
Using a Genetic Algorithm to Explore A*-like Pathfinding

Algorithms

Ryan Leigh, Sushil J. Louis, and Chris Miles

Evolutionary Computing Systems Lab

Dept. of Computer Science and Engineering

University of Nevada, Reno

{leigh, sushil, miles}@cse.unr.edu

Abstract— We use a genetic algorithm to explore the space of
pathfinding algorithms in Lagoon, a 3D naval real-time strategy
game and training simulation. To aid in training, Lagoon tries
to provide a rich environment with many agents (boats) that
maneuver realistically. A*, the traditional pathfinding algorithm
in games is computationally expensive when run for many
agents and A* paths quickly lose validity as agents move.
Although there is a large literature targeted at making A*
implementations faster, we want believability and optimal paths
may not be believable. In this paper we use a genetic algorithm
to search the space of network search algorithms like A* to
find new pathfinding algorithms that are near-optimal, fast, and
believable. Our results indicate that the genetic algorithm can
explore this space well and that novel pathfinding algorithms
(found by our genetic algorithm) quickly find near-optimal,
more-believable paths in Lagoon.

Keywords: Genetic Algorithms, A*, Pathfinding

I. INTRODUCTION

Navigating safely in a game or training simulation is a

challenging problem. Complexities such as moving obstacles,

physics, and a changing environment can cause danger for

entities attempting to find safe passage. As an agent AI

testbed, we are developing Lagoon, a real-time 3D naval

combat and training simulation. For training purposes, a

naval instructor would use Lagoon to present lessons to

students on how to identify and manage risks on the sea or

in the harbor. The agents in the simulation need to act like

humans similar scenarios for lessons learned in the training

simulation to translate to real-life. Believable pathfinding is

a critical component for creating these believable agents [1],

[2].

Our previous work used a Genetic Algorithm (GA) to tune

behavior-based controllers [3], [4] to maneuver through a 2D

naval simulation [5]. The agent in the 2D simulation provided

a baseline for future work in Lagoon. While GA-tuned agents

performed well, the reactive obstacle avoidance of agents in

the 2D simulation had difficulties passing through narrow

channels. In this paper, we investigate pathfinding algorithms

to provide high-level planning for the agents so that they can

be better employed in Lagoon.

Pathfinding algorithms are a subset of net search algo-

rithms [6]. Nets consist of nodes, links connecting nodes, and

application-specific link labels. These three parts combine to

give application specific semantics to networks. Nets can be

used to describe many things, from the procedures robots

use to operate, to relatedness of ingredients in a recipe.

Searching these example nets can produce the steps necessary

for the robot to overcome an obstacle or find new recipes.

Pathfinding is often used in the context of games where nets

represent the game map. Our research can apply to any net

search problem, but in this paper, we focus on pathfinding

in games.

A* is the de facto pathfinding algorithm for games that

combines dynamic programming and an admissible distance

heuristic to trim search. It typically takes longer to complete

than one time cycle of the game. By the time a path is found,

the position of entities could be different or the environment

may have changed, rendering the path inaccurate or even

hazardous. Therefore, we would need to run A* as often as

possible for every entity, a heavy computational burden. The

paths may also look unrealistic. A* may choose “shortcuts”

that a human would never consider, play it safe when a

human would take a risk, or find paths that can feel rough

or too angular as shown in Figure 1.

Fig. 1. Results from an A* search

We seek to resolve these time and believability issues by

using a GA to explore the space of pathfinding algorithms.

We intend to address the following questions: How can A* be

modified to find near-optimal paths quicker? What heuristics

can lead to these paths? How can A* find believable paths?

Can search progress if we limit processing time for the

algorithm to short periods? Our results show that our GA-

Manufactured Maneuvering Algorithm (GAMMA) can make

significant performance gains over A* in time taken to find

72

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

Fig. 2. A net of nodes and edges

a path while staying near-optimal and believable.

This paper is organized as follows: the next section pro-

vides background on the type of search we use as well

as related work. Section III describes our 2D simulation.

Sections IV and V describe the parameters of the GA and the

experiments we performed. Section VI contains the results.

We have discussion and future work in Section VII and

finally summarize in Section VIII.

II. BACKGROUND

A. The A* algorithm

A* is the de facto pathfinding algorithm that, under the

right conditions, guarantees to find a path with the lowest

possible traversal cost. A* and other pathfinding algorithms

work on a net. Figure 2 shows an example of a net, a

collection of nodes connected by links. Each link has a value

(shown as an integer) which is the cost incurred by traversing

that edge. Pathfinding algorithms try to find a sequence of

nodes from a start node to a goal node having the lowest

traversal cost.

A* works by building all paths that lead to the goal, one

path at a time and starts by ranking each partial path currently

in consideration via the following formula [6], [7]:

f(x) = g(x) + h(x) (1)

where x is some partial path, f is the estimated final

cost of path through x to the goal, g is the known cost to

traverse to x, and h is the estimate of remaining distance

to the goal from the end of x. The guarantee of lowest cost

paths only applies if the remaining estimate to the goal is

an underestimate. A* then uses the procedure in Figure 3 to

find the optimal path.

B. Heuristics

The performance of A* relies heavily upon the estimate

of remaining distance to the goal, called a heuristic. For A*

to find the shortest path, the heuristic must underestimate

the remaining distance. When A* finds a possible path to

the goal, if all other partial paths’ lengths plus the remaining

estimated distance measures more than another path found to

the goal, then that path found is optimal. The optimal path

can never have a shorter length than an underestimate. If

the heuristic can make overestimates, then A* may discard a

shorter path because the partial path’s current distance plus

• Form a one-element queue consisting of a zero-

length path that contains only the start node.

• Until the first path in the queue terminates at the

goal node or the queue is empty,

– Remove the first path from the queue; create

new paths by extending the first path to all

the neighbors of the terminal node.

– Reject all new paths with loops.

– If two or more paths reach a common node,

delete all those paths except the one that

reaches the common node with the mini-

mum cost.

– Sort the entire queue using Formula 1, with

the least-cost paths in front.

• If the goal node is found, announce success;

otherwise announce failure.

Fig. 3. Pseudo-code for A* algorithm [6]

the overestimate would make it longer than the path found

to the goal.

We do not need an optimal path, just a safe, near-optimal

path, so an overestimate may provide quicker results. It could

push the search into areas that may have a higher cost to

travel through, yet take less time to explore or provide more

believable paths. With this in mind, we used four distance

heuristics, three of which are illustrated in Figure 4.

Fig. 4. Heuristics: (a) Euclidean, (b) Diagonal Shortcut, (c) Manhattan
Block

As the figure shows, we divide the world into unit cells.

We measure the distance of moving straight up, down, left,

or right as 1 unit and a diagonal move as 1.4 units. The

diagonal of a unit square measures
√

2 which approximately

equals 1.4. Many computers operate faster with integers than

floating point numbers, so we multiply the unit distances

by 10 to get integer constants — 10 and 14. All distances

become 10 times longer than their actual distance but still

compare similarly when measured relative to each other.

Euclidean distance, our first heuristic, is the straight line

distance between two points but is computationally expensive

as each calculation involves two powers and a single square

root. Equation 2 shows the formula to measure the distance

where (xpath, ypath) is the point at the end of the path

and (xgoal, ygoal) is the goal. This heuristic guarantees to

underestimate, because the shortest distance between two

points is a straight line. We can make it overestimate by

omitting the square root while also reducing the run-time.

This is our second heuristic.

73

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Distance =
√

(xpath − xgoal)2 + (ypath − ygoal)2 ∗ 10 (2)

The diagonal shortcut heuristic measures at a 45 degree

angle until it reaches the same axis as the goal and then

measures the remaining distance in a straight line. The

diagonal shortcut method takes less computational time than

Euclidean distance because it only uses addition and subtrac-

tion. Equation 3 shows the formula if the vertical distance

(dy) between the path end and goal is greater than the

horizontal distance (dx).

Distance = 14 ∗ dy + 10 ∗ (dx − dy) (3)

We use the Manhattan block heuristic as our last heuristic.

It sums the vertical and horizontal distance traveled to get to

the goal. Manhattan Block get its name because one might

move that way on city blocks. Of the four heuristics, this is

the quickest, but it can overestimate if the simulation allows

diagonal moves as ours does.

C. A* modifications

By the time A* finds a complete path to the goal, the

environment may have changed. To help prevent this, we only

allow our GAMMAs to plan a limited distance by limiting

search to short time phases. For this research, each GAMMA

can only expand a limited number of paths for each phase

and at the end, the start location is moved to the end of

the best path found in that phase. Pathfinding then begins

anew. Phases are based on the number of nodes expanded

and not on an actual time limit so that we can repeat

the experiment. Running the same GAMMA over different

runs may result in different final running times because of

background processes running along with the GA on the

same machine. The GAMMA’s run-time factors heavily into

its fitness, thus the same GAMMA may receive a different

fitnesses over different runs of the GA. By using the number

of paths expanded to measure run-time, we have a machine

independent measurement that is still a fair representation of

actual run-time.

Phasing can cause infinite loops because it can put the

algorithm into an area that it cannot find a path out of within

the time limit. We introduce a global time limit over all

phases and individuals that take longer than the allotted time

get penalized.

We also introduce the idea of end-path sampling. Rather

than sum the cost of the entire path, the GAMMA could

only use the last few nodes. The GA determines whether or

not to use sampling, how many nodes to use, and a possible

multiplier. This also means the GAMMA could sample no

nodes at all and judge paths based solely on the heuristic.

Lastly, we give the GA two more ways to change A*: how

new paths are added and in what order. First, newly expanded

paths can either be added to the top or bottom of the list of

previously expanded paths. Second, the order that paths get

expanded can be reversed, so that new paths get added to the

list first to last or last to first. Both modifications can change

which path gets chosen when choosing between paths with

the same evaluation cost.

D. Risk zones

Risk zones add additional cost to nodes around the entity.

This additional cost pushes the GAMMAs away from these

risk zones. Each entity has 16 arc zones round the perimeter

of the entity, with the first arc starting at the front as shown

in Figure 5. Each zone has a radius and a risk value which

is the additional cost a path incurs by moving through a

node in that zone. A shorter path that moves through a risk

zone will likely have a higher cost than a longer path that

moved around the risk zone. The GA tunes these zones to

shape the GAMMAs’ paths closer to the human-like path.

For example, longer zones in the front while shorter zones

in the back would allow the GAMMA to pass closer to the

rear of the entity than the front without incurring additional

risk. If a path lies in a risk zone, the additional cost due

to risk equals maxDistance − currentDistance, where

currentDistance is the distance from the path node to the

entity and maxDistance is the furthest a zone can extend.

To help round out the risk zones, for example if adjacent

zones very greatly in length, we average zone lengths using

the following formula:

zonei,final =
zonei−i + zonei + zonei+1

3
(4)

where i is a particular zone. Only initial values for

surrounding zones are used for the average. Figure 6 shows

the zones as they appear in the simulation.

Fig. 5. Diagram of zones around an obstacle

E. Related Work

Many methods have been used in the past to speed up A*.

Iterative Deepening A* (IDA*) uses no storage and uses a

depth-first, iterative-deepening search of the net [8]. IDA*

works by doing depth-first search, calculating the path cost

using Formula 1. The search continues recursively until a

threshold for f is met or the goal is found. If the threshold

for all paths is met and no goal is found, IDA* increases

the threshold and search starts anew. Bjornsson, et. al.,

expanded on IDA* with Fringe Search [9]. Fringe Search

keeps memory of leaf nodes as it explores and on the next

iteration starts exploration from those leaf nodes.

74

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 6. Zones from Figure 5 as displayed in the simulation

Our method shares a similarity with Fringe Search with

our phasing. We limit the search depth by only allowing

expanding a certain number of paths. Where Fringe Search

keeps all leaf nodes and will find the optimal path, we only

seek near optimal paths and thus greedily choose only the

best path. We also introduce a hard cap for paths expanded

meaning our search space can be kept small. Our search

space can also be easily expanded by adding the features

of IDA* and Fringe Search. The GA can then find new

combinations of features not yet explored.

GAMMA uses more state than IDA* and Fringe Search

by keeping the complete sorted list of all open paths like

A*. GAMMA can overcome this overhead by using end-

path sampling. Only paths that end in low risk zones closer

to the goal than other paths get expanded. This helps to keep

the open list small. The related search algorithms also use

the same heuristics as A*, so they too will lack the human-

like considerations we have by adjusting risk zones and will

lose believability.

III. SIMULATION

We created a simple simulation to provide quick evalu-

ations for GA exploration of the search space because we

first seek a proof-of-concept. The simulation creates the

environment from two parts: an image map and an entity

description file. The image describes the search space where

each pixel is a node in the search net. The color of each

pixel provides additional context for the node: white is an

open node, black is a closed node, green is the start location,

red is the goal, and a blue pixel shows the human-made

path (Figure 7). The entity description file lists each entity’s

position and heading in the environment and the simulation

uses this information to construct the risk zones.

To evaluate an individual, the simulation runs each

GAMMA (individual) over a number of different maps, each

with a different human-made path. The GA evaluates GAM-

MAs based on two objectives: the difference from the human-

made path and the cost of the found path, both of which are

minimized. The simulation calculates the difference from the

human-made path by summing the distance between each

node of the found path and the closest node on the human-

made path. If the found path follows the same route as the

Fig. 7. A sample map of start location, end location, and human-like path

TABLE I

CHROMOSOME PARAMETERS

Bits Value Description

2 Heuristic used
- 0 Euclidean distance
- 1 Euclidean distance squared
- 2 Manhattan block distance
- 3 Diagonal shortcut distance

1 Bool Use end-path traversal cost
2 0-3 End-path sample depth
2 1-4 End-path traversal cost multiplier
1 Bool Add new path to top (True)

or bottom (False) of open path list
1 Bool Add new paths in reverse order if True

4 1-16 Zone 1 range
4 1-16 Zone 2 range
...
4 1-16 Zone 16 range

human-made path, then the difference would be zero. The

simulation calculates the cost of the found path by adding

the traversal cost of the path plus the risk value of every

node on the path.

Lastly, the simulation handles the changing of phases.

It clears all bookkeeping the pathfinding algorithms have

made up to that point and moves the starting location. Each

GAMMA expands 100 paths per phase.

IV. METHODOLOGY

The genetic algorithm uses single point crossover, bitwise

mutation, and roulette wheel selection. The GA doubles the

population with offspring and keeps the best n, where n is

the population size, for further processing [10]. We set the

crossover rate at 1.0. Given that the GA evaluates the parents

with the offspring, we do not worry about losing valuable

information from the parents if the offspring performs worse.

We set the mutation rate at .03 or approximately two muta-

tions per chromosome. Each GA is run for 40 generations

with a population size of 200. Table I gives the parameters

for each 73 bit chromosome. Results are averaged over 20
runs.

75

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

V. EXPERIMENT

We ran each GAMMA over three separate maps as shown

in Figure 8. All entities in the three maps face forward. The

path on the first map establishes that moving around the rear

of the ship is safer than the front. The last two maps use

the same configuration of entities but with switched starting

and stopping locations and different human-made paths. The

different paths serve three purposes: to establish that moving

between entities is acceptable, to prevent the algorithm from

just navigating around all the entities, and to prevent the

GAMMA from over-specializing.

Fig. 8. Maps used in the experiment

The GA evaluates an individual by evaluating its perfor-

mance based on each objective separately. The GA sums

an individual’s performance for a given objective over each

map and normalizes the summations so that the GA can later

compare objectives on equal footing. We seek an algorithm

that can minimize both objectives, but because GAs work

by maximizing values, it must invert each objective value so

that low values become high values. Next, the GA scales the

normalized, inverted values such that the highest value is 1.2
times the average of the objective value over all individuals.

We do not want individuals with significantly high objective

values to dominate selection. Lastly, the GA sums each final

objective score to produce the final fitness for an individual.

Equation 5 gives the final form of this calculation where a

and b are values used for linear fitness scaling. a and b are

chosen to ensure the highest fitness is 1.2 times the average

and i is the objective [11].

ffinal =
∑

(ai

fmaxi
− fi

fmaxi
− fmini

− bi) (5)

VI. RESULTS

We ran the GA using 20 different seeds and in Figure 10

we show an example result. The “clouds” around each entity

are the risk zones. The GAMMA found the light gray path

in the figure and while it is similar to the path specified by

the user, it is still not exactly the same. It moves through

the right areas, but acts “jittery.” The GAMMA shown in the

figure sampled only the last point in the path with a multiple

of three and used the Euclidean heuristic. The pseudo-code

for this GAMMA is given in Figure 9. Key parts that are

different from the A* pseudo-code are shown in the inner

boxes. The selection of the Euclidean heuristic seemed to

be a common feature among all GAMMAs. While other

heuristics take less CPU time to run, this is not accounted

for by our time measurement of using paths expanded. While

other heuristics may gain favor by using a CPU run-time

measurement, the GA instead chooses the heuristic that gives

the best underestimate. Whether this is coincidental or a

direct result of the paths expanded run-time measurement

is left to future work.

• Form a one-element queue consisting of a zero-

length path that contains only the root node.

• Until the first path in the queue terminates at the

goal node or the queue is empty,

– If number of paths expanded is equal

to the number of paths to expand per

phase,

∗ Choose best path in queue.

∗ Clear queue and add best path to

queue.

– Remove the first path from the queue; cre-

ate new paths by extending the first path to

all the neighbors of the terminal node.

– Reject all new paths with loops.

– If two or more paths reach a common

node, delete all those paths except the one

that reaches the common node with the

minimum cost.

– Sort the entire queue by the sum of cost

of the last node in the path multiplied

by three and the Euclidean distance

from that node to the goal, with the

least-cost paths in front.

• If the goal node is found, announce success;

otherwise announce failure.

Fig. 9. Pseudo-code for selected GAMMA algorithm. Key changes to the
A* algorithm are boxed

To provide a baseline, we ran A* with hand-tuned risk

zones. A* ran from start-to-finish in one run and with time

phases like the GAMMAs. A* used the Euclidean heuristic.

Figure 11 shows that neither start to finish nor phased A*

fits the human-like path very well while the GAMMA results

are much closer.

Although the GA can create good GAMMAs, there can

still be a wide variation in results. Figure 12 show results

from a different GAMMA. The GAMMA does not fit the

human-like path very well in the first map. Label (a) shows

where the GAMMA takes a 90 degree right turn. While

physics and path smoothing would soften this turn, it is not

76

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 10. Sample results for GAMMA found paths

Fig. 11. Paths found by A* when: (a) start to finish, (b) in phases

believable that a human would make this decision. Label (b)

shows where the boats must zig-zag. The same zig-zagging

appears at the end of the second map. Again, physics will

dampen this behavior, but there could still be some unusual

fishtailing.

Table II shows the numerical results from Figure 10. The

GAMMA produces a final path 1271% faster than traditional

A* and 353% faster than phased A*. Figure 13 shows the

results of the GA for each objective averaged over the 20
runs.

To see how well the selected GAMMA worked, we created

two maps and ran the selected GAMMA on them. These

maps have no human-like path as they represent the new

situations the GAMMA could face in Lagoon. Figure 14

shows the paths found by the different algorithms and Table

III shows the number of cycles needed to find these paths.

Although the GAMMA does find safe paths, they lack the

smoothness we were seeking and additional work needs to

be done to generalize the GAMMAs. These additional results

show that there is some over-specializion to the maps on

which the GAMMAs are evaluated. This is not necessarily

bad as the GA can optimize the GAMMA for a particular

map set so that users would not have to do that themselves.

As a bridge to future work, we took the selected GAMMA

and implemented it in Lagoon. Using the same configuration

of entities, the pathfinder finds the same path as the 2D

simulation and the small boat is able to follow the path as

TABLE II

FINAL RESULTS

Cycles Path cost Closeness
(% Improve) (% Improve) (% Improve)

GAMMA 432 2865 506
A* 5924 (+1271%) 2600 (-9%) 2087 (+312%)

Phased A* 1958 (+353%) 2878 (+0.5%) 1659 (+234%)

Fig. 12. More results from a different GAMMA with problems areas
marked (a) and (b)

shown in Figure 15. Lagoon features more realistic physics

and motion so that we can find GAMMAs more applicable

to reallife scenarios.

VII. DISCUSSION AND FUTURE WORK

The resulting GAMMAs find paths quicker than A* and

fit closer to the human-made paths while not costing much

more than A*-found paths. Differences arise from both risk

zone tuning and end path sampling. The algorithm shown in

Figure 10 sampled only the last node of a path and multiplied

that value by three. To improve generality and robustness,

additional maps could be added.

Although results may be promising, there still exist areas

for improvement. First, the environment needs to become

dynamic. Dynamic environments can invalidate paths, so

limiting the time that algorithms have to search forces the

algorithms to constantly find new paths without wasting time

working on distant paths.

Second, traversal costs do not model actual motion. It costs

just as much to move forward and diagonal as it does to move

backwards and diagonal, whereas, an actual ship would need

to spend more time turning to face the back-facing diagonal

than the front-facing diagonal. If a path suggests a maneuver

that the entity cannot accomplish, then it may stray from

TABLE III

NEW MAP RESULTS

Cycles

GAMMA 413
A* 2812

Phased A* 3718

77

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 13. Closeness objective value over time and cost objective value over
time for GAMMA

the path or worse — crash. The pathfinder should apply an

approximation of physics when choosing the next node to

expand, because the net is an approximation of the envi-

ronment. Nets do not model continuous movement or time;

they provide a snapshot of the environment. An additional

GA may be needed to tune the physics approximation model

so that the results from the 2D simulation work properly with

Lagoon’s physics model.

Third, it is not surprising that the resulting GAMMAs

between runs of the GA lack consistency. A GAMMA from

one run may perform much better than a GAMMA from

different run. Currently, a human must explore the results

of the different GA runs to hand select the best GAMMA.

Automating this process of choosing the best GAMMA

would ensure that less intervention would be needed by the

user. Either the GA or fitness function could be modified so

that the GA produces more consistent results or the GA could

Fig. 14. Paths found on two separate maps. Each column is a map and
results from each pathfinder are in the rows: GAMMA, A*, Phased A*

run many times and the highest fitness scoring GAMMA

among all runs would be chosen.

In section VI, we showed that the GAMMAs seem to

specialize to the maps on which they were trained. To

provide more generalized and robust GAMMAs, we want

to introduce co-evolution into our research. The model of

co-evolution used by Rosin and Belew takes two or more

populations and evolves them simultaneously using coupled

fitness [12]. For example, using two populations, one popula-

tion tests the other population. The tested population receives

a fitness and evolves, then the two populations switch roles

and the tester becomes the tested. The two populations

constantly challenge each other, overcoming obstacles the

other side presents while coming up with new obstacles of

its own. Co-evolution may work well with pathfinding. The

GAMMAs compete against a map planner which evolves to

generate increasingly difficult maps that the GAMMAs must

navigate. The GA also has a harder time over specializing

78

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 15. The GA-found pathfinding algorithm in Lagoon

the GAMMAs because the GAMMAs must constantly work

on different maps. The is a problem though because the

automated map planner cannot specify human-like paths on

its own and the human-like paths are a critical component in

making GAMMAs that produce believable paths.

VIII. SUMMARY

We used a genetic algorithm to explore the space of

pathfinding algorithms. We sought to find path finding algo-

rithms that could outperform A* by taking less time to find

a path that more closely matches paths made by a human.

A GA modified components of a baseline A* algorithm and

tuned risk zones around entities to find alternative algorithms.

The simulation also limited how long our GA-Manufactured

Maneuvering Algorithms (GAMMAs) could run before they

were reset with a new starting location. One of the GAMMAs

performed 1271% faster than a traditional A* but testing

under a dynamic environment with a better traversal model

cost will be needed before we can use these algorithms.

ACKNOWLEDGMENTS

This material is based upon work supported by the Office

of Naval Research under contract number N00014-05-0709.

REFERENCES

[1] B. D. Bryant, “Evolving visibly intelligent behavior for embedded
game agents,” Ph.D. dissertation, Department of Computer Sciences,
The University of Texas at Austin, 2006.

[2] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O.
Stanley, and C. H. Yong, “Computational intelligence in games,” in
Computational Intelligence: Principles and Practice, G. Y. Yen and
D. B. Fogel, Eds. IEEE Computational Intelligence Society, 2006.

[3] R. C. Arkin, Behavior-Based Robotics. CA: MIT Press, 1998.
[Online]. Available: http://www.usc.edu

[4] M. J. Mataric̀, “Behavior-based control: Examples from navigation,
learning, and group behavior,” Journal of Experimental and Theoreti-

cal Artificial Intelligence, vol. 9, no. 2-3, pp. 323–336, 1997, journal
of Experimental and Theoretical Artificial Intelligence.

[5] R. E. Leigh, T. Morelli, S. J. Louis, M. Nicolescu, and C. Miles, “Find-
ing attack strategies for predator swarms using genetic algorithms,”
in Proceedings of the 2005 Congress of Evolutionary Computation,
September 2005.

[6] P. H. Winston, Artificial Intelligence, 3rd ed. Addison-Wesley, 1992,
ch. 5.

[7] P. E. Hart, N. J. Nillson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions

on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
[8] R. E. Korf, “Depth-first iterative-deepening: an optimal admissible tree

search,” Artif. Intell., vol. 27, no. 1, pp. 97–109, 1985.
[9] Y. Bjornsson, M. Enzenberger, R. C. Holte, and J. Schaeffer, “Fringe

search: Beating a* at pathfinding on game maps,” IEEE Computational

Intelligence in Games 05, p. 125132, 2005.
[10] L. J. Eshelmann, The CHC Adaptive Search Algorithm: How to Have

Safe Search When Engaging in Nontraditional Genetic Recombination.
Morgan Kauffman, 1990.

[11] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learing. Addison Wesley Longman, Inc., 1989.
[12] C. D. Rosin and R. K. Belew, “New methods for competitive

coevolution,” Evolutionary Computation, vol. 5, no. 1, pp. 1–29,
1997. [Online]. Available: citeseer.ist.psu.edu/rosin96new.html

79

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

