaluations with an
increasing problem size.

7.1 Rastrigin’s Function

The ellipsoidal and Schwefel’s functions have only one optimum, whereas the Rosen-
brock’s function is multimodal. To really investigate the performance of the G3 model
with PCX and UNDX operators on multimodal problems further, we have chosen the
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Figure 19: Scale-up study for the Rosenbrock’s function using the modified G3 model
and the PCX operator.

20-variable (n = 20) Rastrigin’s function, involving many local minima:

Frst = 10n +

n
∑

i=1

(

x2
i − 10 cos(2πxi)

)

. (6)

The global minimum function value is zero. Each integer corresponds to a local min-
imum. Unlike many past studies involving this function, we initialize the population
randomly at xi ∈ [−10,−5]. This initialization prevents a couple of important matters,
which are ignored in many past studies involving this function:

1. The initial population is away from the global basin, thereby making sure that an
algorithm must overcome a number of local minima to reach the global basin.

2. Such initialization prevents the advantage enjoyed by algorithms that have an in-
herent tendency to create solutions near the centroid of the parents.

Most past studies have initialized a population symmetrically about the global mini-
mum (such as by initializing xi ∈ [−5.12, 5.12]) to solve this function to global opti-
mality. We consider this unfair, as a mean-centric recombination of two solutions on
either side of xi = 0 may result in a solution close to xi = 0. Moreover, in most real-
world problems, the knowledge of the exact optimum is usually not available, and the
performance of an EA on a symmetric initialization may not represent the EA’s true
performance in solving the same problem with a different initialization or other prob-
lems.

Within the range [−10,−5] for each variable, there exist six local minima. In order
for an algorithm to reach the global minimum, it has to overcome four more local min-
ima for each variable. We have tried varying different G3 model parameters, such as
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λ, population size and variances. For both PCX and UNDX operators, no solution in
the global basin is found in a maximum of one million function evaluations over mul-
tiple runs. From typical function values of the order of 103, which exist in the initial
population, the G3 model with the PCX and UNDX operators finds best solutions with
function values equal to 15.936 and 19.899, respectively. Since these function values are
less than 20 × 1 (the best local minimum on each variable has a function value equal
to one) or 20, at least one variable (xi ∈ [−0.07157, 0.07157]) lies close to the global
optimum value of xi = 0. Although this itself is a substantial progress made by both
models despite the existence of many local minima, it would be interesting to investi-
gate if there exists a better global approach to solve this problem starting from an initial
population far away from the global optimum.

8 Review of Current Results with Respect to Past Studies

There exists a plethora of past studies attempting to solve the four test problems used
in this study. In this section, we put the results of this study in perspective to the past
studies in which significant results on the above functions were reported.

8.1 Skewed Initialization

The need for a skewed initialization, in which the initial population is not centered
around the global optimum, in tackling test problems with known optima is reported
in a number of studies. Fogel and Beyer (1995) indicated that an initial population
centered around the true optimum produces an undesired bias for some recombina-
tion operators. Based on this observation, Eiben and Bäck (1997) used a skewed ini-
tial population in their experimental studies with correlated self-adaptive evolution
strategy. For the 30-variable Schwefel’s function, an initialization of the population at
xi ∈ [60, 65], the best reported solution (with a (16, 100)-ES) corresponds to a function
value larger than 1.0 obtained with 100,000 function evaluations. For the 30-variable
Rastrigin’s function, the population was initialized at xi ∈ [4, 5], and the best function
value larger than 10.0 was achieved with 200,000 function evaluations. Although the
initialization is different from what we have used here, this study also showed the im-
portance of using a skewed population in controlled experiments with test problems.

Chellapilla and Fogel (1999) solved the 10-variable Rastrigin’s function by initial-
izing the population at xi ∈ [8, 12]. Compared to a symmetric initialization, this study
showed negative improvement in best function values with the skewed initialization.

Patton et al. (1999) also considered a skewed initialization (but bracketing the min-
imum) for the 10-variable Schwefel’s and Rosenbrock’s functions. For a maximum of
50,000 function evaluations, their strategy found the best solution with Fsch = 1.2(10−4)
and Fros = 2.37, which are much worse than our solutions obtained with an order of
magnitude smaller number of function evaluations.

Deb and Beyer (2000) used real-parameter GAs with the SBX operator to solve an
ellipsoidal function started with a skewed initial population. The convergence proper-
ties of the GA were found to be similar to that of a correlated ES.

8.2 Scale-Up Study

On the ellipsoidal problem, Salomon (1999) performed a scale-up study with 10, 100,
and 1,000 variables. Since his deterministic GA (DGA) starts with variable-wise opti-
mization requiring linear computational complexity, it is not surprising that the simu-
lation study found the same for the ellipsoidal function. However, since our algorithm
does not assume separability of variables, we cannot compare the performance of our
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algorithm with that of the variable-wise DGA.
Higuchi et al. (2000) performed a scale-up study on the Rosenbrock’s function with

10, 20, and 30 variables. In their simulation study, the population was initialized within
xi ∈ [−2.048, 2.048]. Even with this centered initialization, the MGG model with SPX
required 275,896, 1,396,496, and 3,719,887 function evaluations, respectively. The orig-
inal study did not mention the target accuracy used, but even if it were 10−20 as used
here, we have found such high-accuracy solutions with much better computational
complexities.

Kita (2000) reported a scale-up study on the Rosenbrock’s function with 5, 10, and
20 variables. The MGG model with the UNDX operator (µ = 3 and λ = 100) finds so-
lutions with function values 2.624(10−20), 1.749(10−18), and 3.554(10−9), respectively,
with a maximum of one million function evaluations. As we have shown earlier, the
G3 model with the PCX operator requires much fewer function evaluations to obtain a
much better solution (with a function value of 10−20 or smaller).

Hansen and Ostermeier (2000) applied their CMA evolution strategy to the first
three functions up to 320 variables and reported interesting results. They started their
algorithm one unit away from the global optimum in each variable (for example, for
the Schwefel’s function, x

(0)
i = 1 was used, whereas the optimum of Fsch is at x∗

i = 0).
For ellipsoidal and Schewfel’s functions, the scale-up is between O(n1.6) to O(n1.8),
whereas for the Rosenbrock’s function, it is O(n2). For all these functions, our study
has also found similar computational complexities up to a wider range of problem
sizes, despite the use of a more skewed initial population (xi ∈ [−10,−5]) in our study.
On the 20-variable Rastrigin’s function, the CMA-ES was started with a solution initial-
ized in xi ∈ [−5.12, 5.12], and function values within 30.0 to 100.0 were obtained with
2,000 to 3,000 function evaluations. Our study with a simple parent replacement strat-
egy with offspring created with a computationally efficient vector-wise parent-centric
recombination operator and without the need of any strategy parameter has shown a
similar performance in all four test problems to that obtained using CMA-ES involving
O(n2) strategy parameters to be updated in each iteration.

Wakunda and Zell (2000) did not perform a scale-up study but compared a number
of real-parameter EAs to the three problems used in this study to find the correspond-
ing optimum with an accuracy of 10−20. For the 20-variable ellipsoidal function, more
than 25,000 function evaluations, for the 20-variable Schwefel’s function, more than
40,000 function evaluations, and for the 20-variable Rosenbrock’s function, more than
90,000 function evaluations were the best results reported. Although this is the only
study where solutions with an accuracy as high as that considered in our study were
reported, the required function evaluations are much larger than that needed by the G3
model with the PCX operator.

9 Conclusions

The ad-hoc use of a uniformly distributed probability for creating an offspring often
implemented in many real-parameter evolutionary algorithms (such as the use of SPX,
BLX, or arithmetic crossover) and the use of a mean-centric probability distribution
(such as that used in UNDX) have been found not to be as efficient as the proposed
parent-centric approach in this paper. The parent-centric recombination operator fa-
vors solutions close to parents, rather than the region close to the centroid of the par-
ents or any other region in the search space. Systematic studies on three 20-variable
test problems started with a skewed population not bracketing the global optimum
have shown that a parent-centric recombination is a meaningful and efficient way of
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solving real-parameter optimization problems. In any case, the use of a uniform proba-
bility distribution for creating offspring has not been found to be efficient compared to
a biased probability distribution favoring the search region represented by the parent
solutions. Moreover, it has been observed that the offspring pool size used in previous
real-parameter EA studies is too large to be computationally efficient.

Furthermore, the use of an elite-preserving, steady-state, scalable, and computa-
tionally fast evolutionary model (named as the G3 model) has been found to be effec-
tive with both PCX and UNDX recombination operators. In all simulation runs, the G3
model with the PCX operator has outperformed both the UNDX and SPX operators in
terms of the number of function evaluations needed in achieving a desired accuracy.
The proposed PCX operator has also been found to be computationally faster. Unlike
most past studies on test problems, this study has stressed the importance of initializing
an EA run with a skewed population.

To further investigate the performance of the G3 model with the PCX operator, we
have compared the results with three other commonly used evolutionary algorithms:
correlated self-adaptive evolution strategy, covariance matrix adaptation (CMA-ES),
and differential evolution, and with a commonly used classical unconstrained opti-
mization method, the quasi-Newton algorithm, with the BFGS update method. Com-
pared to all these state-of-the-art optimization algorithms, the proposed model with
the PCX operator has consistently and reliably performed better (in some cases, more
than an order of magnitude better in terms of required function evaluations).

A scale-up study on three chosen problems over a wide range of problem sizes (up
to 500 variables) has demonstrated a polynomial (of a maximum degree of two) com-
putational complexity of the proposed approach. Compared to existing studies with a
number of different GAs and a number of different self-adaptive evolution strategies,
the proposed approach has shown better performance than most studies on the four
test problems studied here. However, compared to a CMA-based evolution strategy
approach (Hansen and Ostermeier, 2000), which involves an update of O(n2) strategy
parameters in each iteration, our G3 approach with a computationally efficient proce-
dure of creating offspring (with the PCX operator) and a simple parent replacement
strategy has shown a similar scale-up effect to all test problems studied here. This
study clearly demonstrates that the search power involved in the strategy-parameter
based self-adaptive evolution strategies (CMA-ES) in solving real-parameter optimiza-
tion problems can be matched with an equivalent evolutionary algorithm (G3 model)
without explicitly updating any strategy parameter, but with an adaptive recombina-
tion operator. A similar outcome was also reported elsewhere (Deb and Beyer, 2000)
showing the equivalence of a real-parameter GA (with the SBX operator) and the cor-
related ES. Based on the plethora of general-purpose optimization algorithms applied
to these problems over the years, we tend to conclude that the computational complex-
ities observed here (and that reported in the CMA-ES study as well) are probably the
best that can be achieved on these problems.

Based on this extensive study and computational advantage demonstrated over
other well-known optimization algorithms (evolutionary or classical), we recommend
the use of the proposed G3 model with the PCX operator on more complex problems
and on real-world optimization problems.
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