Complex Systems 9 (1995) 115-148

Simulated Binary Crossover for
Continuous Search Space

Kalyanmoy Deb*

Ram Bhushan Agrawal
Department of Mechanical Engineering,
Indian Institute of Technology,
Kanpur, UP 208 016, India,

Abstract. The success of binary-coded genetic algorithms (GAs) in
problems having discrete search space largely depends on the coding
used to represent the problem variables and on the crossover oper-
ator that propagates building blocks from parent strings to children
strings. In solving optimization problems having continuous search
space, binary-coded GAs discretize the search space by using a coding
of the problem variables in binary strings. However, the coding of real-
valued variables in finite-length strings causes a number of difficulties:
inability to achieve arbitrary precision in the obtained solution, fixed
mapping of problem variables, inherent Hamming cliff problem asso-
ciated with binary coding, and processing of Holland’s schemata in
continuous search space. Although a number of real-coded GAs are
developed to solve optimization problems having a continuous search
space, the search powers of these crossover operators are not adequate.
In this paper, the search power of a crossover operator is defined in
terms of the probability of creating an arbitrary child solution from
a given pair of parent solutions. Motivated by the success of binary-
coded GAs in discrete search space problems, we develop a real-coded
crossover (which we call the simulated binary crossover, or SBX) oper-
ator whose search power is similar to that of the single-point crossover
used in binary-coded GAs. Simulation results on a number of real-
valued test problems of varying difficulty and dimensionality suggest
that the real-coded GAs with the SBX operator are able to perform as
good or better than binary-coded GAs with the single-point crossover.
SBX is found to be particularly useful in problems having multiple op-
timal solutions with a narrow global basin and in problems where the
lower and upper bounds of the global optimum are not known a pri-
ort. Further, a simulation on a two-variable blocked function shows
that the real-coded GA with SBX works as suggested by Goldberg

*Eletronic mail address: deb@iitk.ernet.in.

116 Kalyanmoy Deb and Ram Bhushan Agrawal

and in most cases the performance of real-coded GA with SBX is sim-
ilar to that of binary GAs with a single-point crossover. Based on
these encouraging results, this paper suggests a number of extensions
to the present study.

1. Introduction

The crossover operator is believed to be the main search operator in the
working of a genetic algorithm (GA) as an optimization tool (e.g., [1]). The
purpose of a crossover operator is two-fold. Initial random strings represent-
ing the problem variables must be searched thoroughly in order to create good
strings. Thereafter, good portions of these strings must be combined to form
better strings. A number of crossover operators exist in the GA literature;
however the search power to achieve both of the above aspects differs from
one crossover to another. The successful operation of GAs also depends on
the coding mechanism used to represent the problem variables (e.g., [2,3]).
Unless good building blocks are coded tightly, the crossover operator can-
not combine the building blocks together (e.g., [4]). This coding-crossover
interaction is important for the successful working of GAs. The success of
binary-coded GAs in problems having discrete search space is largely due
to the careful choice of a coding and a crossover operator that complements
each other’s interaction in propagating useful building blocks in successive
generations. The problem of tight or loose coding of problem variables is
largely known as the linkage problem, which has been recently attempted for
binary-coded GAs using messy GAs (e.g., [4,5]). In real-coded GAs, how-
ever, the variables are directly used. Thus, the tight or loose coding of bits
constituting a variable does not arise, but the tight or loose coding of dif-
ferent variables still exists. Whether there really exists a real-coded GA to
solve this linkage problem is a matter of interesting further research. We
recognize the importance of this aspect of coding inherent to problems with
multiple variables in the successful working of GAs, but we do not address
this issue in this paper. Instead, we devise a real-coded crossover operator
that addresses some of the other difficulties inherent to binary-coded GAs in
problems having continuous search space.

In solving problems having continuous search space using binary-coded
GAs, binary strings are usually chosen to code the problem variables. When
a binary (discrete) coding is used for continuous search space, a number of
difficulties arise. Ome difficulty is the Hamming cliffs associated with cer-
tain strings, from which a transition to a neighboring solution (in real space)
requires the alteration of many bits. Hamming cliffs in the binary coding
cause artificial hindrance to a gradual search in the continuous search space.
Another difficulty is the inability to achieve any arbitrary precision in the
optimal solution. In binary-coded GAs, the string length must be chosen a
priori to enable GAs to achieve a certain precision in the solution. The more
precision required, the larger the string length. For large strings, the popu-
lation size requirement is also large (e.g., [6]), thereby increasing the compu-

Simulated Binary Crossover for Continuous Search Space 117

tational complexity of the algorithm. Since fixed mapped coding is used to
code the variables, the variable bounds must be such that they bracket the
optimum variable value. In many problems this information is not usually
known a priori, this may cause some difficulty in using binary-coded GAs for
those problems. Further, a careful thinking of the schema processing in bi-
nary strings reveals that not all of Holland’s schemata are equally important
in most problems having continuous search space. To a continuous search
space, the meaningful schemata are those that represent the contiguous re-
gions of the search space. The schema (% * * * 1), for example, represents
every other point in the discretized search space. Although this schema may
be useful in certain periodic or oscillatory functions, the schema (1 * * *)
signifies a more meaningful schema representing the right half of the search
space in most problems. Thus, the crossover operator used in the binary
coding needs to be redesigned in order to increase the propagation of more
meaningful schemata pertaining to continuous search space.

However, motivated by the success of binary GAs in discrete search space
problems and realizing the need for an efficient real-coded GA to eliminate
the above difficulties, we devised a real-coded crossover operator that simply
simulates a binary crossover operator that works without using the coding of
variables. In order to achieve that we define the search power of a crossover
operator in terms of the probability distribution of any arbitrary child string
to be created from any two given parent strings."! The search power of the
single-point crossover operator is first calculated. Later, the simulated binary
crossover (SBX) is developed having a search power similar to that of the
single-point crossover. The difference in the implementations of the real-
coded GAs with SBX and binary-coded GAs with single-point crossover is
that in the former method the coding of variables is eliminated and a child
string is created from a probability distribution that depends on the location
of the parent strings.

Although a number of other real-coded GAs exist (e.g., [8,9]), the search
power, as defined in this paper, of those crossover operators is not adequate.
The study in [8] is particularly important in that they introduced the concept
of a schema (which they called interval schema) that is relevant for continu-
ous search space. It may be mentioned here that the interval schemata are
conceptually similar to the virtual alphabets introduced in [10] and locality
formae defined in [7]. The virtual alphabets, the locality formae, or the in-
terval schemata represent contiguous regions in the search space. Although a
blend crossover (BLX) operator was devised in [8] it was not constructed with
the interval-schema viewpoint. In section 4.1, we observe that the best-found
crossover in [8] does not quite satisfactorily propagate interval schemata from

IThe design of a crossover operator depends on a number of other factors such as
respect, assortment, and transmissibility of formae (similarity templates) as suggested
in [7]. The crossover operator designed here satisfies Radcliffe’s design criteria, but it
is not a R® (random, respectful, recombination) operator. Instead, the deviation from
the random distribution of children and the ability to access search points (Radcliffe’s
ergodicity criterion) is used to define the search power of a crossover operator.

118 Kalyanmoy Deb and Ram Bhushan Agrawal

parents to the children points. Interestingly, we find that a special case of
SBX operator processes interval schemata better than the BLX-0.5 operator
found in [8].

In discussions on evolution strategy, real-valued parameters are directly
used, but mutation is used as the main search operator (e.g., [11]). Crossover
operators are also being used in evolution strategy studies (e.g., [12]). For
each variable, the discrete crossover chooses one of the parent values as the
child, the intermediate crossover uses the average of the parent values as
the child. Although other types of crossover operators are introduced, these
operators are deterministic and can create only one search point. Thus,
these operators do not have adequate search power. However, if the effect of
crossover and the subsequent mutation operator are considered, their com-
bined search power becomes significant. Since in this paper we mainly discuss
and compare crossover operators, we do not consider the combined action of
crossover and mutation operators of evolution strategy methods.

In the remainder of this paper, we investigate the efficacy of the real-
coded GAs with the SBX on a number of carefully chosen test functions.
Simulation results are compared with that of binary-coded GAs with single-
point crossover and real-coded GAs using the BLX-0.5 operator on the same
functions. The test functions also include a two-variable, two-sided active
blocked function introduced in [10]. In [10] it is argued that the working of
the real-coded GAs is such that in these functions the population first con-
verges to virtual alphabets (above-average points) and then the convergence
to the global optimum gets blocked by two local optima. Our simulations
using the SBX operator support the theory of virtual alphabets, and the
simulation results on this simple blocked function show that real-coded GAs
with SBX perform similar to that of binary-coded GAs with a single-point
crossover. Simulation results also show that real-coded GAs with the SBX
operator can overcome the Hamming cliff problem, precision problem, and
fixed mapping problem while performing similar to binary-coded GAs with
single-point crossover (but better than real-coded GAs using BLX-0.5) in
difficult problems. These results are encouraging and suggest the use of
real-coded GAs with a SBX operator in other optimization problems hav-
ing continuous variables. Based on the results of this paper, a number of
extensions to this work are outlined.

2. Binary crossover operator

In many applications of binary-coded GAs, a single-point crossover is used.
In a single-point crossover, a random cross site along the length of the string
is chosen and the bits on one side of the cross site are swapped between two
parent strings. In a single-variable optimization problem, the action of the
crossover is to create two new children strings from two parent strings. In
a multi-variable optimization problem, each variable is usually coded in a
certain number of bits (collectively called a substring) and these substrings
are combined to form a bigger string. Since, in a single-point crossover oper-

Simulated Binary Crossover for Continuous Search Space 119

ator, only one cross site is chosen from the complete string, the action of the
single-point crossover may disrupt one variable or a combination of contigu-
ous variables simultaneously. In the following, we calculate the probability of
creating a child point from two chosen points using the single-point crossover.

2.1 Search power

The search power of a crossover operator is defined here as a measure of how
flexible the operator is in creating an arbitrary point in the search space. A
number of criteria for the successful design of a crossover operator are sug-
gested in [7]. That study shows how different existing crossover operators
satisfy those criteria, but does not suggest any measure of comparing oper-
ators that satisfy all required criteria. It is worth mentioning here that in
[7] an ergodicity criterion is also defined as the ability to access any search
point through genetic operators from any population. In this paper, we use
a criterion similar to that ergodicity criterion to define the search power of
a crossover operator as the probability of creating an arbitrary point in the
search space from two given parent points. To make the analysis simpler, we
assume a single-variable function. Later, we shall discuss how the analysis
can be extended for multi-variable functions.

When two parent binary strings of length ¢ are crossed at an arbitrary
site, the contents on either side of the cross site get swapped between the
parents. Let us imagine that the cross site is k bits from the right of the
string. We also assume that the leftmost bit is the highest significant bit in
the underlying binary coding. If the decoded value of the rightmost &k bits
in the first parent is A; and the decoded value of the remaining (¢ — k) bits
is Bj, then the decoded value of the string is

r, = Bl2k + Al. (1)

The decoded value of the second parent string can also be calculated by
knowing A, and By as the decoded values of the right % bits and the remaining
(£ — k) bits of the string, respectively: x; = B2* + A,. Figure 1 shows the
single-point crossover operation on two arbitrary strings and the resultant
children strings obtained by crossing at a particular site. The effect of the
single-point crossover operator is to swap the values A; and A, between the

By Ay DV B; As DV
i 0 1 0|1 0 1 85 1 @ & 9|0 1 83
o 1 1 o0o|0 1 1 51 = o 1 1 o1 0 1 53
B> Ay Avg 68 B Ay Avg 68

Figure 1: The action of single-point crossover on two random strings
is shown. DV stands for the decoded parameter value. Notice that
the average of the decoded parameter values is the same before and
after the crossover operation.

120 Kalyanmoy Deb and Ram Bhushan Agrawal

two parent points. Thus, the decoded values of the children strings are as
follows:

y1 = B12F + Ay, (2)
Y2 = By2* + A, (3)

These equations bring out an important property of the single-point crossover.
Notice that the mean of the decoded values of the parent strings ((z;+x2)/2)
is the same as that of the children strings ((y1 + y2)/2). This can also be
observed in Figure 1, by calculating the decoded parameter values of both
parent and children strings. It is interesting to note that this property of
decoded parameter values holds good for real parameter values of parent and
children points for a linear mapping rule. Assuming a linear mapping rule,
the parent points can be obtained as follows:

where m and t are two constants. The children points can also be computed
using the same mapping rule:

¢ =my; +1, i=1,2. (5)

Using equations (4) and (5) with the previous observation on y;, it is trivial
to show that the mean of the parent points is the same as that of the children
points. In other words, the children points are equidistant from the midpoint
of the parent points. We use this property later to develop the real-coded
crossover operator. Further, we observe that the children points may lie
inside or outside the region bounded by the parent strings depending on the
strings and the location of the cross site. In order to define the spread of the
children points with respect to that of the parent strings, we define a spread
factor B as the ratio of the spread of children points to that of the parent
points:

1 — €

P1— P2 . ()

Using this definition of the Spr'ead factor, we classify crossovers into the three
different classes stated in Definitions 1 through 3.

Definition 1. All crossover operations having a spread factor [< 1 are
contracting crossovers.

When the children points are enclosed by the parent points, the spread of
the children points (i.e., the absolute difference in ¢; and ¢, values) is smaller
than that in the parent points. Thus, the spread factor 3 is less than one.
Since the children points usually replace tle parent points in nonoverlapping
GAs, this crossover seems to have a contracting effect on the parent points.

Definition 2. All crossover operations ha¥ing a spread factor 3 > 1 are
expanding crossovers. '

Simulated Binary Crossover for Continuous Search Space 121

When the children points enclose the parent points, the absolute difference
in children points is more than that of the parent points. This crossover has
the effect of expanding the parent points to form the children points.

Definition 3. All crossover operations having a spread factor f = 1 are
stationary crossovers.

In stationary crossovers, the children points are the same as the parent points.
An interesting feature of the spread factor £ is that it hides the effect of the
true spread of the children points. The spread factor 3 signifies a spread of
children points relative to that of the parent points. For a fixed value of /3,
two close children points can be obtained if the parent points are close to each
other, or two distant children points could be obtained if the parent points
are far away from each other. In a single-point crossover, the occurrence of a
contracting, expanding, or stationary crossover depends on the parent strings
and the location of the cross site. Using Definitions 1 through 3 let us now
compute the probability of occurrence of three different types of crossovers
for any two random parent strings.

We first consider that two (-bit parent strings are crossed at a site k €
(0,£—1) from the rightmost bit. Once again, we assume that the leftmost bit
is the most significant bit. Representing two parent strings as a;,b; € {0,1},
we write the decoded values as

-1
=0

-1)
= b2 (8)
1=0

Using the property of the single-point crossover operator given in equa-
tions (7) and (8), we obtain the decoded values of the children strings as

k-1) -1
1= b2+ > a2, (9)
1=0 i=k
k=1 -1
Y a2+) b2 (10)
=0 i=k

For a linear mapping rule (equations (9) and (10)), the spread factor defined
in equation (6) can be written in terms of decoded values of parent and
children strings. Thus, equations (7) through (10) can be used to write the
spread factor 3. We simplify the expression for the spread factor by assuming

Y2

a parameter u; = (a; — b;) for alli = 0,1,...,(¢ —1). Note that each u; can
take a value —1, 0, and 1.
/')’(k,) Y=Y
r1 — T2

B Yilg2t — yhly 0
- Yol + Zi:_ol w21
_1-¢(k)

1+ ((k)’

(11)

122 Kalyanmoy Deb and Ram Bhushan Agrawal

where ((k) = Y0 w2/ Y52} u;2'. The above term for 3 is valid for any two
parent strings (or in other words for any wu; values), and for any crossover
site (or for any k). Let us first consider the contracting crossovers (i.e.,
where 0 < # < 1). In order to simplify our analysis further, we assume that
parent strings are two extreme strings having all ones (111...1) and all zeros
(000...0). In this case, the difference in allele values in each bit is one (or
u; =1fori=0,1,...,(¢£—1)). Substituting u; = 1 in the above expression,
we obtain the following expression for j:

Blk) =1—2(2* —1)/(2¢ — 1) & 1 — 20-H1igk, (12)

The spread factor for two extreme strings of length 20, crossed at different
sites, is shown plotted in Figure 2. It is clear in the figure that for most cross
sites k, the spread factor f ~ 1.

With a distribution of the spread factor as a function of the cross site,
we can now compute the probability of creating any arbitrary string (i.e., a
representative) from two given parent strings. Let us consider Figure 2
again. For a particular value of 3, we choose a small range df and find
how many crossover operations dk would produce children points in that
range. This can be achieved by calculating the slope of the expression in
equation (11) at the corresponding f3:

dp. (13)

Denoting the probability of occurrence of § by C(f) and knowing that § lies
between zero and one for contracting crossovers, we obtain the distribution

1.0

0.8

0.6

0.4

0.0 P DRI SRRRNS R R I 1 1)
0 2 4 6 8 10 12 14 16 18 20

Figure 2: The distribution of 8(k) versus k for £ = 20 is shown.

Simulated Binary Crossover for Continuous Search Space 123

Figure 3: Probability distributions of contracting and expanding
crossovers on two extreme binary strings are shown.

for dfg — O:
s
e = 1/[%
i (1/]%],) 8

The denominator on the right-hand side of the expression is a constant quan-
tity that makes the distribution C(f) a probability distribution. Here we are
not interested in computing the probability distribution exactly, rather we
are interested in finding the functional relationship of the probability distri-
bution C(8) with §. Thus, it will suffice to compute the numerator only. By
differentiating equation (12) with respect to k and substituting the expres-
sion for k in terms of B, we obtain the numerator of the right-hand side of
equation (14) as follows:

(14)

K
where £ is a constant term. The functional form of the above distribution
is shown in Figure 3 for 0 < f < 1. Figure 3 shows that as § is increased
towards one, the probability increases. Thus, the probability of creating
children points closer to the parent points is larger than that of points far
away from the parents.

The probability distribution for expanding crossovers (i.e., f > 1) can be
obtained by considering two other parent strings? using the same procedure.

2The two extreme strings considered in the contracting crossovers are not possible for
the expanding crossover.

124 Kalyanmoy Deb and Ram Bhushan Agrawal

The probability distribution can also be obtained from that of the contracting
crossovers by realizing a simple probabilistic event. If two children strings
found in a contracting crossover are crossed at the same site, the same parent
strings are obtained. Thus, for each contracting crossover with a spread
factor f3, there exists an expanding crossover with a spread factor 1/5. In
other words, we can argue that the probability of occurrence of contracting
crossovers having a spread factor between [and (3 + df3) would be the same
as the probability of occurrence for expanding crossovers with a spread factor
between 1/(8+df3) and 1/f. Summing these probabilities for all contracting
crossovers in the range 0 < < 1, we conclude that the overall probability
of contracting crossovers is the same as that of the expanding crossovers.
Of course, the stationary crossovers can be considered as either contracting
or expanding. For the sake of argument, we can assume that half of the
stationary crossovers are contracting and half are expanding.

Equating the probability of expanding crossovers (£(f)) having spread
factor between S and (8 + df) with that of contracting crossovers (C(3))
having spread factor between 1/(8 + df) and 1/, we obtain the following:

1)\]|1 1
eo) o+ -A=c(5) |5~ 77 (16
Rearranging terms and considering the limit dg — 0, we obtain
1 1
&) = e (5) | (17)

With this relationship between the probability of occurrence of contract-
ing and expanding crossovers, we have to know the probability distribution
for only one type of crossover. Since their sum is the overall probability
of all crossovers, the overall probability for either contracting or expanding
crossovers must be equal to 0.5. For the probability distribution given in
equation (15), we obtain a probability distribution for expanding crossovers
using equation (17):

K
£6) = 37— (13)
This distribution is shown plotted for the region 8 > 1 in Figure 3. The
figure shows that the probability of creating children strings having a large
[is small.

Recall that equations (15) and (18) are derived only for two extreme
binary strings. In order to investigate the distributions and probability dis-
tributions for other parent pairs, we create all pairs of binary strings of a par-
ticular length and cross them at all possible cross sites. For each crossover,
the corresponding spread factor [is calculated and arranged in ascending
order. The experiment is continued for string lengths of 10, 15, and 30. Fig-
ure 4 shows the distribution for £ = 15 and it can be seen that the probability
of occurrence of f = 1 is more likely than any other value. If the parents

Simulated Binary Crossover for Continuous Search Space 125

2.0 1

1.5 F

0.0 —

Figure 4: Probability distributions of contracting and expanding
crossovers on all pairs of random binary strings of length 15 are shown.

are closer, the spread of the two likely children is smaller. On the other hand,
if the spread of parents is greater, the spread of likely children is large. This
aspect of the crossover operator distinguishes it from the mutation opera-
tor. In a mutation operator, the probability of a mutated string close to the
parent string is higher, but this probability is usually constant and depends
only on one string.

3. Simulated binary crossover

In order to simulate the operation of a single-point binary crossover directly
on real variables, we design a crossover operator that uses a probability dis-
tribution similar to that obtained in section 2. One property of a probability
distribution is that the cumulative probability of all the possible states is
equal to one. But the integration of the probability distribution in equa-
tion (15) over all values of f is not a finite number because at § = 1 the
probability does not exist. Moreover, recall that the distribution obtained in
equation (15) is only for two extreme binary strings as parents. For contract-
ing crossovers, we assume a simple polynomial probability distribution that
is similar to the distribution in equation (14) and to that shown in Figure 4:

C(B) =0.5(n+1)8", (19)

where n is any nonnegative real number. The factor 0.5 makes the cumu-
lative probability at # = 1 equal to 0.5. A large value of n allows a better
approximation of equation (19) with equation (15) for large values of f. A
small value of n makes a more uniform distribution in the range 0 < g < 1.
A value of n = 0 makes a uniform distribution in the same range (see Fig-

126 Kalyanmoy Deb and Ram Bhushan Agrawal

0 1 2 3 4 5

Figure 5: Probability distributions of contracting and expanding
crossovers for the proposed polynomial model are shown.

ure 5). A moderate value of n (2 to 5) matches closely with the simulation
results for the single-point crossover in binary-coded GAs.

For expanding crossovers, the probability distribution can be derived by
using equations (17) and (19):

1
/gn+2)

It is interesting to note that the probability of all expanding crossovers (found
by evaluating [52, £(B)dp) is 0.5, equal to that of the contracting crossovers.
Also, the probability of stationary crossovers obtained from both equations
is the same.

The probability distribution for contracting and expanding crossovers for
various values of n are shown in Figure 5. It is clear that the distribution
largely depends on the exponent n. For small values of n, points far away
from the parents are likely to be chosen, whereas for large values of n, only
points close to the parents are likely to be chosen. In a sense, the exponent n
is similar to the reciprocal to the temperature parameter 7" used in the simu-
lated annealing algorithm described in [13]. Ideally, a good search algorithm
must have a broad search (with large T' or small n) in early generations and,
as the generations proceed, the search must be focussed on a narrower region
(with small 7" or large n) to obtain better precision in the solution. However,
for brevity, we use a fixed compromised n for the entire simulation.

Figure 5 shows that the search of the SBX extends practically to any
point in the real space. If lower and upper bounds for the variable are
known, equations (19) and (20) can be restricted to that region, as discussed
in section 6.

E(B) = 0.5(n+1) (20)

Simulated Binary Crossover for Continuous Search Space 127

Note that the polynomial probability distribution given in equation (19)
is one of many possible probability distributions for contracting crossovers.
For a different distribution, the corresponding probability distribution for
expanding crossovers can be calculated by using equation (17). Also note
that a distribution for expanding crossover can be assumed first and then
the corresponding probability distribution for contracting crossovers can be
computed by replacing £(F) with C(3) in equation (17). In all such prob-
ability distributions, the probability of creating children points close to the
parent points must be more than that of creating children points far away
from the parent points (this simulates the effect of the single-point crossover
as found in Figure 4). However, in the remainder of this paper, we use the
polynomial probability distribution given in equations (19) and (20).

In the following, we discuss how the preceding analysis can be extended
to multi-variable optimization problems.

3.1 Extension to multi-variable problems

The most common way to code multiple variables using a binary coding is
with a mapped concatenated string [1]. In a single-point crossover, one cross
site is chosen along the entire string and the contents on the right side of
the cross site are swapped between the parents. When binary-coded GAs are
used to solve a N-variable function, and when the cross site falls on the bits
representing the kth variable from the left, the single-point crossover creates
a new value of the kth variable and swaps the (k+ 1)st to Nth variables be-
tween the parents. The same operation can be simulated by using the SBX
operator on the kth variable (k is chosen between 1 to N at random) and
swapping the (k + 1)st to Nth variables between the parents. It has been
shown in [14] that this feature of the single-point crossover causes a large
positional bias for certain combinations of variables to get propagated from
the parents to the children. In this study, we use a mechanism similar to
uniform crossover for multiple variables used in [15] for choosing which vari-
ables to cross. However, we recognize here that this assumption is related to
the important linkage issue of multi-variable coding and our mechanism does
not alleviate the linkage problem. In order to simplify the implementation
of SBX operator, we choose to perform SBX in each variable with probabil-
ity 0.5. But in the case of single-variable functions, since there is only one
variable, the SBX is performed with probability 1.0.

The concept of probability of crossover p. used in canonical GAs still
applies to this real-coded GA. This probability means that, on an average,
pIN of the points in the mating pool participate in the crossover.

4. Existing real-coded crossover operators

Real-coded GAs have not received much attention among the GA community.
However, a nice description of different approaches to real-coded GAs is given
in [8]. In [9] it is suggested to use a linear crossover operator that compares

128 Kalyanmoy Deb and Ram Bhushan Agrawal

only three points (p; +p2), (1.5p1 —0.5p,), and (—0.5p; +1.5ps), choosing the
best two points. That work also suggested a crossover operator that creates
a point by randomly perturbing a single variable in its range. The concept
of virtual alphabets in the context of real-coded GAs was introduced in [10].
Although no particular crossover operator was suggested, blocked functions
that may cause difficulty for real-coded GAs were suggested. In [8] the notion
of interval schemata for real-coded GAs is introduced and a blend crossover
(BLX-ar) operator is suggested. For two parent points p; and p, (assuming
p1 < p2), the BLX-a randomly picks a point in the range (p; — a(ps — p1),
pa + a(p2 — p1)). If a is zero, this crossover creates a random point in the
range (p1, p2). In a number of test problems, they reported that BLX-0.5
(with @ = 0.5) performs better than BLX operators with any other « value.
It is worthwhile to mention here that the interval schemata are similar in
concept to virtual alphabets—both representing contiguous regions in the
search space.

4.1 Search power

For the given real-coded crossovers, we investigate the search power, as de-
fined in section 2.1. The search power of the linear crossover in [9] is clearly
not adequate (it is too deterministic), because only three children points can
be obtained from two parent strings. The uniform crossover in [9] or the
BLX-0.0 operator in [8] have the flexibility of creating any point enclosed by
the parent points. As discussed in [8], this crossover preserves the interval
schemata representing contiguous regions in the search space. In the follow-
ing, we take a closer look at the interval schema processing using a BLX
operator.

Consider a variable whose range is [0,8]. According to the formulations
presented in [8], there are 45 interval schemata for the given range of the
variable (assuming that the points represented by an interval schema are
bounded by integers only). Let us also consider two parent points p; = 2
and ps = 5, respectively. The first point represents a total of (2 + 1)(9 — 2)
or 21 interval schemata and the second point represents (5 + 1)(9 — 5) or
24 interval schemata. These schemata are shown in Table 1. The common
schemata between the two parent points are shown inside boxes and there
are 12 such schemata.

One underlying feature of a successful coding-crossover interaction is that
a crossover must propagate the common schemata (appropriate to the cod-
ing) between the two participating parents to their children. The single-
point crossover in the binary-coded GAs has this property for propagating
Holland’s schemata. In the real-coded GAs, if we assume that the interval
schemata are what get processed, then the probability of creating a child
point can be assumed to vary proportionately with the number of common
schemata between the child and parent points. This argument in a sense sig-
nifies that a point closer (in the context of the interval schemata) to a parent
point is more likely to get selected as a child point. With this argument, we

Simulated Binary Crossover for Continuous Search Space 129

Table 1: All interval schemata for two parent points are shown.

Number of interval schemata

Parent point at 2 Parent point at 5
(2,2) (5,5)
(1,2) (23) (45 (56)
0,2) (1,3) (24) | 355) (46) (57
(0,3) (1,4) [(25)]]](2,5)] (36) (47 (598)
(0,4) |(L,5)] [(2,6)]]](1,5)] [(2,6)] (3,7) (48)
(0,5 [(1,8)] [(27)][]05)] [(L6)| [(27)] (38)
0,6)| [(L,D)] [(28)|]](0,6) [(1,7)| [(2,8)
(0,7)] |(1,8) 0,7)] [(1,8)
(0,8) (0,8)

can now find the probability distribution of a child point for the two chosen
parents p; = 2 and py = 5.

Any point in the range (2,5) contains all 12 common schemata of the
two parents. Thus any child point in the range (2,5) is equally probable.
Therefore, we may argue that the BLX-0.0 or the uniform crossover (i.e.,
contracting crossover) propagates all common interval schemata from the
parent to the children. But when BLX-a (« is positive) is used, all common
interval schemata in both parents are not propagated to the children point
outside the range enclosed by the parent points. For these crossovers (i.e.,
expanding crossovers), the probability can be assigned to depend linearly
with the number of common interval schemata between children and parent
points. In the above example, the point ¢; = 1 will represent only eight of
the common schemata, the point ¢; = 0 will represent four of the common
schemata, and so on. In general, the number of common interval schemata
among any three points is (z; + 1)(N — x;,), where z; and z;, are the lowest
and highest values of the three points and N is the entire range of the search
space. In the above example, since the range [0,8] is considered, N = 9. For
children points z < 2, the number of common schemata is (z 4+ 1)(9 — 5) or
4(x 4 1). For children points 2 < z < 5, the number of common schemata is
(2+1)(9 —5) or 12 (a constant) and for children points z > 5, the number
of common schemata is (2 + 1)(9 —) or 3(9 — x). These numbers are
shown plotted in Figure 6. If the probability of creating a child point is
assigned according to these numbers, then the distribution is uniform for
points enclosed by the parents and linearly varying for outside points. The
BLX-0.5 crossover suggested in [8] deviates from this observation in the case
of expanding crossovers. The BLX-0.5 operator has a uniform distribution,
as shown in Figure 7.

It is interesting to note that when these probability distributions are
plotted as functions of the spread factor f as in Figure 7, similar probabil-

130 Kalyanmoy Deb and Ram Bhushan Agrawal

L !

|

|

|

|

|

|

|

|

|

;
0o t 2 3 4 5 6 7 8
Child Point

Common Interval Schemata

Figure 6: Number of common interval schemata between a children
points and the parent points are shown. The parent points are at 2
and 5.

Probability

Ideal

B

Figure 7: Probability distributions of BLX-0.5 and the ideal distribu-
tion are shown with spread factor S.

ity distributions emerge. The contracting crossovers have uniform probabil-
ity distribution for any child point inside the region enclosed by the parent
points and the expanding crossovers have a diminishing probability for chil-
dren points away from the parent points. It is also interesting that the above
probability distribution is a special case of the SBX operator developed in
section 3. For n = 0, all contracting crossovers have a uniform probability
and the probability in the expanding crossovers diminishes with the increase
in the spread factor. The only discrepancy between these two distributions is
that in the SBX operator with n = 0, the probability reduces in a nonlinear
manner and that in the ideal interval-schema processing, the probability re-
duces linearly. Nevertheless, we can argue that the SBX operator with n = 0
respects interval-schema processing better than the BLX-0.5 operator. How-
ever, other SBX operators with nonzero n do not respect interval schema.
The above analysis suggests that the other SBX operators may respect some
other schema that represents contiguous points but with varying importance.

Simulated Binary Crossover for Continuous Search Space 131

Since such schemata would be a variation of the interval schemata or locality
formae, they would also satisfy the design criteria in [7]. However, the for-
malization of these schemata is merely a mathematical exercise, which would
be of little importance to the current study. Thus, we avoid that exercise in
this paper and present simulation results of the SBX operator on a number
of test problems.

5. Simulation results

To investigate the efficacy of the SBX operator, we have chosen a test bed of
12 functions, of which nine are taken from other sources. The test functions
range from single-variable functions to multi-variable functions, from uni-
modal functions to multimodal functions, and from deterministic functions
to stochastic functions. Finally, a two-variable blocked function is included
to compare the performance of real-coded GAs with SBX and binary-coded
GAs with single-point crossover on a difficult function.

A real-coded GA is implemented using the C programming language. The
initial population of variable vectors is created in an initial range of variables
supplied by the user. However, in subsequent generations, the population is
not guaranteed to be confined to the given range, because the SBX operator
has a nonzero (albeit small) probability of creating children points far away
from the parent points. This is advantageous in problems where the location
of the true optimum is not known beforehand. We demonstrate this flexibility
of real-coded GAs with the SBX operator in test problems by initializing the
population far away from the true optimum. However, this feature of the
SBX operator is redundant for problems where the lower and upper limits
of the variables are absolutely known. We discuss a simple modification
to this SBX operator to confine the search to the given range in section 6.
In all our simulations, we allow the SBX to create any point in the real
space with probability distributions given in equations (19) and (20). In
order to investigate the effect of the probability distribution of contracting
and expanding crossovers in the SBX operator, we present simulation runs
with a number of different exponent values n. Recall that for small values
of the exponent n, children points far away from the parent points can be
obtained, but for large n, only points closer to the parent points are likely to
be obtained. Mutation is not used to primarily investigate the search power
of the SBX operator alone. Four different criteria are used to terminate the
search process. A simulation run is terminated if any one (or more) of them
is satisfied. Here are the four criteria.

1. The best individual in the population is close to the true optimal point
with a small termination margin € in all problem variables. In this case,
we assume that the GA has found the true optimal point.

2. The function value of the best individual in the population is smaller
than or equal to a target function value fp. In this case, we assume
that the GA has converged near the true optimal solution.

132 Kalyanmoy Deb and Ram Bhushan Agrawal

3. All individuals in the population have converged to a small neighbor-
hood (within a small margin € in all problem variables) to a point other
than the global optimum point. In this case, a premature convergence
occurs.

4. The number of generations has exceeded a specified large number Tyay.
In this case, the GA has not converged to any solution at all.

Unless specified, all simulations use a target function value fr equal to
the function value at the global optimum point and a Ty, value equal to
200. The performance of real-coded GAs with the SBX operator is compared
with BLX-0.5 and with single-point crossover. In all simulations, a binary
tournament selection without replacement and a crossover probability of 1.0
are used. The average number of function evaluations required to successfully
solve a problem (when either criterion 1 or 2 above is satisfied) is tabulated
for each problem. Other GA parameters are mentioned in the description of
the simulation results.

5.1 V function

This function is a single-variable function defined in the range 0 < 2z < 1
from [8]. The function has only one minimum point at « = 0.5:

fi(z) = |z —0.5]. (21)

First, the binary-coded GAs are used. With a string length of 30 and a
population size of 50, binary-coded GAs with the single-point crossover oper-
ator find a point with six decimal places of accuracy (e = 107%) only 23 out of
100 times. In the other 77 runs, GAs have converged prematurely to a point
close to the true optimum, but not as close as within € from the optimum.
The average function value of the best individual in all 100 runs is found
to be 0.0015, which is very close to the function value of the true optimum
(ff = 0.0). It is important to note that the minimum point of the above
V function corresponds to a Hamming cliff in the binary coding used, but
with € = 107% there are about 2147 strings representing the region (0.5 — ¢,
0.5 + €). However, the presence of Hamming cliffs is one of the problems of
the binary coding, as encountered by other researchers (e.g., [16]).

Real-coded GAs with the SBX operator are applied next. A summary
of the simulation results is tabulated in Table 2. A termination margin of
€ = 107% was used. The advantage of real-coded GAs over binary-coded GAs
in this problem is largely due to the Hamming cliff at the optimum point.
The results also show that the real-coded GAs with the SBX operator find
the optimum point in all simulations within the chosen tolerance. When
even a smaller termination margin (up to the computer’s machine precision)
is used, a similar performance of SBX is observed. This demonstrates the
ability of real-coded GAs to overcome the precision problem of binary-coded
GAs. Note that the performance of the SBX operator remains the same for
different values of the exponent n. But for a large m, a greater number of
function evaluations are required to find the optimum point.

Simulated Binary Crossover for Continuous Search Space 133

Table 2: Simulation results of GAs with different crossover operators
on the V function are tabulated. The number in parentheses in column
six indicates the number of times GAs did not converge to any point

at all.
Performance of 100 runs
Operator Range Popsize | n or £ | Success | Prem. conv. | Avg. Trials
T-pt 0,1) 50 30 23 7 834.8
SBX (0,1) 50 0 100 0 929.5
2 100 0 748.5
5 100 0 818.5
100 0 100 0 1739.0
2 100 0 1396.0
5 100 0 1321.0
BLX-0.5 0,1) 50 100 0 746.0
100 100 0 1368.0
SBX (0.9,1) 50 0 100 0 1279.5
2 100 0 2018.5
BLX-0.5 (0.9,1) 50 24 76 2604.2
SBX (0.9999,1) 50 0 100 0 1790.0
2 100 0 4318.0
BLX-0.5 | (0.9999,1) | 50 0 61(39)

The success rate of the BLX-0.5 operator on this problem is equal to that
of SBX. Since the SBX operator performs expanding crossovers about half of
the time and searches a larger region than BLX-0.5, the function evaluations
required to solve the given problem is fewer when using the BLX operator.
But, when the same problem is solved with a population initialized in the
range (0.9,1.0), the performance of SBX is much better than that of the BLX-
0.5 operator. The success rate of SBX is the same as before, but the success
rate of BLX-0.5 reduces to about 25%. Recall that the minimum point does
not lie in the range where the initial population is created. In order to find
the optimum point, the search operator has to search outside this range.
Obviously, the binary-coded GAs will fail to find the true optimum in this
case because of the fixed mapped coding of the variable. The search power
of SBX is further tested by starting with populations confined in the region
(0.9999,1.0000). The same termination margin of 107° is used. With SBX,
the expanding crossovers find better points outside the initial range and the
whole population migrates towards the true optimum. The success rate of
SBX is again 100% in this case, whereas BLX-0.5 performs poorly.

5.2 V-cliff function

This function from [8] is similar to the V function, except that it has a
discontinuity at the minimum point (z* = 0.5):

0.6 —z, ifz <0.5;

fa(z) = { z— 0.5, otherwise. &

134 Kalyanmoy Deb and Ram Bhushan Agrawal

Table 3: Simulation results of GAs with different crossover operators
on the V-cliff function are tabulated. The number in parentheses in
column six indicates the number of times GAs did not converge to
any point at all.

Performance of 100 runs
Operator Range Popsize | n or £ [Success [Prem. conv. | Avg. Trials
1-pt (0,1) 50 30 16 84 840.6
SBX (0,1) 50 0 88 0(12) 2015.9
2 100 0 1382.0
5 58 42 1191.4
BLX-0.5 (0,1) 50 100 0 1726.0
SBX (0.9999.,1) 50 0 88 0(12) 2795.5
1 100 0 3253.0
2 74 2(24) 7147.3
BLX-0.5 | (0.9999,1) 50 0 62(38)

The tolerance parameter ¢ = 107% is used again. Table 3 shows the perfor-
mance of binary-coded GAs with the single-point crossover and real-coded
GAs with both SBX and BLX-0.5 on this function. The binary-coded GAs
with single-point crossover is not able to find a solution close to the true
optimum in 100% of the simulations. The performance of binary-coded GAs
is worse than for the simple V function because of the Hamming cliff at the
optimum point and the chosen termination criterion (the convergence can
practically occur from only one side of the optimum). The real-coded GAs
with the SBX operator, on the other hand, perform well for small values of
the exponent n. The deterioration in the performance of SBX with either
n = 0 or large n is due to the discontinuity at the optimum point. However,
the performance of BLX-0.5 is 100%, with slightly more function evaluations
than that of SBX with n = 2. Table 3 clearly shows that SBX is superior
to BLX-0.5 when the population is initialized far away from the minimum
point.

5.3 Bimodal, equal spread function

The bimodal function used here has two minimum points, with one being
better than the other. The basin of attraction for each minimum point is
identical to the other:

—exp(—(z — 0.25)2/0.01), if = < 0.5;

fs(z) = { —0.5exp(—(z — 0.75)2/0.01), otherwise. (23)

This function has a local minimum at z = 0.75 and a global minimum at
x = 0.25. The function values at the local and global minima are —0.5
and —1.0, respectively. This function is chosen to test whether or not real-
coded GAs with SBX can find the global minimum point. Table 4 compares
the performance of both GAs with a termination margin of ¢ = 107, The
performance of binary-coded GAs is inferior to that of real-coded GAs with

Simulated Binary Crossover for Continuous Search Space 135

Table 4: Simulation results of GAs with different crossover operators
on the function f3 are tabulated.

Performance of 50 runs
Operator | Range | Popsize | n or £ | Success | Prem. conv. | Avg. Trials
1-pt (0.0, 1.0) 100 20 49 1 765.3
50 30 20 1023.3
SBX (0.0,1.0) 100 0 50 0 870.0
2 50 0 660.0
5 50 0 642.0
BLX-0.5 | (0.0,1.0) 100 50 0 670.0
SBX (0.5,1.0) 100 0 4 46 4500.0
2 9 41 1400.0
5 1 49 1800.0

BLX05 | (0.5,1.0) 100 0 50

SBX or BLX-0.5. This happens because of problems related to the Hamming
cliff at the optimum point and fixed-length coding. In binary-coded GAs, a
larger population is required to achieve a desired solution accuracy for a
problem coded in a bigger string [6]. Once again, real-coded GAs with both
SBX and BLX-0.5 perform 100% of the time. Despite the presence of the
local optimum, real-coded GAs find the true optimum point with the desired
accuracy.

The performance of neither of the two real-coded GAs is good for runs
with adverse initial populations (i.e., with a population initialized in the local
basin). Since the population is initialized in the range (0.5,1.0), the global
minimum point z* = 0.25 is not included in the range. Thus, the binary-
coded GAs will not be able to find this minimum point with the above initial
populations because of fixed mapped coding. The performance of the real-
coded GAs with SBX is marginally better than with BLX-0.5. Since about
50% of the points are created outside the range enclosed by the parents,
a few points in the global basin are expected to be created by the SBX.
Since the binary tournament selection scheme and a p, = 1 are used in these
simulations, the selection pressure is not enough to maintain those points in
the global basin. When the crossover probability of the SBX is reduced to
p. = 0.5, the disruption of good points decreases and the success rate of SBX
increases to 34 out of 50 runs with n = 0 (with 2006 function evaluations).

5.4 Bimodal, unequal spread function

This function is a modification of the equal spread function. Here, the basin
of attraction of the global minimum is smaller than that of the local mini-
mum:

—exp(—(z —0.2)/0.04)%), if z < 0.3;

fa(z) = { —0.5exp(—(z — 0.6)/0.4)%), otherwise. ek

136 Kalyanmoy Deb and Ram Bhushan Agrawal

Table 5: Simulation results of GAs with different crossover operators
on the function f4 are tabulated. The number inside parentheses in
column six indicates the number of times the GA did not converge to
any point at all.

Performance of 50 runs

Operator | Range | Popsize | n or £ | Success | Prem. conv. | Avg. Trials
1-pt (0,1) 100 20 15 5 817.8
SBX | (0,1) 100 0 8 0(42) 450.0
2 40 6(4) 1117.5

5 50 0 730.0

10 50 0 688.0

BLX-0.5 | (0,1) 100 4 45(1) 1575.0

Table 5 compares the performance of single-point crossover, SBX, and BLX-
0.5 on this function. Compared to the equal spread function, the performance
of the binary-coded GAs with single-point crossover is marginally worse be-
cause the global basin is comparatively smaller. The performance of the
real-coded GAs with SBX operator remains unchanged except that the SBX
with a small exponent n does not work very well. The reason for its failure is
the same: an adverse initial population. Although some points in the global
basin are created, the selection pressure is not sufficient to maintain them in
subsequent generations.

The difference in performance of SBX and BLX-0.5 is clear in this func-
tion. Since the local basin occupies most of the search space, a large portion
of the initial random population is created in the local basin. About 45 out
of 50 GA simulations with BLX-0.5 get confined to the local basin and fi-
nally converge to the local optimal solution. Even though some points are
created in the global basin, they are difficult to maintain in the population
because of the large disruption rate associated with the BLX-0.5 operator.
On the other hand, with SBX having a moderate n, the spread of the children
points created using SBX is not substantial. The population gradually shifts
towards the global basin and finally converges to the global optimum point.

5.5 Pole problem

The pole problem is a two-variable function having four minimum points,
of which one is the global minimum. The function is hypothetically consti-
tuted to have a light pole at each minimum point with a certain illumination
capability. The illumination is maximum at the pole and diminishes away
from the pole. When multiple poles are present in the search space, mixed
illumination results. For a given distribution of illumination levels in the
search space, the objective of the problem is to find the point with maximum

Simulated Binary Crossover for Continuous Search Space 137

Table 6: Parameters defining the pole function are shown.

)
1 2 3 4
z; 104 03 07 08
y; |03 0.7 02 038
¢ |10 1.0 1.0 1.125
h; 0.1 0.1 0.1 0.075.

Table 7: Simulation results of GAs with different crossover operators
on the function f5 are tabulated. The number inside parentheses in
column five indicates the number of times the GA did not converge
to any point at all.

Performance of 10 runs
Operator | Popsize | n or £ | Success | Prem. conv. | Avg. Trials
1-pt 200 20 6 4 3666.7
30 9 1 3977.8
40 8 2 2975.0
SBX 200 0 0 9(1)
2 8 2 3375.0
5 9 1 3200.0
BLX-0.5 200 3 7 2933.3

illumination. The problem can be written mathematically as follows:

s e cihi
Maximize fs(z,y) =) TR P o e T

i=1
where (z;,y;) represents the coordinates of the poles, ¢; represents the intensi-
ties of light at the ith pole, and h; represents the height of the ith pole. In the
parlance of optimization, the parameter (x;,y;) represents the ith optimum
point, ¢;/h? signifies the function value at the ith peak, and h; signifies the
basin of attraction of the ith peak. In the pole problem there are four peaks
having parameter values listed in Table 6. The optimization problem has a
global maximum point at z* = (0.8,0.8). Since this is a two-variable opti-
mization problem, the technique described in section 3.2 is used here. The
SBX operator is performed for each variable with a probability 0.5. This
causes about half of the variables (on an average) to undergo a crossover
operation. We follow this strategy for all multi-variable functions and for the
BLX-0.5 operator. Table 7 shows the performance of single-point, SBX, and
BLX on this problem for a termination margin ¢ = 1073,
We observe that real-coded GAs with the SBX operator (for n between
2 and 5) perform as good as the binary-coded GAs with the single-point

(25)

138 Kalyanmoy Deb and Ram Bhushan Agrawal

crossover. However, real-coded GAs with BLX-0.5 do not perform as well as
the other two GAs.

From these simulations, we observe that the BLX-0.5 operator performs
well only on well-behaved unimodal functions having a continuous search
space, but does not perform as well for problems with multiple optimum
points. Moreover, the focus of this paper is to compare the SBX operator used
in real-coded GAs with the single-point crossover operator used in binary-
coded GAs. Thus, in subsequent simulations, we compare single-point and
SBX operators only.

5.6 De Jong’s functions

All five of De Jong’s test functions [17] are tried next. The simulation results
for the single-point and the SBX operators are tabulated in Table 8.
Function-I is a three-variable unimodal function having a minimum point
at (0,0,0)T. In [17] the function is defined in the range —5.12 < z; < 5.12
for i = 1,2, and 3. In real-coded GAs with the SBX operator, points outside
this range may also be created. Thus, we assume that the function is also

Table 8: Simulation results of GAs with different crossover operators
on De Jong’s five functions are tabulated. The number inside paren-
theses in column seven indicates the number of times the GA did not
converge to any point at all.

Perform. of 50 runs
Premature Avg.
Function Tolerance | Operator | Popsize | n or £ | Success conv. Trials
Function-I 1072 1-pt 100 30 25 25 2532.0
SBX 100 0 50 0 2556.0
4 50 0 2190.0
10 24 26 2420.8
Function-IT 10—2 1-pt 100 24-40 0 50
SBX 0-20 0 50
Function-III 1.0 1-pt 100 20 50 0 560.0
50 50 0 720.0
SBX 0 50 0| 1256.0
5 50 0 722.0
Function-IV 0.16 1-pt 100 240 4 42(4) | 15200.0
SBX 0 0 0(50)
2 50 0 | 17032.0
5 50 0 9372.0
Function-V 0.1 1-pt 100 20 48 2 756.2
40 49 1 836.7
SBX 0 7 2(41) | 5014.3
5 36 14 1097.2
10 37 13 891.9

Simulated Binary Crossover for Continuous Search Space 139

defined outside the given range, but the initial population is created within
the range. The simulation results (tabulated in Table 8) show that GAs
with SBX are able to find the minimum point, with two decimal places of
accuracy, in all simulations for small values of n. The binary-coded GAs
with the single-point crossover find the minimum point in only 50% of the
simulations. These results for SBX are expected because the function is
unimodal and continuous in the real search space. In binary-coded GAs,
however, the minimum point falls in a Hamming cliff, which causes difficulty
to solve the problem in all of the simulations.

Function-IT is a two-dimensional minimization problem with the global
minimum at (1,1)T. The function was originally defined in the range —2.048 <
z1, 29 < 2.048 for binary-coded GAs [17]. For real-coded GAs, the initial
population is created in the given region. The results in Table 8 show that
both GAs cannot find the optimum point (1,1)T. In this function, the slope
towards the optimum point is very small and the population converges to
a point along the ridge. When the SBX operator is performed along a line
joining the two parents (similar to the line crossover in [9] but a point is cho-
sen with the polynomial probability distributions), near 100% convergence is
observed for n =1 to 3.

Function-III is a five-dimensional staircase like function where the func-
tion value is monotonically nondecreasing as the variables are increased. The
original function was designed for —5.12 < z; < 5.12 with 7 = 1 to 5. Since
the SBX operator may create children points outside this range, we have
modified the original function by taking the absolute value of the function
and creating the initial population in the range 0 < x; < 10.24. This results
in a minimum point at z; = 0. In order to make the comparison fair, binary
GAs are also run on this modified function in the range 0 < z; < 10.24.
Both GAs perform equally well on this function. It is interesting to note
that despite the function being discontinuous at many points in the search
space, the real-coded GAs with SBX are able to find the true optimum. This
is because the function is monotonically nondecreasing towards the optimum
point and because the population-approach of GAs does not allow them to
get stuck at any of the plateau.

Function-IV is a 30-dimensional unimodal function with a zero-mean
gaussian noise. The optimum point of the deterministic function is z; = 0
with ¢ = 1 to 30 having a function value equal to zero. But due to the
addition of the gaussian noise the optimum point, and hence the optimum
function value, changes. To decide the convergence to the optimum, we have
assumed a target function value of fr = —3.0. If any point has a function
value smaller than fr, the simulation is terminated. A termination margin
of € = 0.1 is used. Real-coded GAs with the SBX operator perform better
than the binary-coded GAs for n = 2 to 5, probably because the population
size used in the simulation is inadequate in the case of binary GAs.

Function-V is a 25-dimensional, multimodal function having 25 minimum
points, of which only one is the global minimum. The basin of attraction of
the global minimum point is very narrow; thus, the classical optimization

140 Kalyanmoy Deb and Ram Bhushan Agrawal

methods may have difficulty in solving the problem to global optimality.
Simulation results show the superiority of binary-coded GAs with the single-
point crossover on this function. Part of the success of binary-coded GAs
in this problem is due to the biased positioning of the optimum points in
equal intervals. When the locations of 25 optima are randomly placed, the
difference in the performance of binary-coded GAs and real-coded GAs is
small—binary-coded GAs succeed in only 64% of the simulations, whereas
real-coded GAs with SBX succeed in 54% of the simulations.

From these simulations we conclude that real-coded GAs with SBX have
performed better than binary-coded GAs on De Jong’s functions having con-
tinuous search space while performing similar to binary-coded GAs on dis-
crete De Jong’s test functions. In order to bolster our conclusions further,
we apply the SBX operator to two more functions.

5.7 Rastrigin’s function

Rastrigin’s function has been used recently by a number of GA researchers
(e.g., [18,19]). The function has 20 variables and contains 10%° local minimum
points, of which only one is the global minimum point:

20
Sfu(x) =200+ fo — 10cos(2mz;), —5.12 < z; <5.12. (26)

=1

The global minimum point is at z; = 0 for all ¢« = 1,2,...,20. At this
point, the function value is zero. The other local minima occur when the
cosine term is one. This function is a difficult optimization problem because
there are 22 different local optimal points (surrounding the global optimum)
with function values very close to that at the global optimal point. We set
€ = 0.1 and the target function value fr = 1.0. This allows a termination of
the simulation when at least 19 out of 20 variables have converged to their
global minimum values.

Binary-coded GAs with equal substring length for all variables are applied
first. In all ten simulations, binary-coded GAs prematurely converge to a
wrong solution (see Table 9). The average function value of the best solution
in all ten simulations is found to be 11.32. Real-coded GAs with the SBX
operator perform better than binary-coded GAs. The average function value
of the best solution in all simulations is 6.81 for n = 2 and 3.77 for n = 10,
which are comparable to those obtained for binary-coded GAs. The success of
real-coded GAs in this problem is due to the controlled allocation of children
points under the SBX operator. With moderate n, the children points are
not far away from the parent points. So the search slowly progresses towards
the optimum point. It is worth mentioning here that with a tolerance of 0.1
in each of the 20 variables, an enumerative search method requires about
[(5.12 — (—5.12))/0.1]* or 1.48(10%°) function evaluations. Real-coded GAs
took only a fraction of this search space to locate a near global minimum
point. These results show the efficacy of real-coded GAs with the SBX
operator in solving multi-variable, multimodal functions.

Simulated Binary Crossover for Continuous Search Space

Table 9: Simulation results of GAs with different crossover operators
on the function fi; are tabulated. The number inside parentheses in
column five indicates the number of times the GA did not converge
to any point at all.

Performance of 10 runs

Operator | Popsize | n or £ | Success | Prem. conv. | Avg. Trials
Binary 400 200 0 10
300 0 10
SBX 400 0 0 0(10)

2 10 0 49,680.0

5 6 4 39,866.7

10 10 0 28,000.0

20 10 0 23,360.0

5.8 A two-variable blocked function

141

A two-variable blocked function is designed as suggested in [10]. The mean
(over 1) and global slice (at z7) of the function are shown plotted in Figure 8.
The global maximum point lies at the point (0.4,0.45)T. Two local hills are
placed on either side of the global optimum. In the global slice (taken at
x1 = 0.4), the global maximum point is surrounded by two local maximum
points, but the average slice (averaged on x; values) is predominant by the
local peaks. It is interesting to note that the search along the variable z; is
unimodal. Thus, the population is expected to converge at z; = 0.4. Once
most of the population converges on or near x; = 0.4, the search progresses

e i T et
.

-

[obips e S o o T

Mean slice
Global slice

.2 03 04 05 0.6 0.7 0.8

0.9 1.0

Figure 8: The mean slice and global slice (at z*) of the function fi2
are shown. The average function value over the search space is 0.287.

142 Kalyanmoy Deb and Ram Bhushan Agrawal
Table 10: Parameters defining the blocked function f19 are shown.
7
1 2 3 4 5
a; | 0.002 0.0025 0.014 0.003 0.0028
b; | 0.002 0.0020 0.003 0.001 0.0010
¢ | 0.1 0.9 0.45 0.27 0.65
r; | 0 0 10 10 10
Table 11: Simulation results of GAs with different crossover operators
on the function fi5 are tabulated. The quantity in column five in
parentheses indicates the number of times GAs have converged to the
global basin, but not to the global optimum point.
Performance of 50 runs
Operator | Popsize | n or £ | Success | Prem. conv. | Avg. Trials
Binary 100 20 5 45(27) 1,480.0
30 15 35(27) 1,753.3
50 6 44(32) 1,616.7
SBX 100 0 42 8(0) 2,323.8
2 47 3(0) 1,872.3
5 40 10(1) 1,677.5

along the global slice. Since the population converges to the extreme local
peaks, it becomes difficult for classical algorithms to find the global point.
The function is given as:

(27)

5
e
= —(2z; — 0.4)? : .
fual@1, 22) (z U ; b+ 7i(z1 — 0.4)2 + (z2 — ¢;)?

The parameters listed in Table 10 are used.

Simulation results with binary-coded and real-coded GAs are tabulated
in Table 11. Although the binary-coded GAs with single-point crossover
converge to the global optimum point (with three decimal places of accu-
racy) only 5 to 15 times, they converge to the global basin in about 80% of
the simulations. Similar results are observed with the real-coded GAs with
SBX; in at least 80% of the runs, they have converged to the global maxi-
mum point. In all successful simulations of real-coded GAs, it is observed
that the variable x; converges to the true optimal value first, as predicted
in [10]. Subsequently, the search along the global slice continues and the
population located at two extreme optima improves gradually and can over-
come the barrier of the local peaks to finally converge at the global optimum.
Whenever real-coded GAs have failed to find the global optimum point, the

Simulated Binary Crossover for Continuous Search Space 143

convergence to the variable z5 has occurred first. When this happens, the
population shifts in any one or both of the peaks shown on the mean slice
plot (dashed line) in Figure 8. Since the function on z; is unimodal with its
maximum at z; = 0.4, the solution converges to a wrong solution.

Further experiments are necessary to conclude how the proposed algo-
rithm will work on higher-dimensional blocked functions, but the simulation
results on the given two-variable blocked function show that although the
SBX operator works on real parameter values, its search power in solving the
function is similar to that in the single-point crossover.

6. Extensions

The preceding simulations open a number of avenues for further research.
Some of them are suggested in the following.

1. Extend SBX to solve problems with specified bounded search space.

2. Choose other forms of probability distributions for contracting and ex-
panding crossovers.

Develop a real-coded mutation operator.
Apply SBX to real-world optimization problems.

Develop real-coded crossover operators simulating other binary crossovers.

S

Estimate a population sizing which may lead to a convergence proof of
real-coded GAs.

7. Extend real-coded GAs with SBX to solve multimodal and multiobjec-
tive optimization.

In the present study, we have allowed the children points to lie any-
where between negative infinity and positive infinity. In certain problems,
the search space could be bounded. For example, if the length of a mem-
ber in an engineering component design is a variable, negative values of the
variable do not make sense. The SBX operator used in this study does not
always guarantee a child point with a positive value, even though both par-
ents may have positive values. The contracting and expanding probability
distributions can be modified so that the probability of creating points out-
side a given bound is zero, while maintaining the same characteristics of the
probability distribution. One way to achieve this is that for any two given
parent points, the cumulative probability of the children points within the
given bound is first calculated. If this probability is, say, a, the probabil-
ity distribution function is multiplied by a factor 1/a, so that the overall
probability for points within the bounds is equal to one.

The probability distribution for contracting crossover used in this paper is
a polynomial function to the spread factor. This distribution is used to reduce
the computations required in each crossover operation. Other functional

144 Kalyanmoy Deb and Ram Bhushan Agrawal

forms of the probability distributions can also be used, but care must be
taken to choose a distribution that is similar in form to that given in Figure 4.
In this respect, a gaussian-like distribution with mean at f = 1 and variance
o2 chosen to have at most 430 points within a specified bound can also be
used.

In this paper, we investigated the effect of the crossover alone, keeping the
mutation probability zero. In order to maintain diversity in the population,
a mutation operator can be used. In real-coded GAs, the mutation operation
can be achieved by choosing a neighboring point in the vicinity of the current
point. This can be implemented by fixing an explicit probability distribution,
or by adopting the methods used in other population-based real-coded studies
(e.g-, [12]).

The present study shows that the use of real-coded GAs is preferred to
binary-coded GAs for problems with continuous search space and for prob-
lems where arbitrary precision is desired. Many engineering design optimiza-
tion problems contain mixed variables—both discrete and continuous. The
classical optimization methods do not perform very well in solving those kinds
of problems (known as mixed integer programming problems). GAs with a
combination of both binary coding (for discrete variables) and real coding
(for continuous variables) can be used to solve these problems efficiently.
The crossover operation can be performed as follows. A variable is first cho-
sen for crossover. If a discrete variable needs to be crossed, the single-point
crossover, or another binary operator, can be used for the bits representing
that variable only. But if a continuous variable needs to be crossed, the
SBX operator can be used. This way the resulting string will also be a valid
string. We are currently applying this technique to truss-structure optimiza-
tion problems, where optimization of truss topology (represented by binary
variables) and cross-section of members (continuous variables) are achieved
simultaneously, an approach which is ideal but cannot be achieved using
classical optimization methods.

The SBX operator developed here is based on the probability distribu-
tion of children strings in a single-point crossover. Similar probability dis-
tributions (i.e., a function of the spread factor () can also be obtained for
multi-point and uniform crossovers and other similar real-coded crossovers
can be designed. Probability distributions similar to the one developed here
are expected, it may be interesting to investigate whether they turn out oth-
erwise. Depending on the outcome of that analysis, the issue of superiority
of one crossover over another can be resolved, particularly in the context of
the application of GAs to continuous variables.

Throughout this study, reasonable values of the population size are used.
As demonstrated elsewhere (e.g., [6]), proper population sizing is important
for the successful working of GAs. That study also suggested a population
sizing based on the ratio of the difference in detectable function values to the
variance of the function. An attempt can be made to derive a population
sizing for real-coded GAs from a similar viewpoint. In binary-coded GAs, the
major difficulty towards achieving a convergence proof lies in the mechan-

Simulated Binary Crossover for Continuous Search Space 145

ics of the crossover operator. Although the mechanics of the single-point
crossover (or for that matter, any other binary crossover operator) is simple,
their mathematical modeling becomes difficult. Any convergence proof of a
stochastic process involves the calculation of transition probabilities. Since
in the SBX operator, a direct probability distribution of children points for
any given pair of parent points is used, the proof of convergence of GAs may
become easier.

The success of binary GAs in many single-objective, unimodal problems
has led researchers to extend the applicability of GAs to other types of op-
timization problems, namely multimodal and multiobjective function opti-
mization problems. In order to find multiple optimal solutions simultane-
ously, sharing functions are used to create artificial fitness values, which
are then used in the reproduction operator (e.g., [20,21]). In order to find
multiple Pareto optimal points for multiobjective function optimization, the
concept of nondomination is used to create artificial fitness values, which are
again used in the reproduction operator (e.g., [22]). Since only reproduction
operators need modified to solve the above problems, similar reproduction
techniques can be used along with the SBX operator used in this study to
investigate the efficacy of real-coded GAs in multimodal and multiobjective
problems defined on a continuous search space.

7. Conclusions

In this paper, a real-coded crossover operator has been developed based on
the search characteristics of a single-point crossover used in binary-coded
GAs. In order to define the search power of a crossover operator, a spread
factor has been introduced as the ratio of the absolute differences of the
children points to that of the parent points. Thereafter, the probability
of creating a child point for two given parent points has been derived for
the single-point crossover. Motivated by the success of binary-coded GAs
in problems with discrete search space, a simulated binary crossover (SBX)
operator has been developed to solve problems having continuous search
space. The SBX operator has search power similar to that of the single-point
Crossover.

On a number of test functions, including De Jong’s five test functions, it
has been found that real-coded GAs with the SBX operator can overcome a
number of difficulties inherent with binary-coded GAs in solving continuous
search space problems—Hamming cliff problem, arbitrary precision problem,
and fixed mapped coding problem. In the comparison of real-coded GAs with
a SBX operator and binary-coded GAs with a single-point crossover operator,
it has been observed that the performance of the former is better than the
latter on continuous functions and the performance of the former is similar
to the latter in solving discrete and difficult functions. In comparison with
another real-coded crossover operator (i.e., BLX-0.5) suggested elsewhere,
SBX performs better in difficult test functions. It has also been observed
that SBX is particularly useful in problems where the bounds of the optimum

146 Kalyanmoy Deb and Ram Bhushan Agrawal

point is not known a priori and where there are multiple optima, of which
one is global.

Real-coded GAs with the SBX operator have also been tried in solving
a two-variable blocked function (the concept of blocked functions was intro-
duced in [10]). Blocked functions are difficult for real-coded GAs, because
local optimal points block the progress of search to continue towards the
global optimal point. The simulation results on the two-variable blocked
function have shown that in most occasions, the search proceeds the way as
predicted in [10]. Most importantly, it has been observed that the real-coded
GAs with SBX work similar to that of the binary-coded GAs with single-point
crossover in overcoming the barrier of the local peaks and converging to the
global basin. However, it is premature to conclude whether real-coded GAs
with SBX operator can overcome the local barriers in higher-dimensional
blocked functions.

These results are encouraging and suggest avenues for further research.
Because the SBX operator uses a probability distribution for choosing a child
point, the real-coded GAs with SBX are one step ahead of the binary-coded
GAs in terms of achieving a convergence proof for GAs. With a direct prob-
abilistic relationship between children and parent points used in this paper,
cues from the classical stochastic optimization methods can be borrowed to
achieve a convergence proof of GAs, or a much closer tie between the classical
optimization methods and GAs is on the horizon.

Acknowledgment

This work is funded by the Department of Science and Technology, New
Delhi under grant SR/SY /E-06/93.

References

[1] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine
Learning (Addison-Wesley, Reading, 1989).

[2] Kargupta, H., Deb, K., and Goldberg, D. E., “Ordering Genetic Algorithms
and Deception,” in Parallel Problem Solving from Nature II, edited by R.
Manner and B. Manderick (North-Holland, Amsterdam, 1992).

[3] Radcliffe, N. J., “Genetic Set Recombination,” in Foundations of Genetic
Algorithms II, edited by D. Whitley (Morgan Kaufmann, San Mateo, 1993).

[4] Goldberg, D. E., Korb, B., and Deb, K., “Messy Genetic Algorithms: Moti-
vation, Analysis, and First Results,” Complex Systems, 3, (1989) 493-530.

[5] Goldberg, D. E., Deb. K., Kargupta, H., and Harik, G., “Rapid, Accurate
Optimization of Difficult Problems Using Messy Genetic Algorithms,” in Pro-
ceedings of the Fifth International Conference on Genetic Algorithms, edited
by S. Forrest (Morgan Kaufmann, San Mateo, 1993).

Simulated Binary Crossover for Continuous Search Space 147

(6]

[7]

[l

[10]

[11]

[12]

13]

[14]

[17]

Goldberg, D. E., Deb, K., and Clark, J. H., “Genetic Algorithms, Noise, and
the Sizing of Populations,” Complez Systems, 6, (1992) 333-362.

Radcliffe, N. J., “Forma Analysis and Random Respectful Recombination,”
in Proceedings of the Fourth International Conference on Genetic Algorithms,
edited by R. K. Belew and L. B. Booker (Morgan Kaufmann, San Mateo,
1991).

Eshelman, L. J. and Schaffer, J. D., “Real-coded Genetic Algorithms and
Interval Schemata,” in Foundations of Genetic Algorithms II, edited by D.
Whitley (Morgan Kaufmann, San Mateo, 1993).

* in Foun-

Wright, A., “Genetic Algorithms for Real Parameter Optimization,’
dations of Genetic Algorithms, edited by G. J. E. Rawlins (Morgan Kaufmann,

San Mateo, 1991).

Goldberg, D. E., “Real-coded Genetic Algorithms, Virtual Alphabets, and
Blocking,” Complex Systems, 5, (1991) 139-168.

Rechenberg, 1., FEwolutionstrategie: Optmierung technisher Systeme
nach Prinzipien der biologischen FEwvolution (Frommann-Holzboog Verlag,
Stuttgurt, 1973).

Back, T., Hoffmeister, F., and Schwefel, H-P., “A Survey of Evolution Strate-
gies,” in Proceedings of the Fourth International Conference on Genetic Al-
gorithms, edited by R. K. Belew and L. B. Booker (Morgan Kaufmann, San
Mateo, 1991).

Aarts, E. and Korst, J., Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing
(Wiley, Chichester, 1989).

Booker, L. B., “Recombination Distribution for Genetic Algorithms,” in Foun-
dations of Genetic Algorithms, edited by D. Whitley (Morgan Kaufmann, San
Mateo, 1993).

Syswerda, G., “Uniform Crossover in Genetic Algorithms,” in Proceedings of

the Third International Conference on Genetic Algorithms, edited by J. D.
Schaffer (Morgan Kaufmann, 1989).

Dayvis, L., “Bit-climbing, Representational Bias, and Test Suite Design,” in
Proceedings of the Fourth International Conference on Genetic Algorithms,
edited by R. K. Belew and L. B. Booker (Morgan Kaufmann, San Mateo,
1991).

De Jong, K. A., “An analysis of the Behavior of a Class of Genetic Adaptive
Systems,” (doctoral dissertation, University of Michigan, Ann Arbor, 1975).
Dissertation Abstracts International, 36(10) 5140B (University Microfilms No.
76-9381).

148 Kalyanmoy Deb and Ram Bhushan Agrawal

[18] Muhlenbein, H., Schomisch, M., and Born, J., “The Parallel Genetic Algo-
rithms as Function Optimizer,” in Proceedings of the Fourth International
Conference on Genetic Algorithms, edited by R. K. Belew and L. B. Booker
(Morgan Kaufmann, San Mateo, 1991).

[19] Gordon, V. S. and Whitley, D., “Serial and Parallel Genetic Algorithms as
Function Optimizers,” in Proceedings of the Fifth International Conference
on Genetic Algorithms, edited by S. Forrest (Morgan Kaufmann, San Mateo
1993).

[20] Deb, K., “Genetic Algorithms in Multimodal Function Optimization,” TCGA
Report No. 89002 (University of Alabama, Tuscaloosa, 1989).

[21] Goldberg, D. E., and Richardson, J., “Genetic Algorithms with Sharing for
Multimodal Function Optimization,” in Proceedings of the Second Interna-
tional Conference on Genetic Algorithms, edited by J. J. Grefenstette (Mor-
gan Kaufmann, San Mateo, 1987).

[22] Srinivas, N. and Deb, K., “Multiobjective Function Optimization using Non-
dominated Sorting in Genetic Algorithms,” Evolutionary Computation, 2(3),
1995, 221-248.

