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Abst ract . T he success of binary-coded gene t ic algorithms (GA s) in
problems having discrete sear ch space largely depends on the coding
used to represent the prob lem var iables and on the crossover ope r­
a tor that propagates buildin g blocks from parent strings to children
st rings . In solving optimization problems having continuous search
space, binary-coded GAs discr et ize the search space by using a coding
of the problem var iables in binary strings. However , t he coding of real­
valued vari ables in finit e-length st rings causes a number of difficulties:
inability to achieve arbit rary pr ecision in the obtained solution , fixed
mapping of problem var iab les, inh eren t Hamming cliff problem asso­
ciated wit h binary coding, and processing of Holland 's schemata in
cont inuous search space. Although a number of real-coded GAs are
developed to solve optimization problems having a cont inuous search
space, the search powers of these crossover operators are not adequate .
In t his paper , t he search power of a crossover operator is defined in
terms of the probability of creating an arbitrary child solut ion from
a given pair of parent solutions . Motivated by the success of binary­
coded GAs in discrete search space problems , we develop a real-coded
crossover (which we call the simulated binar y crossover , or SBX) oper­
ator whose search power is similar to that of the single-point crossover
used in binary-coded GAs . Simulation results on a nu mber of real­
valued test problems of varying difficulty and dimensionality suggest
t hat the real-cod ed GAs with the SBX operator ar e ab le to perfor m as
good or bet ter than binary-cod ed GAs wit h the single-po int crossover.
SBX is found to be particularly useful in problems having mult ip le op­
timal solutions with a narrow global basin an d in prob lems where the
lower and upper bo unds of the global optimum are not known a pri­
ori. Further , a simulation on a two-var iable blocked function shows
that the real-coded GA with SBX work s as suggested by Goldberg
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and in most cases the performance of real-coded GA with SBX is sim­
ilar to that of binary GAs with a single-point crossover. Based on
th ese encouraging results, this paper suggests a number of extensions
to the present study.

1. Int ro duction

The crossover operat or is believed to be t he main search operator in t he
working of a genetic algorit hm (GA) as an optimization tool (e.g., [1]). T he
purpose of a crossove r ope rator is two-fold . Init ial random strings represent ­
ing the pr oblem var iables mu st be searched thoroughly in ord er to crea te good
strings . T hereafter , goo d porti ons of these strings mu st be comb ined to form
bet t er st rings . A numb er of crossove r operato rs exist in the GA literature;
however the search power to achieve both of the above aspects differs from
one crossover to anot her . T he success ful operat ion of GA s also depend s on
the coding mechanism used to rep resent the problem variab les (e.g., [2,3]).
Unless good bui lding blocks are coded tightly , t he crossover operato r can­
not combine the building blocks toge ther (e.g. , [4]). T his coding-crossover
interaction is import ant for the success ful working of GAs . T he success of
binary-coded GAs in problems havin g discret e search space is lar gely due
to the careful choice of a coding an d a crossove r operator that complements
each other 's interacti on in propagating useful building blocks in success ive
generat ions . T he pro blem of tight or loose coding of problem variables is
largely kn own as the lin kage problem , which has been recently attempte d for
binary-coded GAs using messy GAs (e.g., [4,5]). In real-coded GAs, how­
ever, t he variables are dir ectly used. Thus, the t ight or loose coding of bits
const it ut ing a variable does not arise, but the ti ght or loose coding of dif­
ferent variabl es still exists . Whether there really exist s a real-coded GA to
solve this linkage problem is a matte r of int eresting fur ther resear ch. We
recognize the importance of this aspect of coding inherent to problems with
mult iple vari ables in the successful working of GAs, but we do not address
this issue in this pap er. Instead , we devise a real-coded crossover operator
t hat addresses some of the other difficul ti es inherent to binary-coded GAs in
pro blems having cont inuous search space.

In solving problems having continuous search space using binary-coded
GAs, binary strings are usually chosen to code t he problem variables. When
a binary (discrete) coding is used for cont inuous search space, a number of
difficult ies arise. One difficulty is the Hamming cliffs associated wit h cer­
tain st rings , from which a transiti on to a neighboring solution (in real space)
requires the alteration of many bits. Hamming cliffs in the binary coding
cause artificial hindr an ce to a gradual search in the cont inuous search space.
Another difficul ty is the inability to achieve any arbit rary precision in the
opt imal solut ion . In bin ar y-coded GAs, the st ring length mu st be chosen a
priori to enable GAs to achieve a certain precision in the solut ion . The more
pr ecision requi red , the larger t he st ring length. For large st rings , the popu­
lation size requirement is also large (e.g., [6]), thereby increasing the compu-
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tational complexity of the algorithm. Since fixed mapped coding is used to
code the vari abl es, the variab le bounds must be such that they br acket the
opti mum variab le value. In many pro blems this information is not usually
known a prio ri , this may cause some difficulty in using binar y-cod ed GAs for
those problems. Further, a car eful thinking of the schema processing in bi­
nary st rings reveals that not all of Holland's schemata are equally importan t
in most problems having cont inuous search space. To a continuous search
space, the meaningful schemata are those that represent the contiguous re­
gions of the search space. T he schema (* * * * 1), for example, represents
every other point in the discreti zed search space. Alt hough this schema may
be useful in certain periodic or oscillatory fun ctions, the schema (1 * * * *)
signifies a more mean ingful schema representing the right half of the sea rch
space in most pr oblems. Thus, the crossover operator used in the binar y
coding needs to be redesigned in order to increase the prop agation of more
meaningful schemata pertaining t o cont inuous search space.

However , motivat ed by the success of bin ar y GAs in discret e search space
pr oblems and reali zing the need for an efficient real-coded GA to eliminate
the above difficulties, we devised a real-coded crossover ope rator t hat simp ly
simulates a binary crossover operator that works wit hout usin g the coding of
vari able s. In order to achieve that we define the search power of a crossover
op erat or in term s of t he prob ability dist ribution of any ar bitrary child string
to be created from any two given parent st rings.' The search power of the
single-point crossover operator is first calculated. Later, the simulated binary
crossover (SBX) is developed having a search power similar to that of the
single-point crossover. T he difference in the implementati ons of the real­
coded GAs wit h SBX and binary-coded GAs with single-po int crossover is
that in the form er method the coding of variables is eliminated and a child
string is create d from a probability dist ribution t hat depends on the location
of the parent st rings .

Although a number of other real-cod ed GAs exist (e.g., [8,9]) , t he search
power , as defined in this pap er , of those crossover ope ra tors is not adeq uate .
The study in [8] is par ticularly importan t in that t hey introduced the concept
of a schema (which they called in terval schema ) that is relevant for cont inu­
ous search space. It may be mentioned here that t he interval schemata are
conceptually similar to the vir tual alphabets introduced in [10] and locality
form ae defined in [7] . The virtual alphabets , the locality form ae, or the in­
terval schemat a represent contiguous regions in the search space. Although a
blend crossover (BLX) operator was devised in [8] it was not construc ted wit h
the int erval-schema viewp oint. In sect ion 4.1, we observe that the best-found
crossover in [8] do es not quite sat isfactorily propagate interval schemata from

lThe design of a crossover ope rator depends on a numb er of ot her factors such as
respect, assortment , and tra nsmissibility of formae (simil arity temp lates) as suggested
in [7] . T he crossover operator designed her e satisfi es Radcliffe's design criteria, bu t it
is not a R3 (random, respectful, recombinat ion) operator . Instead, th e deviation from
the random distribution of children and the ability to access search poi nts (Radcliffe's
ergodicity crit erion) is used to define the search power of a crossover operator.
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pare nts to the children points . Interestingly, we find that a special case of
SBX op erator processes interval schemata better than the BLX -0.5 operator
found in [8].

In discussions on evoluti on strategy, real-va lued parameters are direct ly
used , but mutation is used as th e main search operator (e.g ., [11]). Crossover
op erators are also being used in evolutio n strategy st udies (e.g., [12]). For
each var iable , the discrete crossover chooses one of the parent values as the
child , the in termediate crossover uses the average of the parent valu es as
the child . Alt hough other types of crossover op erators ar e introduced, these
operators are determinist ic and can create only one search po int . Thus,
these op erators do not have adequate search power. However , if the effect of
crossover and the subs equ ent mutation op erator are cons ider ed , their com­
bined search power be comes significant . Since in this paper we mainly discuss
and compare crossover operators, we do not consider the combined act ion of
crossover and mutation op erators of evolution strategy met hods.

In the remainder of this pap er, we investigate the efficacy of the real­
cod ed GAs with the SBX on a nu mb er of car efully chosen test functions.
Simu lation results are compared wit h that of binary-coded GAs with single­
point crossover and real-coded GAs using the BLX-O.5 operator on the same
funct ions. The test functions also include a two-variable, two-sid ed active
blocked fun ct ion introduced in [10]. In [10] it is argued that the working of
the real-cod ed GAs is such that in these funct ions the population first con­
verges to virtual alphabets (above-average points) and then the convergence
to the global optimum gets blocked by two local op t ima. Our simu lations
using the SBX operator support the theory of virtual alphabets , and the
simulat ion resu lts on this simple blocked funct ion show that real-coded GAs
with SBX perform similar to that of binary-coded GAs wit h a single-point
cros sover. Simulation resu lt s also show that real-coded GAs wit h the SBX
op erator can overcome the Hamming cliff problem , pr ecision pro blem , and
fixed mapping problem while perform ing sim ilar to binar y-coded GAs with
sing le-po int crossover (but better than real-coded GAs using BLX -0.5) in
difficult problems. These results are encour aging and suggest the use of
real-coded GAs with a SBX operator in other optimization problems hav­
ing cont inuous variables. Bas ed on the results of this paper , a number of
extensions to this work are outlined.

2. Binary crossover operator

In many applications of binary-coded GAs, a single-point crossover is used.
In a sing le-point crossover , a random cross site along the length of the string
is chosen and the bits on one side of t he cross site are swapped between two
parent st rings . In a single-variable optimization problem , the act ion of the
crossover is to create two new children strings from two parent st rings . In
a multi-variable optimization problem, each var iable is usually coded in a
certain number of bits (collectively called a substring ) and these subs trings
are combined to form a bigger string . Since, in a single-po int crossove r ope r-
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ator, only one cross sit e is chosen from the complete string, the action of the
single-point crossover may disrupt one var iab le or a combina t ion of contigu­
ous variables simult aneously. In th e following, we calculate the probabili ty of
creating a child point from two chosen po ints using the single-po int crossover.

2 .1 Search power

The search power of a crossover operator is defined here as a measur e of how
flexible t he ope rator is in creating an arb itrary point in the sear ch space. A
number of crit eria for the successful design of a crossover operator ar e sug­
gested in [7] . T hat study shows how different existing crossover operators
satisfy those crit eria, bu t does not suggest any measur e of comparing oper­
ators that sat isfy all required crite ria . It is worth mentioning here that in
[7] an ergodicity crit erion is also defined as the ab ility to access any sear ch
point through genetic operators from any population. In this paper , we use
a crit erion similar to t hat ergodicity criterion to define the search power of
a crossover operator as the probab ility of creating an arbit rary point in the
search space from two given parent points. To make the analysis simpler , we
assume a single-variable fun ction. Later , we shall discuss how the analysis
can be extended for multi-var iab le functions.

When two pare nt binary strings of length f are crossed at an arbit rary
site, the contents on eit her side of the cross site get swapped between the
parents. Let us imagine that the cross site is k bits from t he right of the
string. We also assume t hat t he leftmost bit is the high est significant bit in
the underly ing binary coding. If the decoded value of the rightmost k bi ts
in the first par ent is Al and the decoded value of the remain ing (f - k) bits
is Bll then the decoded value of the st ring is

(1)

The decoded value of the second parent string can also be calculated by
knowing A2 and B 2 as the decoded values of the right k bi ts and the remain ing
(f - k) bits of the string, resp ectively: X2 = B 22

k + A 2 . Figure 1 shows the
single-point crossover operat ion on two arbit rary st rings and t he resul t ant
children strings obtained by cross ing at a par t icular site . The effect of the
single-point crossover operator is to swap the values A l and A2 between the

B I Al DV B I A2 DV
1 0 1 0 1 0 1 85 1 0 1 0 0 1 1 83
0 1 1 0 0 1 1 51

==}
0 1 1 0 1 0 1 53

B2 A2 Avg. (;8 B 2 A l Avg . (;8

Figure 1: The action of single-point crossover on two random strings
is shown. DV stands for the decoded parameter value. Notice that
the average of the decoded parameter values is the same before and
after th e crossover operation.
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where ( (k) = I:~~ u i2i / I:f=l Ui2i . T he ab ove term for (3 is valid for any two
par ent st rings (or in other words for any u ; values) , and for any crossover
sit e (or for any k) . Let us first consider the contracting crossovers (i.e.,
where °:::; (3 :::; 1) . In ord er to simplify our analysis fur ther , we assume that
parent st rings are two extreme st rings having all ones (111. . . 1) and all zeros
(000. .. 0). In this case, t he difference in allele values in each bit is one (or
u ; = 1 for i = 0,1 , .. . , (£- 1)). Sub sti tuting U i = 1 in the above express ion,
we obtain the following express ion for (3:

(12)

The spread factor for two ext reme st rings of length 20, crossed at different
sites, is shown plot ted in F igure '2. It is clear in the figur e that for most cross
sites k , the spread fact or (3 ::::; 1.

W ith a distribution of the spread factor as a functi on of the cross site,
we can now compute the probability of creating any ar bitrary st ring (i.e., a
representative (3) from two given parent st rings. Let us cons ider Figure 2
aga in . For a part icular value of (3, we choose a small range d(3 and find
how many crossover operations dk would produce children p oin ts in that
ran ge. This can be achieved by calculat ing the slope of the expression in
equation (11) at t he corresponding (3:

1
dk = 1!Yi 1 d(3.

dk (3

(13)

Denot ing the probability of occurrence of (3 by C((3) and knowing that (3 lies
between zero and one for cont racting crossovers, we obtain the distribution

1.0 t-----------_

0. 8

0 .6 -

0 .4

0 .2 -

8 10 12 14 16 18 2 0642
o.0 '---''--'--'----'---'--'-------'----'---"--'---'---'-----'---'-----'----'---'--'------'--'

o

Figure 2: The distribution of (3(k) versus k for £ = 20 is shown.
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o 1 2 3 4 5

Figure 3: Probability distributions of contract ing and expanding
crossovers on two extreme binary st rings are shown.

for df3 ----> 0:

(14)

The denominator on the right -hand side of the expression is a constant qu an­
t ity that makes t he dist ribution C(f3 ) a probabilit y distribution. Here we are
not interest ed in comput ing the probability dist ribut ion exac t ly, rather we
are interest ed in finding the fun ctional relationship of the probability distri­
bution C(f3) with f3. T hus, it will suffice to compute the numerator only. By
differentiating equat ion (12) wit h respect to k and substit uting t he expres­
sion for k in terms of f3 , we obtain t he numerator of the right -hand side of
equat ion (14) as follows:

(15)

where K, is a constant term. T he fun ctional form of the above dis tributio n
is shown in Figure 3 for 0 :::; f3 :::; 1. F igure 3 shows that as f3 is increased
towards one, the probability increases. Thus, the probability of creating
children points closer to the par ent points is larger than t hat of points far
away from the parents.

T he pr obabili ty distribution for expanding crossovers (i.e., f3 > 1) can be
obtained by cons idering two other parent strings'' using t he sam e procedure.

2The two extreme strings considered in the contracting crossovers are not possible for
the expanding crossover.
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The probability distribution can also be obtained from t hat of the cont racting
crossovers by realizing a simple probabilist ic event . If two children strings
foun d in a cont racting crossover are crossed at the same site , the same parent
st rings are obtained. Thus, for each cont racting crossover with a spread
factor (3, t here exists an expanding crossover with a spread factor 1/ (3 . In
ot her words , we can argue that the probability of occurre nce of cont racting
crossovers having a spread factor between (3 and ((3 + d(3 ) would be the same
as the prob ability of occurre nce for expanding crossovers with a spread fact or
between 1/ ((3+d (3 ) and 1/ (3. Summing these probab ilities for all contracting
crossovers in t he range 0 ::; (3 ::; 1, we conclude that the overa ll probab ility
of contracting crossovers is the same as that of the expand ing crossovers.
Of course, the stationary crossovers can be considered as either cont racting
or expanding. For the sake of arg ume nt , we can assume that half of the
stationary crossovers are contracting and half are exp anding.

Equat ing the probability of expanding crossovers (£ ((3)) having spread
factor between (3 and ((3 + d(3 ) with tha t of cont rac ting crossovers (C((3) )
having spread factor between 1/((3 + d(3) and 1/ (3, we obtain the following:

£((3) [((3 + d(3) - (3] = C (~) [~ _ _ 1_] .
(3 (3 (3 + d(3

Rearranging terms and considering the limit d(3 -+ 0, we obtain

£ ((3) = ;2C (~) .

(16)

(17)

With th is relat ionship between the probability of occurrence of cont ract­
ing and expanding crossovers , we have to know t he probability dist ribut ion
for only one type of crossover. Since their sum is the overall probabili ty
of all crossovers , the overa ll probability for eit her contracting or expanding
crossovers must be equal to 0.5. For the probability distribu t ion given in
equation (15), we obtain a probability dist ribution for expanding crossovers
using equation (17):

K

£ ((3) = (3((3 - 1)' (18)

This dist ribut ion is shown plotted for the region (3 ::::: 1 in Figure 3. The
figure shows that the probab ility of creating children st rings having a large
(3 is small.

Recall t hat equat ions (15) and (18) are derived only for two extreme
binary st rings. In ord er to investigat e the distributions and prob ability dis­
trib ut ions for other parent pairs, we crea te all pairs of binary strings of a par­
t icular length and cross them at all possible cross sit es. For each crossover ,
t he corresponding spread factor (3 is calculated and arr anged in ascending
order. The experiment is continued for st ring lengths of 10, 15, and 30. Fig­
ure 4 shows t he distribut ion for f. = 15 and it can be seen that the probab ility
of occurrence of (3 ~ 1 is more likely than any other (3 value. If the parents



Simulated Binary Crossover for Continuous Search Space 125

2 .0

54321

1.5

o.0 ~~_.L.---e..:====~_"-- "----'-----J

o

0. 5

1.0

Figure 4: Probability distributions of contracting and expanding
crossovers on all pairs of random binary strings of length 15 are shown.

are closer , the spread of the two likely children is smaller . On the ot her hand ,
if the spread of parents is greater , the spread of likely children is large. This
aspect of the crossover operator dist inguishes it from the mutat ion opera­
to r. In a mutation operator , the probability of a mutated string close to the
par ent st ring is higher, bu t this probability is usually constant and depend s
only on one st ring .

3. Simu lated binary crossover

In order to simulate the operation of a single-point binary crossover directly
on real variables, we design a crossover opera tor that uses a pr obability dis­
tribut ion similar to that obtained in sect ion 2. One property of a probability
distribution is that the cumulat ive pro bab ility of all the possible states is
equal to one. Bu t the integration of the probabili ty dist ribut ion in equa­
t ion (15) over all values of (3 is not a finite number because at (3 = 1 the
probability does not exist. Moreover , recall that the distribution obtained in
equat ion (15) is only for two ext reme bin ary strings as parents. For contract­
ing crossovers, we assume a simple polynomial probability distribu tion tha t
is similar to the distribution in equa tion (14) and to that shown in Figur e 4:

C((3 ) = 0.5(n + 1)(3n, (19)

where n is any nonnegative real number . The factor 0.5 makes the cumu­
lati ve prob ability at (3 = 1 equal to 0.5. A large value of n allows a bet ter
approximation of equat ion (19) with equation (15) for large values of (3. A
small value of n makes a more uniform distribution in the range 0 :::; (3 :::; 1.
A value of n = 0 makes a uniform distribut ion in the same range (see Fig-
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o 1 2 3 4 5

(20)

Figure 5: Probability distrib utions of contracting and expanding
crossovers for th e proposed polynomial model are shown.

ur e 5). A moderate valu e of n (2 to 5) matches closely with the simul ation
results for the single-point crossover in binary- coded GAs.

For expanding crossovers , the probability dist ribut ion can be derived by
using equa t ions (17) and (19) :

1
£( (3) = 0.5(n + 1)(3n+2 '

It is interesti ng to note that the probability of all expanding crossovers (found
by evaluat ing J~l £((3)d(3) is 0.5, equa l to that of the cont racti ng crossovers.
Also, the probability of stationary crossovers obtained from both equa tions
is the same.

T he probabili ty distribution for contract ing and expanding crossovers for
various values of n are shown in Figure 5. It is clear that the distribution
largely depends on the exponent n . For small values of n , points far away
from the parent s are likely to be chosen , whereas for large valu es of n , only
points close to the parents ar e likely to be chosen. In a sense, the exponent n
is similar to the reciprocal to the te mperature parameter T used in the simu­
lated annealing algorithm describ ed in [13]. Ideally, a good search algor ithm
must have a br oad search (with large T or small n) in early gener ations and,
as the generat ions proceed, the search must be focussed on a na rrower region
(wit h small T or large n) to obtain bet t er precision in the solution . However ,
for brevity, we use a fixed compromised n for the ent ire simulation.

Figure 5 shows t ha t the search of the SBX extends practi cally to any
point in the real space. If lower an d upper bounds for the variable are
known, equa t ions (19) and (20) can be restrict ed to that region , as discussed
in sect ion 6.
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Note that the polynomial probabi lity distribution given in equat ion (19)
is one of many possib le probability distributions for contract ing crossovers .
For a different distribut ion , the corresponding prob ability distributi on for
expanding crossovers can be calculated by using equation (17) . Also note
that a distribution for expanding crossover can be assumed first and then
the corr esponding probability distribution for contracting crossovers can be
computed by replacing £( (3) wit h C((3) in equation (17). In all such pr ob­
ability dist ributions, the probabi lity of creating childre n points close to the
parent points must be more than that of creat ing children po ints far away
from the parent points (this simulates the effect of t he single-point crossover
as found in Figure 4) . However , in the remainder of this pap er , we use the
polynomial probability distribution given in equations (19) and (20).

In t he following, we discuss how the pr eceding analysis can be exte nded
to multi-vari able opt imization problems.

3.1 Extension to multi-variable problems

The most common way to code multiple variables using a binary coding is
with a mapp ed concate nate d string [1] . In a single-point crossover, one cross
sit e is chosen along the enti re string and the contents on the right side of
the cross site are swapped between the parents. When binar y-cod ed GAs are
used to solve a N- vari abl e funct ion , and when the cross site falls on the bit s
repr esenting the kth variable from the left , t he single-point crossover creates
a new value of the kth var iable and swaps t he (k + l) st to Nth variables be­
tween the parents. The same operation can be simula ted by using the SBX
operat or on the kth vari abl e (k is chosen between 1 to N at random) and
swapping the (k + l )st to N th variables between the parents . It has been
shown in [14] that this feature of the single-po int crossover causes a large
positional bias for certain combinations of variables to get propagat ed from
t he parents to the children . In t his study, we use a mechanism similar to
unifo rm crossover for multiple variables used in [15] for cho osing which vari­
ables to cross. However , we recognize her e that this ass ump t ion is related to
t he important linkage issue of mul ti-vari able coding and our mechani sm does
not alleviat e the linkage problem . In order to simp lify the implement ation
of SBX op erator, we choose t o perform SBX in each variable with probabil­
ity 0.5. But in the case of single-var iable func tions , since there is only one
variable, the SBX is performed with probability 1.0.

T he concept of probability of crossover Pc used in canon ical GAs st ill
app lies to t his real-cod ed GA . T his probability means that, on an average,
PeN of the points in the mating pool participate in the crossover.

4. Existing real-coded crossover operator s

Real-coded GAs have not rece ived mu ch attent ion among the GA community.
However , a nice description of different approaches to real-coded GAs is given
in [8]. In [9] it is suggeste d to use a linear crossover operator that compares
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only three po ints (PI+ P2), (1.5PI - 0.5p2), and (- 0.5pI +1.5p2), choosing t he
best two points. That work also suggested a crossover operator that creates
a point by randomly perturbing a single variab le in its range. The concept
of virtual alphabets in the context of real-coded GAs was introduced in [10].
Although no particular crossover operator was suggested, blocked functions
th at may cause difficulty for real-coded GAs were suggested. In [8] the notion
of interval schemata for real-coded GAs is introduced and a blend crossover
(BLX-a) operator is suggested . For two parent points PI and P2 (assuming
PI < P2 ), the BLX-a randomly picks a point in the ra nge (PI - a (p2 - PI) ,
P2 + a (P2 - PI)) . If a is zero, this crossover creates a random point in the
range (PI, P2). In a number of test problems, they reported that BLX-0.5
(with a = 0.5) performs better than BLX operators with any ot her a value.
It is worthwhile to mention here that the interval schemata are similar in
concept to virtual alphabets- both representing cont iguous regions in the
search space.

4.1 Search power

For th e given real-coded crossovers, we investigate the search power , as de­
fined in sect ion 2.1. The search power of the linear crossover in [9] is clearly
not adequate (it is too deterministic) , because only three children points can
be obtained from two parent strings . The uniform crossover in [9] or the
BLX-O.Ooperator in [8] have the flexibili ty of creating any point enclosed by
the parent points. As discussed in [8], this crossover preserves the int erval
schemata represent ing cont iguous regions in the search space . In the follow­
ing, we take a closer look at the interval schema processing using a BLX
operato r.

Consider a variable whose rang e is [0,8]. According to th e formul a tion s
presented in [8], there are 45 int erval schemata for the given range of th e
variable (assuming that the points represented by an int erval schema are
bounded by integers only). Let us also consider two par ent points PI = 2
and P2 = 5, respectively. The first point represents a to tal of (2 + 1)(9 - 2)
or 21 interval schemata and the second point represents (5 + 1)(9 - 5) or
24 interval schemata. T hese schemata are shown in Table 1. The common
schemata between the two parent points are shown inside boxes and there
are 12 such schemata.

One underlying feature of a successful coding-crossover interaction is t hat
a crossover must propagate the common schemata (appropriate to th e cod­
ing) between the two par ticipating parent s to their children. The single­
point crossover in the bin ary- coded GAs has this property for propagating
Holland's schemata. In the real-coded GAs, if we assume th at th e int erval
schemata are what get processed , then the probability of creat ing a child
point can be assumed to vary prop ortionately with the number of common
schemata between the child and parent points. This argument in a sense sig­
nifies that a point closer (in the context of the interval schemata) to a parent
point is more likely to get selected as a child point. With this argument, we
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Table 1: All interval schemata for two parent points are shown.

Number of interval schemata
Parent point at 2 Parent point at 5

(2,2) (5,5)
(1,2) (2,3) (4,5) (5,6)
(0,2) (1,3) (2,4) (3,5) (4,6) (5,7)

(0,3) (1,4) (2,5) (2,5) (3,6) (4,7) (5,8)

(0,4) (1,5) (2,6) (1,5) (2,6) (3,7) (4,8)

(0,5) (1,6) (2,7) (0,5) (1,6) (2,7) (3,8)

(0,6) (1,7) (2,8) (0,6) (1,7) (2,8)

(0,7) (1,8) (0,7) (1,8)

(0,8) (0,8)
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can now find the pro bability distribution of a child point for the two chosen
par ents Pi = 2 and pz = 5.

Any point in the range (2,5) contains all 12 common schemata of the
two pare nts . T hus any child point in the range (2,5) is equally probable.
Therefore, we may argue that the BLX-O.O or the uniform crossover (i.e.,
contracting crossover ) propagates all common int erval schemata from the
parent to the children . But when BLX-a (a is positive) is used , all common
interval schemata in both parents are not propagated to the children point
outside the range enclos ed by the parent po ints. For these crossove rs (i.e.,
expanding cross overs), t he probability can be assigned to depend linearl y
with the number of common interval schemata between children an d parent
points. In t he ab ove example, the point Ci = 1 will represent only eight of
the common schemata, the point Ci = °will represent four of the com mon
schemata, and so on. In genera l, the numb er of common interval schemata
among any three po ints is ( Xl + l)(N - X h ) , where X l and X h are the lowest
and highest values of the three points and N is the ent ire range of t he search
space. In the above example, since the range [0,8] is cons idered, N = 9. For
children po ints X < 2, the number of common schemata is (x + 1)(9 - 5) or
4(x + 1). For children points 2 ::; X ::; 5, the number of com mon schemata is
(2 + 1)(9 - 5) or 12 (a const an t) and for children points X > 5, the number
of common schemata is (2 + 1)(9 - x) or 3(9 - x). T hese numb ers are
shown plo t ted in Figure 6. If t he probability of creating a child po int is
assigned according to these numbers, then the distribution is un iform for
points enclosed by the parents an d linearly vary ing for outside points. The
BLX-O.5 crossover suggested in [8] deviat es from this observat ion in the case
of expanding crossovers . T he BLX-O.5 op erator has a uniform dist ribut ion ,
as shown in F igure 7.

It is interesting to note that when these probability dist ribut ions are
plotted as functions of the spread factor f3 as in Figure 7, similar probabil-
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Figure 7: Probability distribut ions of BLX-O. 5 and the ideal distr ibu­
tion are shown with spread factor fl .

it y distributions emerge. T he contracting cro ssovers have uniform probabil­
ity distribution for any child point inside the region enclosed by the parent
points and the expanding crossovers have a dim inishing probability for chi l­
dr en points away from t he parent points. It is a lso interesti ng that t he above
probability distribution is a special case of the SBX operator develop ed in
sect ion 3. For n = 0, all contracting crossovers have a uniform probability
and t he probabilit y in the expanding crossovers diminishes with the increase
in the spread factor. T he only discrepancy between these two distribution s is
that in the SBX operator with n = 0, the probability reduces in a nonlinear
manner and that in the ideal int erval-schema processing, t he probability re­
duces linearly. Nevertheless, we ca n argue that the SBX operator with n = °
respects interval-schema processing better than the BLX-O.5 op erator. How­
ever, other SBX operat ors with nonzero n do not respect interval schema.
The above analysis suggests that the other SBX operators may respect some
other schema that represents contiguous po ints but with varying import ance.
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Since such schemata would be a vari ati on of the int erval schemata or locality
form ae, they would also sat isfy the design criteria in [7]. However, the for­
malization of these schemata is merely a mathemati cal exercise, whi ch would
be of lit t le importan ce to the current st udy. Thus , we avoid t hat exercise in
this pap er and pr esent simulation res ults of the SBX operator on a number
of test problems.

5. Simulation results

To investi gat e the efficacy of the SBX operator , we have chose n a test bed of
12 functions, of which nine are t aken from other sources . The test fun ctions
ran ge from single-variable functions to multi-variabl e fun cti ons, from uni­
mo dal functi ons to mul t imod al functi ons, and from deterministic fun ctions
to stochas tic fun ctions. Finally, a two-vari able blocked function is included
to compare the performance of real-cod ed GAs with SBX and binar y-cod ed
GAs wit h single-p oint crossover on a difficul t functi on.

A real-coded GA is implemented using th e C programming language. T he
init ial population of vari abl e vectors is create d in an initi al range of vari ables
supplied by the user. However , in subsequent generations , the population is
not guaranteed to be confined to the given ran ge, becau se the SBX operator
has a nonzero (albeit small) probability of creat ing children po ints far away
from the parent points. T his is advantageous in problems where the locatio n
of the true optimum is not kn own beforehand. We demonst rate this flexibility
of real-coded GAs with the SBX operat or in tes t problems by initializing the
popula tion far away from t he t rue optimum . However , this feat ur e of the
SBX operator is redundant for problems where t he lower and upper limits
of the var iables are absolutely kn own. We discuss a simple modificat ion
to this SBX operator to confine the search to the given range in sect ion 6.
In all our simula tions , we allow the SBX to create any point in the real
space with prob abili ty dist ributions given in equat ions (19) and (20) . In
order to invest igate the effect of the probability dist ribution of cont ra ct ing
an d expanding crossovers in the SBX operato r, we present simulat ion runs
wit h a number of different exp onent valu es n . Recall that for small values
of the exponent n , children po ints far away from the parent points can be
obtained, but for large n , only points closer to t he parent points are likely to
be obtained . Mutat ion is no t used to pr imarily investigate the search power
of the SBX operator alone . Four different criteria are used to te rminate the
search process . A simulation run is t erminated if any one (or mor e) of them
is satisfied. Here ar e the four criteria.

1. T he best individual in t he population is close to the t rue optimal point
wit h a small terminati on margin E in all problem var iables. In this case ,
we assume that the GA has foun d the t rue optimal point .

2. The function value of the best individ ual in the populat ion is smaller
than or equal to a target function value fT . In this case, we assume
that the GA has converged near t he t rue optimal solution .
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3. All individuals in the population have converged to a small neighbor­
hood (within a small mar gin E in all problem vari ables) to a point ot her
tha n the global optimum point . In this case, a premature convergence
occurs .

4. The number of generat ions has exceeded a spe cified large number Tm ax .

In this case, the GA has not converged to any solution at all.

Unless specified, all simulations use a target function value h equa l to
the function valu e at the global optimum point and a Tm ax value equa l to
200. T he performan ce of real-coded GAs with the SBX operator is compared
with BLX-0. 5 and with single-po int crossover. In all simulations, a binary
tournament select ion without replacement and a crossover probability of 1.0
are used . T he average number of funct ion evaluations required to successfully
solve a problem (when eit her criterion 1 or 2 above is sat isfied) is tabulated
for each problem . Other GA para meters are ment ioned in t he description of
the simulation results.

5.1 V funct ion

T his fun ction is a single-variable functi on defined in t he range 0 :s: x :s: 1
from [8]. T he function has only one minimum point at x = 0.5:

h(x) = Ix - 0.51 · (21)

First, the binary-coded GAs are used . Wit h a st ring length of 30 and a
populat ion size of 50, binary-coded GAs with t he single-point crossover oper­
ator find a point with six decimal places of accur acy (E= 10-6) only 23 out of
100 times . In the other 77 ru ns , GAs have converged premat urely to a poi nt
close to the true optimum, but not as close as within E from the optimum .
T he average funct ion value of the best individ ual in all 100 runs is found
to be 0.0015, which is very close to the function value of the true optimum
(f{ = 0.0). It is important to note t hat the minimum point of the abo ve
V function corre sponds to a Hamming cliff in the binary coding used , but
with E = 10-6 there are ab out 2147 st rings repr esent ing the region (0.5 - E,

0.5 + E). However , the pres ence of Hamming cliffs is one of t he problems of
the binary coding, as encounte red by ot her researchers (e.g., [16]).

Real-coded GAs wit h the SBX operator are applied next . A summary
of the simulat ion results is tabulated in Table 2. A termination marg in of
E = 10-6 was used . The adva ntage of real-coded GAs over binary-coded GAs
in this problem is largely due to the Hamming cliff at the optimum point.
The results also show that the real-coded GAs with the SBX operator find
the opt imum point in all simulations within the chosen tolerance. When
even a smaller termina t ion margin (up to the computer's machine precision)
is used , a similar performance of SBX is observed. This demonstrates the
ability of real-coded GAs to overcome the precision problem of bina ry-coded
GAs. Note that t he performance of the SBX operator remains the same for
different values of the exp onent n . But for a large n , a greater number of
fun ct ion evaluat ions are required to find th e optimum point .
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Table 2: Simulation results of GAs with different cross over op erat ors
on the V function are t abulated. The number in parentheses in column

six indicates t he number of times GAs did not converge to any point
at all.
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Performance of 100 run s
Operator Range Popsize nor .e Success Premo cony. Avg. Trials

1-pt (0,1) 50 30 23 77 834.8
SBX (0,1) 50 0 100 0 929.5

2 100 0 748.5
5 100 0 818.5

100 0 100 0 1739.0
2 100 0 1396.0
5 100 0 1321.0

BLX-0 .5 (0,1) 50 100 0 746.0
100 100 0 1368.0

SBX (0.9,1) 50 0 100 0 1279.5
2 100 0 2018.5

BLX-0.5 (0.9,1) 50 24 76 2604.2

SBX (0.9999,1) 50 0 100 0 1790.0
2 100 0 4318.0

BLX-0.5 (0.9999,1) 50 0 61(39)

The success rate of the BLX-0 .5 operator on this problem is equal to that
of SBX . Since th e SBX operator performs expanding crossovers about half of
the time and searches a larger region than BLX-0.5, the funct ion evaluat ions
required to solve the given problem is fewer when using the BLX operator.
But, when the same problem is solved with a population initialized in the
range (0.9 ,1.0) , the performan ce of SBX is much better than t ha t of the BLX­
0.5 operator. The success rate of SBX is the same as before, but the success
rate of BLX-0. 5 redu ces to about 25%. Recall that the mini mum point does
not lie in the range where the initi al population is created. In order to find
the optimum point , the search operator has to search outside this ra nge .
Obviously, the binary-coded GAs will fail to find the true optimum in this
case because of t he fixed mapped coding of the variable. The search power
of SBX is fur ther teste d by starting wit h populat ions confined in the region
(0.9999,1.0000). The same termination mar gin of 10- 6 is used . Wi th SBX,
the expanding crossovers find better point s outside the initi al range and the
whole population migr at es towards the t rue opt imum. The success rat e of
SBX is aga in 100% in t his case, whereas BLX-0.5 performs poorly.

5.2 V -cliff function

This function from [8J is similar to the V function, except that it has a
discont inuity at the minimum point (x* = 0.5):

h(x) = {
0.6 - x , if x < 0.5;
X - 0.5, otherwise.

(22)
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Tabl e 3: Simulation resul ts of GAs wit h different crossove r ope rators
on t he V-cliff fun ction are tabulated . The number in parent heses in
column six indicat es t he number of times GAs did not converge to
any po int at all.

(23)

Perfo rmance of 100 runs
Op erator Range Popsize n or e Success P rem o cony. Avg. Trials

1-pt (0,1) 50 30 16 84 840.6
SBX (0,1) 50 0 88 0(12) 2015.9

2 100 0 1382.0
5 58 42 1191.4

BLX-0.5 (0,1) 50 100 0 1726.0

SBX (0.9999,1) 50 0 88 0(12) 2795.5
1 100 0 3253.0
2 74 2(24) 7147.3

BLX-0.5 (0.9999,1) 50 0 62(38)

The to leran ce parameter E = 10- 6 is used again . Tab le 3 shows the perfor ­
man ce of binary-cod ed GAs with the single-point crossover and real-cod ed
GAs with both SBX and BLX-0.5 on this function. The binar y-coded GAs
with single-point crossover is not able to find a solut ion close to the t rue
optimum in 100% of the simulations. T he performan ce of binar y-cod ed GAs
is worse than for the simple V funct ion because of the Hamming cliff at the
optimum po int and the chosen termination crite rion (the convergence can
pr acti cally occur from only one side of the optimum) . The real-cod ed GAs
with the SBX operator , on the ot her hand , perform well for small valu es of
the exponent n . T he deterioration in the performance of SBX wit h eit her
n = 0 or large n is due to the discontinuity at the optimum po int . However ,
the performance of BLX-0.5 is 100%, wit h slightly more function evaluations
than that of SBX wit h n = 2. Table 3 clearly shows that SBX is superior
to BLX-0.5 when the popula tion is initi alized far away from the minimum
po int.

5.3 Bimodal, equal spread function

T he bimod al function used here has two minimum po int s, wit h one being
bet ter than the other. T he bas in of at t ract ion for each minimum point is
identi cal to t he other :

f (x ) = { - exp (- (x - 0.25)2jO.01) , if x :s; 0.5;
3 -0.5 exp (-(x - 0.75)2jO.Q1) , otherwise.

T his fun ct ion has a local minimum at x = 0.75 and a global minimum at
x = 0.25. T he functi on values at the local and global minima ar e -0.5
and - 1.0, resp ect ively. This fun ct ion is chosen to test whether or not real­
coded GAs wit h SBX can find the global minimum point. Table 4 compares
the performanc e of both GAs with a termination margin of E = 10-4

. T he
performan ce of binary-coded GAs is inferior to t hat of real-coded GA s with



Simulated Binary Crossover for Continuous Search Space

Table 4: Simulation results of GAs with different crossover operato rs
on the function h are tab ulated.
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Performance of 50 runs
Op erator Ra nge Popsize nor R. Success P rem o cony. Avg. Trials

1-pt (0.0, 1.0) 100 20 49 1 765.3
50 30 20 1023.3

SBX (0.0,1.0) 100 0 50 0 870.0
2 50 0 660.0
5 50 0 642.0

BLX-0.5 (0.0 ,1.0) 100 50 0 670.0

SBX (0.5,1.0) 100 0 4 46 4500.0
2 9 41 1400.0
5 1 49 1800.0

BLX-0 .5 (0.5 ,1.0) 100 0 50

SBX or BLX-0.5. This happens because of pro blems relat ed to th e Hamming
cliff at th e optimum point and fixed-length coding. In bin ary-coded GAs, a
larger popu lation is required to achieve a desired solution accuracy for a
problem coded in a bigger st ring [6]. Once aga in, real-coded GAs with both
SBX and BLX-0.5 perform 100% of the time. Despite the presence of the
local optimum, real-coded GAs find the true optimum point with the desired
accuracy.

The performance of neith er of the two real-coded GAs is good for runs
with adverse init ial populations (i.e. , with a population initialized in t he local
basin) . Since the popul ation is initialized in the ra nge (0.5, 1.0), the global
minimum point x' = 0.25 is not included in the range. Thus, the bin ary­
coded GAs will not be ab le to find this minimum point with the above initial
populations becau se of fixed mapped coding. The per formance of the real­
coded GAs with SBX is mar ginally bet ter than with BLX-0.5. Since about
50% of t he points are created outside the range enclosed by the parents,
a few points in the global basin are expec ted to be created by th e SBX .
Since the bin ary tournament selection scheme and a Pc = 1 are used in these
simulat ions , the selection pressure is not enough to maint ain those point s in
the globa l basin . When the crossover pr obabi lity of the SBX is redu ced to
Pc = 0.5, the disruption of good points decreases and th e success rate of SBX
increases to 34 out of 50 runs with n = 0 (with 2006 function evalua t ions).

5.4 Bimodal, unequal spread function

This fun ction is a modification of the equal spread function . Here, the basin
of attraction of t he global min imum is smaller than that of the local mini­
mum:

[.
() {

- exp( -(x - 0.2)/0 .04)2), if x < 0.3;
4 x = -0.5 exp( - (x - 0.6)/0 .4)2), otherwise. (24)
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Table 5: Simulation resu lt s of GAs with different crossover operato rs
on the func tion /4 are tabulated. T he number inside parentheses in
column six indicates the number of t imes the GA did not converge to
any po int at all.

Perform ance of 50 runs
Operator Range Popsize norR. Success Prem o conv. Avg . Trials

l -p t (0,1) 100 20 45 5 817.8
SBX (0,1) 100 0 8 0(42) 450.0

2 40 6(4) 1117.5
5 50 0 730.0

10 50 0 688.0
BLX-0.5 (0,1) 100 4 45(1) 1575.0

Table 5 compares the performance of single-point crossover , SBX , and BLX­
0.5 on this function . Compared to t he equal spread function , the performance
of the bin ary-cod ed GAs with single-point crossover is margin ally worse be­
cause the global basin is comp ar atively smaller . The performance of th e
real-coded GAs with SBX operator remain s un changed except that the SBX
with a small exponent n does not work very well. The reason for its failur e is
the same: an adverse initial popul ation . Although some points in the global
bas in are created , the select ion pressure is not sufficient to main tain them in
subsequent generat ions.

The difference in performance of SBX and BLX-0.5 is clear in this func­
tion. Since the local basin occupies most of the search space , a large portion
of the initial random popul ation is created in the local basin . About 45 out
of 50 GA simulations with BLX-0 .5 get confined to the local bas in and fi­
nally converge to the local optimal solut ion. Even though some points are
created in the global basin , they are difficult to maintain in the popula tion
because of t he large disruption rate associated with the BLX-0.5 operator.
On the ot her hand , with SBX having a moderate n , th e spread of the children
points created using SBX is not substantial. The population gradually shifts
towards the global basin and finally converges to th e global opt imum point .

5.5 Pole problem

The pole problem is a two-var iab le function having four minimum point s,
of which one is the global minimum. The function is hyp otheti cally const i­
tuted to have a light pole at each minimum point with a certain illum inat ion
capability. The illuminati on is maximum at the pole and diminishes away
from the pole. When multiple poles are present in the search space, mixed
illuminat ion results. For a given distribution of illuminat ion levels in the
search space, the objective of the problem is to find the point with maximum
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Table 6: Parameters defining the pole funct ion are shown.

i
1 2 3 4

Xi 0.4 0.3 0.7 0.8

v. 0.3 0.7 0.2 0.8
c; 1.0 1.0 1.0 1.125
hi 0.1 0.1 0.1 0.075.

Table 7: Simulat ion results of GAs with different crossover operators
on the function Is are tabulated. The number inside parentheses in
column five indicates the number of times the GA did not converge
to any point at all.

Performan ce of 10 runs
Op erator Popsize n or e Success Premo conv . Avg. Tnels

1-pt 200 20 6 4 3666.7
30 9 1 3977.8
40 8 2 2975.0

SBX 200 0 0 9(1)
2 8 2 3375.0
5 9 1 3200.0

BLX-0.5 200 3 7 2933.3
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Maximize

illumina tion . T he problem can be written mathemat ical ly as follows:

4 ci h ;

f s(X,y) = ~ [h; + (X - Xi)2 + (y - Yi)2j3/2' (25)

where (Xi,Yi ) represents the coordinates of the poles, c, represents the intensi­
ties of light at t he i th pole, and hi represents the height of t he ith pole. In the
parlan ce of optimization , the param eter (Xi, Yi) repr esents the ith opt imum
point , Gi l h; signifies the fun ct ion value at the ith peak , and hi signifies the
basin of at tract ion of the ith peak. In t he po le problem there are four peaks
having parameter values listed in Table 6. The optimization problem has a
global maximum point at X· = (0.8 , 0.8) . Since this is a two-var iab le op ti­
mization problem, the technique described in sect ion 3.2 is used here. T he
SBX operator is perform ed for each variable with a prob ab ility 0.5. T his
causes abo ut half of the variables (on an average) to undergo a crossover
operation . We follow this st ra tegy for all mult i-variabl e functions and for the
BLX-0.5 operator. Tab le 7 shows t he performance of single-po int , SBX , and
BLX on t his problem for a termination margin E = 10-3 .

We observe that real-cod ed GAs with the SBX operator (for n between
2 and 5) perform as good as the binary-coded GAs wit h the single-po int
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crossover. However , real-coded GAs wit h BLX -O.5 do not perform as well as
the ot her two GAs.

From these simulations , we observe that the BLX -O.5 op erator perfor ms
well only on well-behaved unimodal functions having a continuous search
space, but do es not perform as well for problems with mult iple optimum
point s. Moreover , the focus ofthis paper is to compare the SBX operat or used
in real-cod ed GAs with the single-point crossover operator used in binary­
coded GAs. T hus, in subsequent simulat ions , we compare single-point and
SBX operators only.

5.6 D e Jong's fu nct ions

All five of De J ong's test fun ctio ns [17] ar e t ried next . The simulation results
for the single-point an d the SBX operators ar e tabulated in Table 8.

Function-I is a three-variable unimodal funct ion having a minimu m po int
at (O,O, O)T. In [17] the functi on is defined in the range -5.12 :S: XiS: 5.12
for i = 1,2, and 3. In real-coded GAs with the SBX operator, po ints outside
this ran ge may also be creat ed . Thus, we assume that the function is also

Table 8: Simulation results of GAs with different crossover operators
on De Jong's five funct ions are tab ulated. The number inside paren­
theses in column seven indicates the number of times the GA did not
converge to any point at all.

Perform . of 50 runs

P remature Avg.
Function Toleran ce Op erator Popsize n or I' Success cony. Trials

Function-I 10 2 I-pt 100 30 25 25 2532 .0
SBX 100 0 50 0 2556 .0

4 50 0 2190.0
10 24 26 2420.8

Function-II 10- 3 l -p t 100 24-40 0 50
SBX 0-20 0 50

Function-III 1.0 I -pt 100 20 50 0 560.0
50 50 0 720.0

SBX 0 50 0 1256.0
5 50 0 722.0

Funct ion- IV 0.16 I-pt 100 240 4 42(4) 15200.0

SBX 0 0 0(50)
2 50 0 17032.0
5 50 0 9372.0

Function-V 0.1 I-p t 100 20 48 2 756.2
40 49 1 836.7

SBX 0 7 2(4 1) 5014 .3
5 36 14 1097.2

10 37 13 891.9
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defined outside the given range, but the init ial populat ion is created within
the range. T he simulat ion resul t s (t abulat ed in Tabl e 8) show that GA s
with SBX are able t o find the minimum po int , with two decimal places of
accur acy, in all simulat ions for small values of n . The binary-coded GAs
wit h the single-po int crossover find the min imum point in only 50% of the
simulations. T hese results for SBX are expe cte d becaus e t he functi on is
unimodal and cont inuous in the real search space. In binary-coded GAs,
however , the minimum po int falls in a Ham ming cliff, which causes difficulty
t o solve the problem in all of the simulat ions.

Function-II is a two-d imensional minimization problem with the global
minimum at (1, 1)T. T he funct ion was originally defined in t he range -2.048 ::;
XI, X 2 ::; 2.048 for binary-coded GAs [17]. For real-coded GAs, the init ial
populat ion is creat ed in the given region. T he res ults in Tab le 8 show that
both GAs cannot find the optimum po int (1, 1)T. In t his fun ct ion , the slope
towar ds the optimum po int is very small and the po pulation converges to
a po int along the rid ge. W hen t he SBX op erator is performed along a line
joining t he two parents (similar to t he line crossover in [9] bu t a point is cho­
sen with the po lynomial probab ility dist ribut ions) , near 100% convergence is
observed for n = 1 to 3.

Funct ion-III is a five-dimensional staircase like funct ion where the func­
t ion value is monotonically nondecreasing as the var iables are increased . The
original function was designed for - 5.12 ::; X i ::; 5.12 with i = 1 to 5. Since
t he SBX operator may create children points outside this range, we have
modifi ed the original funct ion by t ak ing the absolute value of the funct ion
and creating the init ial population in the ran ge 0 ::; Xi ::; 10.24. This resul ts
in a minimum po int at X i = o. In order t o make t he comparison fair , bin ary
GAs are also run on t his mo dified function in t he range 0 ::; Xi ::; 10.24.
Both GAs perform equally well on t his funct ion. It is interesting to note
that desp it e t he fun ct ion being discontinuous at many points in the search
space, the real-coded GAs with SBX are able to find the true optimum. T his
is becau se t he fun ction is monotonically nondecreasing towards t he opt imum
point and because the population-approach of GAs does not allow them to
get stuck at any of the plat eau .

Function-TV is a 30-dimensional unimodal function wit h a zero-mean
gaussian noise. T he optimum point of the det erministi c funct ion is X i = 0
wit h i = 1 to 30 having a func t ion value equal t o zero . But due to the
addit ion of the gauss ian noise the optimum point , and hence the opti mum
function value, changes. To decide the convergence to t he opt imum , we have
assumed a target funct ion valu e of h = -3.0. If any po int has a function
value smaller t han .IT, the simulation is terminated. A terminat ion margin
of E = 0.1 is used. Real-coded GAs wit h the SBX operator perform better
than t he binary-cod ed GAs for n = 2 to 5, pro bably because the population
size used in the simulation is inad equ at e in the case of binary GAs.

Functio n-V is a 25-dimensional, mult imoda l function having 25 minimum
points , of which only one is the global minimum . T he basin of attraction of
the global minimum po int is very narrow; t hus , the classical opt imizat ion
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met hods may have difficulty in solving the problem to global optimality.
Simulation resul ts show the superiority of binary-coded GAs with the single­
point crossover on this function. Par t of the success of binary-coded GAs
in this problem is due to the biased posit ioning of the optimum points in
equal intervals. When the locations of 25 optima are randomly placed , the
difference in the performan ce of binary-coded GAs and real-coded GAs is
small-binary-coded GAs succeed in only 64% of the simulations , whereas
real-coded GAs with SBX succeed in 54% of the simulations .

From these simulations we conclude that real-coded GAs with SBX have
performed bet ter than bin ary-coded GAs on De Jong 's functions having con­
tinuous search space while performing similar to binary-coded GAs on dis­
crete De Jong's test functions. In order to bolster our conclusions further,
we apply the SBX operator to two more functions.

5.7 Rastrigin's function

Rastri gin 's function ha s been used recently by a number of GA researchers
(e.g. , [18,19]). The function has 20 variables and contains 1020 local minimum
points, of which only one is the global minimum point:

20
fl1(X) = 200+ L X; - 10cOS(27rXi), -5.12:S Xi:S 5.12. (26)

i= l

The global minimum point is at Xi = 0 for all i = 1, 2, .. . , 20. At this
point , the function value is zero. The other local minima occur when the
cosine term is one. This function is a difficult optimization problem because
t here are 220 different local optimal points (surrounding the global optimum)
with function values very close to that at the global optimal point. We set
E = 0.1 and the target functi on value h: = 1.0. This allows a termination of
the simulation when at least 19 out of 20 var iab les have converged to their
global minimum values.

Binary-coded GAs with equal substring length for all variables are ap plied
first . In all ten simulations , binary-coded GAs prematurely converge to a
wrong solution (see Table 9) . The average function value of the best solution
in all ten simulations is found to be 11.32. Real-coded GAs with the SBX
operator perform better than binary-coded GAs. The average funct ion value
of the best solution in all simulations is 6.81 for n = 2 and 3.77 for n = 10,
which are compara ble to those obtained for binary-coded GAs. The success of
real-coded GAs in this probl em is due to the cont rolled allocation of children
points under the SBX operator. With moderate n , the children points are
not far away from the parent points . So the search slowly progresses towards
the optimum point . It is worth mentionin g here that with a to lerance of 0.1
in each of the 20 variables, an enumerative search method requires about
[(5.12 - (-5.12))/0.1]2° or 1.48(104°) function evaluations. Rea l-coded GAs
took only a fraction of t his search space to locate a near global minimum
point. These results show the efficacy of rea l-coded GAs with the SBX
operator in solving mult i-var iab le, multimodal functions.
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Table 9: Simulation results of GAs with different crossover operators
on th e function 111 are tabulated. The numb er inside parentheses in
column five indicates the number of times the GA did not converge
to any point at all.

Performance of 10 runs

Op erator Popsize nor fl. Suc cess Premo conv. Avg . Trials
Binary 400 200 0 10

300 0 10
SBX 400 0 0 0(10)

2 10 0 49,680 .0
5 6 4 39,866.7

10 10 0 28,000.0
20 10 0 23,360.0

5.8 A two-variable blocked funct ion

A two-variab le blocked funct ion is designed as suggest ed in [10] . T he mean
(over X l ) and global slice (at x~) of the funct ion are shown plotted in Figure 8 .
T he global maximum point lies at the point (0.4 ,0.45f . Two local hills are
placed on either side of the glob al optimum. In the global slice (taken at
Xl = 0.4) , t he global maximum po int is surrounded by two local maximum
po ints, but the aver age slice (averaged on Xl values) is pr edominant by the
local pe aks. It is interest ing to note that the search along the variable X l is
unimodal. T hus , the population is exp ect ed to converge at Xl = 0.4 . Once
most of the population converges on or near X l = 0.4, the sea rch progresses

1.0

----- Mean slice
Global slice

------------
0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0. 9

5

O '----~_'____~__'___~___'_~___'___~___'___'L=_==__.L__=.l=_="___L__'_____"______'___'

0 .0 0 . 1

1

3 -

2 -

4 -

Figure 8: The mean slice and global slice (at x* ) of th e function 112
are shown. The average funct ion value over th e search space is 0.287.
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Table 10: Par am eters defining t he blo cked fun cti on 112 are shown.

i
1 2 3 4 5

a i 0.002 0.0025 0.014 0.003 0.0028
bi 0.002 0.0020 0.003 0.001 0.0010
c; 0.1 0.9 0.45 0.27 0.65
r. 0 0 10 10 10

Table 11: Simulation results of GAs with different crossover operators
on the fun cti on 112 are tabulated . T he qu anti ty in column five in
par entheses indicates the number of t imes GAs have converged to the
global basin , but not to the global opt imum po int .

Per forma nce of 50 runs
Opera tor Pop size n or f!. Success Premo conv. Avg. Trials
Binary 100 20 5 45(27) 1,480.0

30 15 35(27) 1,753.3
50 6 44(32) 1,616.7

SBX 100 0 42 8(0) 2,323.8
2 47 3(0) 1,872.3
5 40 10(1) 1,677.5

along the global slice. Since th e populatio n converges to the ext reme local
peaks, it becomes difficult for classical algorit hms t o find the global point.
The function is given as:

The parameters listed in Table 10 are used.
Simulat ion resu lts wit h binary-coded and real-coded GAs are tabulated

in Table 11. Although the binary-coded GAs with single-poi nt crossover
converge to the global optimum point (with three decimal places of accu­
racy) only 5 to 15 times, they converge to the global basin in about 80% of
t he simulations. Similar results are observed with the rea l-coded GAs with
SBX; in at least 80% of the runs, they have converged to t he global maxi­
mum point . In all successful simulations of real-coded GAs, it is observed
tha t t he variable Xl converges to the true optimal value first , as predicted
in [10]. Subsequently, the search along the global slice continues and t he
population locat ed at two extreme optima improves gradually and can over­
come the barrier of the local peaks to finally converge at the global optimum.
Whenever real-coded GAs have failed to find the global optimum point, the
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convergence to the variable X 2 has occurred first. When this happens, the
population shift s in any one or both of the peaks shown on the mean slice
plot (dashed lin e) in Figure 8. Sinc e t he fun ction on X l is unimodal with it s
maximum at Xl = 0.4 , t he solut ion converges to a wrong solut ion .

Further experiments ar e necessary to conclude how the proposed algo­
rithm will work on higher-dimensional blocked functions, but t he simulat ion
results on the given two-variable blocked funct ion show that alt hough the
SBX op erator works on real paramet er values, it s sea rch power in solving the
functi on is sim ilar to that in the single-point cros sover.

6. Extensions

The preceding simulations op en a number of avenues for further research .
Some of them are suggested in the following.

1. Extend SBX to solve problems with specified bounded search space.

2. Choose other forms of probability distributions for cont ract ing and ex­
panding crossovers.

3. Develop a rea l-coded mutation op erator.

4. Apply SBX to real-world opt imizat ion problems.

5. Develop real-coded cros sover op erators simulating other binary cros sovers.

6. Est imate a population sizing which may lead t o a convergence proof of
real-coded GAs.

7. Extend rea l-coded GAs with SBX t o solve multimodal and mu lt iob jec­
t ive optimization.

In the present st udy, we have allowed the children points to lie any­
where between negative infinity and positive infinity. In certain problems ,
the search space could b e bounded. For example , if the length of a mem­
ber in an enginee ring component design is a variable , neg ative values of the
var iable do not make sense . The SBX op era tor used in t his study do es not
always guarant ee a child p oint wit h a positive value, even though both par­
ent s may have positive values. The contracting and expanding probability
distributions can be modified so that the probability of creating p oints out­
side a given bound is zero, while maintaining the same characterist ics of the
probability dist r ibut ion . One way to achieve this is t hat for any two given
parent point s, the cumulat ive probability of t he children points within t he
given bound is first calculat ed . If t his probability is , say, a, t he probabil­
ity distribution funct ion is multiplied by a factor 1/a, so that the overall
probability for points within the b ounds is equal to one .

T he probabi lity distribution for contracting crossover used in this pap er is
a polynomial funct ion to t he sp read fact or . This dist ribution is used to red uce
the computat ions required in each crossover operat ion . Other fun ction al
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form s of t he probability distributions can also be used , but care must be
taken t o choose a distribution that is similar in form to t hat given in Figure 4.
In this respect , a gaussian-like distribution with mean at f3 = 1 and variance
(72 chose n to have at most ± 3(7 po ints within a specified bound can also be
used.

In this paper , we investigated t he effect of the crossover alone, keepin g the
mut ation probability zero . In order to maintain diversi ty in the population,
a mutation operator can be used . In real-cod ed GAs, the mutation ope ration
can be achieved by choosing a neighboring point in t he vicinity of the cur rent
point . This can be implemented by fixin g an explicit probabi lity distribution ,
or by adopting the methods used in other population-based real-coded studies
(e.g., [12]).

The pr esent st udy shows that the use of real-coded GAs is pr eferr ed to
binary-coded GAs for pro blems with cont inuous search space an d for prob ­
lems where arbit rary precision is desired . Many engineering design opt imiza­
ti on problems contain mixed variabl es-both discret e and cont inuous . T he
classical opti mization methods do not perform very well in solving those kinds
of problems (known as mixed integer pr ogramming problems) . GAs with a
combination of bo th binar y coding (for discret e vari ab les) and real coding
(for continuous var iables) can be used to solve these problems efficient ly.
The crossover op eration can be performed as follows. A variabl e is first cho­
sen for crossover. If a discrete variable needs to be crossed, the single-point
crossover, or another binary operator , can be used for the bits representing
that variable only. But if a continuous var iable needs to be crosse d , the
SBX operator can be used . This way the resul ti ng st ring will also be a valid
string . We are curre nt ly applying t his technique to truss-structure optimiza­
t ion pr oblems, wher e optimiza tion of truss topology (represented by binar y
variables) and cross-section of memb ers (continuous var iables) are achieved
simultaneously, an approach which is ideal but cannot be achieved using
classical op t imization method s.

T he SBX op erator developed here is based on the probability distribu­
t ion of children st rings in a single-point crossover. Similar probabi lity dis­
t ributions (i.e. , a fun ction of the spread factor (3 ) can also be obt ain ed for
mul ti-point and unifo rm crossovers an d other similar real-cod ed crossovers
can be desig ned . P robability dist ributions similar t o the one developed here
are expec ted , it may be interesting to invest igate whether they t urn out ot h­
erwise. Depending on the outcome of that analysis, the issue of superiority
of one crossove r over an other can be resolved , par ti cularly in the context of
the app lication of GAs t o cont inuous variables.

T hro ughout this st udy, reasonable values of the populat ion size are used .
As demons trated elsewher e (e.g. , [6]), proper population sizing is import an t
for the successful work ing of GAs . That st udy also suggested a population
sizing based on the rat io of the difference in detect ab le function values to the
varian ce of the function. An attemp t can be made to derive a population
sizing for real-cod ed GAs from a similar viewpoint . In binary-cod ed GAs, the
major difficul ty towards achieving a converge nce proof lies in the mechan-
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ics of the crossover operator. Although the mechanic s of the single-point
crossover (or for that matter , any other binary crossover operator) is simp le,
their mathematical modeling becomes difficult . Any convergence pro of of a
stochastic process involves the calculation of t ransit ion probabilities. Since
in the SBX operator, a direct probabi lity distribution of children points for
any given pair of parent points is used , the proof of convergence of GAs may
become easier.

T he success of binary GAs in many single-object ive, un imodal problems
has led researchers to extend the applicability of GAs to ot her types of op­
t imization problems , namely multimodal and multiobjective fun ction opti­
mization problems. In order to find mult iple optimal solut ions simult ane­
ously, sharing functions ar e used to create artificial fitn ess values , which
are then used in the reproduction operator (e.g., [20,21]). In order to find
mult iple Pareto optimal points for mult iobj ect ive function optimization , t he
concept of nondomination is used to create art ificial fitn ess values, which are
again used in the reproduction operator (e.g., [22]). Since only reproduction
operators need modified to solve t he above problems , similar reproduct ion
techniques can be used along with the SBX operator used in t his study to
investigate the efficacy of real-cod ed GAs in mult imodal and mult iob jective
problems defined on a continuous sear ch space.

7. Conclusions

In this paper, a real-coded crossover operator has been develop ed bas ed on
t he search characte rist ics of a single-point crossover used in binary -coded
GAs. In ord er to define the search power of a crossover operator, a spread
factor has been introduced as the ratio of the absolute differences of the
children points to that of the parent points. Thereaft er , the probability
of creat ing a child point for two given parent points has been derived for
the single-point crossover. Motivat ed by the success of binary-coded GAs
in problems wit h discrete sear ch space, a simul ated binary crossover (SBX)
operator has been developed to solve problems having cont inuous search
space. The SBX operator has search power similar to that of the single-po int
crossover.

On a number of test fun ctions, including De Jong's five test fun ct ions, it
has been found that real-coded GAs with the SBX operator can overcome a
numb er of difficult ies inherent with binary-coded GAs in solving cont inuous
search space problems-Hamming cliff problem , arbitrary precision problem ,
and fixed mapped coding problem. In the comparison of real-coded GAs wit h
a SBX operator and binary-coded GAs with a single-po int crossover operator ,
it has been observed that the performance of the former is better than the
latt er on continuous functions and the performance of the former is similar
to the lat ter in solving discret e and difficult functions. In comparison with
another real-coded crossover operator (i.e. , BLX-0 .5) suggested elsewhere ,
SBX performs better in difficult test functions. It has also been observed
that SBX is particularly useful in problems where the bounds of the optimum
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point is not known a priori and wher e there are multi ple optima, of which
one is global.

Real-coded GAs wit h t he SBX op erator have also been tried in solving
a two-variab le blocked funct ion (the concept of blocked fun ctions was intro­
duced in [10]). Blocked funct ions are difficult for real-coded GAs , because
local optimal po ints block the progress of search to continue towards t he
global optimal point . The simulat ion results on the two-var iable blocked
function have shown that in most occasions , the search proceeds the way as
pr edicted in [10]. Most importantly, it has been observed that the real-coded
GAs wit h SBX work similar to that of the binary-coded GAs wit h single-point
crossover in overcoming t he barrier of the local peaks and converging to the
global bas in. However , it is premature to conclude whether real-coded GAs
wit h SBX op erator can overcome the local barriers in higher-dimensional
blocked fun ct ions.

These results are encour aging and suggest avenues for further research .
Because the SBX ope rat or uses a probability distribut ion for choosing a child
po int , the real-coded GAs wit h SBX are one st ep ahead of the binary-coded
GAs in te rms of ach ieving a convergence proof for GAs. With a direct prob­
ab ilist ic relationship between children and parent po ints used in this paper,
cues from t he classical stochast ic optimization methods can be borrowed to
achieve a convergence proof of GAs , or a much closer tie between the classical
optimization methods and GAs is on the horizon .
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