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Abstract—Autonomous Unmanned Aerial Vehicles (UAVs) act-
ing as wireless access points can be deployed to quickly create
on-demand wireless mesh networks in remote areas or when
existing communication networks fail. This paper attacks UAV-
based network deployment by using a genetic algorithm to
optimize the movement of UAVs deployed to create such wireless
networks. Specifically, we use a set of potential fields to guide UAV
deployment and genetic algorithms to optimize these potential
field parameters in order to maximize bandwidth coverage and
longevity of deployed networks for uniform and non-uniform
user distributions. We make the common assumption that UAVs
have limited sensing range and can communicate with h hop
neighbors. Increasing the value of h leads to more information
and subsequently better decision making. Experimental results
with one hop communication on different combinations of users’
distribution and number of available UAVs for deployment show
that wireless networks deployed using our approach performed
significantly better than the state-of-the-art UAV network deploy-
ment algorithm. Furthermore, enabling two hop communication
between UAVs leads to significant performance improvement.
These results hold across different scenarios with different num-
bers of UAVs, users, and user distributions.

Keywords—genetic algorithms, optimization, UAVs, wireless net-
works, potential fields.

I. INTRODUCTION

UAVs are gaining traction as a useful tool in many different
domains including search and rescue [1], surveillance [2],
cargo transport [3], surveying and mapping [4], disaster re-
lief [5], and IoT [6]. We are specifically interested in the
search and rescue application domain where the challenge is
to establish on-demand connectivity in remote areas or when
existing communication infrastructure fails to operate due to
natural calamity or stress on the existing network [7]. In
recent years, UAVs acting as flying access points have emerged
as a viable alternative to provide flexible but time limited
wireless infrastructure to connect people/users [8] or to collect
data from Internet of Things (IoT) devices in a given Area
of Interest (AOI) [9]. However, many challenges arise while
deploying such UAV based ad-hoc networks including optimal
UAV deployment, maintaining connectivity, and increasing the
longevity of the deployed network [7].

Figure 1 shows an example wireless mesh network using
eight UAVs to provide bandwidth coverage to twelve users. In
this figure, UAVs are shown inside black rectangular boxes and
users are shown by red rectangles. We assume that each UAV

Fig. 1. An example of UAVs network deployment with 8 UAVs, 12 users,
and a command center labelled ”CC.” UAVs are shown by black boxes and
red boxes represents users.

can communicate with users within a certain range as shown by
black-dashed circles and can communicate with neighboring
UAVs shown by green links. A command center (CC) is placed
on the right and is in direct communication with two UAVs.
Each UAV can communicate with the CC either directly or
through neighboring UAVs to provide bandwidth coverage to
all twelve users.

Deployment of UAV based ad-hoc networks in unknown
environments is a challenging problem. In unknown environ-
ments, the firs challenge is to find all users.Once all users are
discovered and their positions and bandwidth requirements are
known, adaptively re-deploying UAVs in real-time to serve all
discovered users specifies the second challenge. To solve both
problems, we divided the network deployment problem into
two phases: search and service. In the search phase, UAVs are
deployed to cover the entire area of interest to find all users’
locations and bandwidth requirements. Given enough UAVs,
several existing algorithms can position UAVs to optimally
cover the area of interest in the search phase and we show
how distance based potential fields may be used to mimic
one of these algorithms. The second phase (service) utilizes
the information gathered in the search phase to move UAVs
under the influence of a set of potential fields to optimize
user service. Several algorithms exist that adapt to users’
requirements, but they do not perform well in diverse users’
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distribution scenarios.

Optimal UAV based ad-hoc network deployment during the
second phase is an NP-hard problem [10]. This paper presents
a genetic optimization approach, Genetic Algorithm Network
Deployment (GANet), to optimally deploy UAVs acting as
wireless access points providing an ad-hoc wireless network
to serve users in the area of interest. This network deployment
problem has been formulated as an optimization problem with
the aim of maximizing the sum of bandwidth coverage and
longevity of deployed networks. In our formulation, UAV’s
use potential fields which are highly non-linear, to guide
their movement. Genetic Algorithms (GAs) have been used
extensively to evolve solutions for poorly understood non-
linear problems [11] [12]. We thus use a genetic algorithm to
search for and find potential field parameters that guide UAV
movement in order to maximize network bandwidth coverage
and longevity. Section IV of the paper explains the genetic
algorithm in detail. To deal with unknown environments and
users’ distribution, we evolved potential field parameters on
four different training scenarios with different user distribu-
tions (uniform and non-uniform) and measured the robustness
of the best evolved potential field parameters on 100 different
test scenarios. We also considered different levels of infor-
mation exchange between UAVs to measure the differences
in the performance of deployed networks. Specifically, we
compared 1-hop (neighbor) UAV-to-UAV communication with
2-hop (neighbor’s neighbors) communication. Experiments on
training scenarios show that GANet performed better than
adaptive triangular network deployment (ATRI) [13] under
different combinations of number of UAVs and number of
users on 1-hop networks. The same parameters also led to
better performance than ATRI on our testing scenarios. Re-
sults from 2-hop UAV communications show that networks
deployed with 2-hop communications performs statistically
significantly better than networks with 1-hop communication.
Evidence indicates that this is due better network capacity
utilization, leading to longer periods that UAVs stay in the
air, and thus longer network lifetimes.

The three main contributions of this paper are 1) this paper
presents a new unified approach, genetic optimized potential
fields, for both phases of UAV based network deployment that
outperforms the state of the art under uniform and non-uniform
user distributions, 2) 2-hop UAV communication statistically
significantly improves problem performance and attains or gets
close to optimum indicating we may not need more than 2-hop
UAV communication, and 3) GANet evolved robust solutions
that work well on unseen distributions of users.

The remainder of this paper is organized as follows. The
next section describes prior work in mesh networks and
potential fields based group movement. Section III sets up the
problem, specifies our training, and testing scenarios. Next,
section IV describes our algorithm, how potential fields deter-
mine UAV movement, and fitness computation. Experimental
setup and results constitute section V and the last section
provides conclusions.

(a) DT (b) CPT

Fig. 2. Networks deployed using DT and CPT in a square AOI. Dashed
circle shows the coverage of a UAV.

II. LITERATURE REVIEW

Many challenges arise when deploying a wireless mesh
network in unknown environments. Optimal UAV placement,
fast deployment, maintaining a mesh network connected to a
command center, minimizing the number of deployed UAVs,
maximizing the lifetime of deployed networks, routing, and
channel allocation, all present significant challenges [7]. In
the literature, several techniques have been introduced for
positioning UAVs based on Delaunay Triangulation (DT) [13],
Circle Packing Theorem (CPT) [14], and Voronoi Diagrams
(VD) [15] for the search phase (also called the static network
deployment phase). A network deployed using DT has no
coverage gap while having minimum overlap between UAV’s
sensing areas. CPT computes locations of UAVs while ensuring
no overlap and minimum coverage gap as shown in the
figure 2. VD divides the entire AOI into different segments and
places a UAV in each segment to provide bandwidth coverage
to users. Such static network deployment is primarily used for
area coverage. That is, we want UAVs to deploy to obtain
sensor coverage of the entire area of interest and progress on
this problem has several applications. Lam [16] deployed a
heterogeneous sensor network using circle packing by filling
the given AOI with circles of different radii corresponding
to different UAV types. Lyu [17] proposed a placement opti-
mization technique that first deploys a network using CPT and
then adjusts the altitude of deployed UAVs to cover the entire
AOI with fewer UAVs while providing wireless coverage to
ground terminals. These are computational geometry model
based techniques to compute the position of UAVs and they
do not adapt to users’ locations or bandwidth requirements.
Our proposed GANet on the other hand adapts to both while
maximizing network longevity.

For the second phase, researchers have presented modi-
fications to make static networks more adaptive to user’s
requirements. Ming [13] introduced the state of the art Adap-
tive Triangular Network Deployment (ATRI) algorithm by
taking inspiration from Delaunay Triangulation. Using one-hop
neighbor’s state information, ATRI generates a mesh network
by adjusting the distance between neighboring UAVs in order
to better share bandwidth within a given AOI. Unlike our
approach, ATRI, however, does not work well when users
are distributed non-uniformly or clustered in groups. In [18],
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the authors initially deploy UAVs using CPT and presented a
mathematical model to adjust the altitude of deployed UAVs
for near optimal coverage. Increasing the altitude of UAVs
increases the coverage range but decreases signal strength
resulting in poorer coverage quality. In our work, UAVs are
deployed at a fixed altitude and only move in two dimensional
space. Bartolini [19] proposed a voronoi polygon based adap-
tive network deployment algorithm to deploy heterogeneous
mobile sensors over a field of interest. The algorithm computes
different polygons for different sensors and moves a sensor
only when the sensor does not detect any users on the ground.
Amar [20] presented a dynamic algorithm to serve a sub-
region within the AOI that requires more bandwidth. Both
these papers assume uniform users’ distribution while we look
at non-uniform users’ distribution as well. We use potential
fields to deploy UAVs in both phases. Section IV of this paper
describes how we use potential fields to deploy networks in the
first phase to mimic DT and then re-deploy UAVs using a set
of potential fields optimized by genetic algorithm to maximize
bandwidth coverage and longevity during the second phase.

Potential field based real-time control of mobile agents was
first introduced by Khatib in 1986 [21]. Owing to its simplic-
ity, many researchers used potential fields to control UAVs
and other autonomous agents in different domain specific
tasks [22]–[24]. Howard [25] used potential fields to deploy
mobile sensor networks to cover an area. In this approach, an
agent experienced repelling potential fields based on distance
from other agents and obstacles and moved towards unexplored
areas. Poduri [26] introduced a mobile network deployment
algorithm with the constraint that each agent has at least
K neighbors where K is a user defined number. Poduri’s
paper provides evidence that potential fields can be used
to generate a static mesh network similar to that generated
by Delaunay Triangulation or the Circle Packing Theorem.
Zhao [27] presented a centralized algorithm and a potential
field based distributed algorithm for UAV deployment while
maintaining connectivity among UAVs. However, the authors
considered only two different types of user distributions -
uniformly random and in three clusters spread around the AOI
with a command center in the middle. All these approaches
work well in relatively uniform distribution of users but not as
well when users are distributed non-uniformly.

Closer to our work, researchers have used genetic algorithms
to deploy static networks by optimally placing UAVs in the
AOI. Reina [28] presented a multi-layout multi-subpopulation
genetic algorithm to deploy UAVs optimally to maximize a lin-
ear combination of coverage, fault-tolerance, and redundancy.
Dina [29] introduced a variable length genetic algorithm to
maximize area coverage and minimize deployment cost using
non-homogeneous sensors. These papers provide UAV posi-
tions as their output. In contrast, we use a genetic algorithm
to evolve potential field parameters to guide UAVs. This not
only gives us UAV positions, but also guides collision free
UAV movement to these positions. In this paper, we present
a new representation and use a genetic algorithm to optimize
UAV based wireless network deployment. Our work is different
from prior work in that not only do we provide for positioning
information we also provide collision free movement and use

the same representation, potential fields, for both search and
serve phases. Before explaining how potential fields control
the movement of UAVs, we first formulate the problem in the
next section.

III. PROBLEM FORMULATION

We formulate network deployment problem as an opti-
mization problem and describe how each candidate solution
is evaluated. Assume that a set of N homogeneous UAVs
U = {u1, u2, ...., un} need to be deployed in a given AOI of
2000×2000 meters2 with the Command Center (CC) located
in the middle at (1000, 1000). All UAVs start at the center
within a 10 × 10 meter2 area and fly at a constant altitude
of 100 meters. Each UAV is equipped with sensors to find
users on the ground within a ground sensing range (Ugr) of
100 meters and can communicate with its neighbors within an
air to air communication range (Uar) of 300 meters. A total
of m users each with a position and a bandwidth requirement
(pi, bi) are distributed over the AOI. Thus users can be denoted
by the list of pairs: {(p1, b1), (p2, b2), ...., (pm, bm)}. These
simulation parameters can be easily changed. This paper treats
the network deployment problem as a search problem and
thus, channel modelling for communication between UAVs and
UAV-user are not discussed.

Since users’ locations and their bandwidth requirements are
not known prior to finding them, UAVs first need to search and
find all users and their bandwidth requirements by covering the
AOI and then second, move to serve users that have been found
and avoid areas devoid of users. Thus, the network deployment
problem has been divided into two phases; search and service.
The service phase is an optimization problem to maximize
bandwidth coverage and longevity of deployed networks. To
maximize bandwidth coverage, UAVs must be placed such that
all users are covered, and to maximize longevity the energy
consumption of UAVs must be reduced.

Each UAV has a limited initial energy of 106 joules and
consumes energy while hovering/moving and providing data to
users. Intuitively, if more UAVs share the bandwidth demanded
by users, the per UAV bandwidth service can be reduced
leading to less energy consumption and longer UAVs flight
times. Thus, the objective is to deploy UAVs to maximize
bandwidth coverage while sharing bandwidth demands. We
classify each UAV either as an Active UAV (AU) or an Inactive
UAV (IU) based on whether or not the UAV is serving a
user. More specifically, if a UAV finds users within its ground
sensing range, Ugr, the UAV is an active UAV, otherwise an
inactive UAV. The number of active UAVs is proportional to
network lifetime. The more AUs, the more bandwidth can be
distributed among AUs leading to less power consumption per
AU and thus longer battery life to stay aloft and keep the
network alive. A variable αi ∈ {0, 1} represents the status
of UAVs where αi is 1 for active and 0 for inactive UAVs.
Equation 1 specifies the objective function where i sums over
N UAVs and ubi represents the bandwidth served by the ith

UAV, bj is the bandwidth requirement of the jth user, m is
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the number of users, and N is the total number of UAVs.

Maximize f =


N∑
i=1

ubi

m∑
j=1

bj

+

N∑
i=1

αi

N

 (1)

In equation 1, the first term counts the fraction of bandwidth
served over the total demand and the second term counts
the fraction of active UAVs. Each term in the equation can
have a maximum value of 1 and thus the maximum objective
function value (their sum) will be 2. When computing the
objective function using equation 1, several constraints must
be satisfied. Each UAV must be positioned within the specified
AOI, thus the UAV’s x and z coordinates must be ∈ (0, 2000)1.
A UAV can provide a maximum of ubmax to users, and thus
ubi ≤ ubmax. UAVs can either communicate with their direct
neighbors (1-hop) or with neighbors of neighbors (2-hop), and
thus a UAV can communicate with other UAVs up to a distance
of 2×Uar. UAVs use the 2 MHz communications channel with
spectral efficiency of 2.5 bps/Hz [30] and a UAV can serve a
data rate of 5 Megabits per second ( Mbps) to users. Users’
bandwidth requirements can range from simple text message
communication to HD video streaming services during, for
example, a health emergency. We thus assume that a user’s
maximum bandwidth requirement is 3 Mpbs which is enough
for video communication.

IV. METHODOLOGY

We start by explaining our elitist genetic algorithms, and
then describe different scenarios (training and testing) to evolve
robust solutions. This section also provides the details of UAV
movement, and how potential fields are used for each of the
two phases of network deployment in our simulation.

A. Genetic Algorithms
Genetic algorithms have been used extensively to evolve

solutions for poorly understood non-linear problems [11] [12].
Our approach works in two phases and uses potential fields
to control the movement of UAVs in both phases. Since
potential fields are highly non-linear, tuning the potential field
parameters is difficult, and thus we used a (µ + λ) elitist
genetic algorithm [31] to optimize parameters. Note that we
use a GA only in the second phase of network deployment
as the first phase of network deployment is a relatively
simpler problem. The genetic algorithm has many parameters
that determine the GA’s time to convergence and solution
quality. Much empirical work has shown that a good balance
between randomized exploration of the search space and time
to convergence is required. We thus performed a number of
prototyping experiments to explore different population sizes,
number of iterations (or generations), types of selection strate-
gies, crossover types, and mutation algorithms and associated
probabilities. These preliminary experiments led us to choose
an elitist selection strategy with binary tournament selection,

1Our simulation uses the xz plane for the horizontal plane.

Algorithm 1: An Elitist Genetic Algorithm
Input : Pop,Gen, Px, Pm, λ,H
Output: Best Solution

1 P0 ← Initialize(Pop)
2 Evaluate(P0, H)
3 Pc = []
4 for t in Gen do
5 for i in λ do
6 p1, p2 ← SelectParents(Pt)
7 c1, c2 ← Crossover(p1, p2, Px)
8 c1 ←Mutate(c1, Pm)
9 c2 ←Mutate(c2, Pm)

10 Pc.add(c1, c2)
11 i = i+ 2
12 end
13 Evaluate(Pc, H)
14 Pt+1 ← NextGenIndividuals(Pt, Pc)
15 Pc = []
16 end

real crossover, and polynomial mutation. Our elitist genetic
algorithm shown in Algorithm 1 searches through the space
of potential field parameter values in order to maximize the
fitness computed using equation 1.

In Algorithm 1 Pop is the population size, Gen is the
maximum number of iteration for evolution, Px, Pm are
probabilities of crossover and mutation, and H is the number
of hops for communication between UAVs. We use (µ + λ)
elitism where µ is the population size (Pop) and λ is number
of children generated through recombination and we set λ = µ.
Initially, the GA randomly generates a parent population (P0)
of candidate solutions (CS) and evaluates the fitness of each
CS using our UAV-based network deployment simulator. To
generate the next population, two candidate solutions (p1, p2)
are selected from the parent population using tournament
selection with tournament size of two [24]. Next, these two so-
lutions (p1, p2) exchange information with each other through
a crossover operator with a probability of Px and produce
two children c1, c2. Using the mutation operator, each gene of
c1, c2 is mutated with a small probability of Pm. This process
of producing children continues until λ children are produced.
Each child solution is then evaluated and assigned a fitness
using equation 1. In (µ + λ) elitism, the µ best candidate
solutions are selected from the combined parent and offspring
pool of (µ+ λ) individuals in the population. In Algorithm 1,
NextGenIndividuals does this down selection operation
and the process of evolution goes on for Gen number of
iterations.

We aim to evolve high quality and robust solutions for wire-
less network deployment. However, earlier work has shown
that solutions evolved on one scenario with a particular set
of parameters may not be robust [23], [32], [33]. That is, in
our case, potential field parameters evolved on one scenario
may over-fit and thus not work well in other scenarios. We
therefore created four training scenarios with different user
distributions as shown in figure 3. In these scenarios 200 users
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(a) Tr1 (b) Tr2 (c) Tr3 (d) Tr4

Fig. 3. The four training scenarios with different users’ distribution. Blue colored dots show the locations of users, darker the dots more bandwidth required
and vice-versa.

(a) Te1 (b) Te2 (c) Te3

Fig. 4. The three testing scenarios distinct from training scenarios and never seen during parameter evolution.

are distributed uniformly (Tr1), in clusters (Tr2, Tr3), and in
the right and center region of a 2000 × 2000 meter2 AOI.
With a UAV ground sensing range of 100 meters, we need 156
UAVs to cover the entire AOI without coverage gaps in order
to find all users. The genetic algorithm seeks to maximize the
average objective function value, computed using equation 1,
over all four scenarios. Once the genetic algorithm evolves
good parameter values, we test the robustness of these potential
field parameters on 100 different unseen test scenarios. Three
of these test scenarios are shown in figure 4 in order to see
that the distribution of users in these scenarios is different
from the distribution in training scenarios. The aim is to show
that the genetic algorithm evolved potential field parameters
work across a wide range of user distributions in the AOI and
our results (Section V) show that using average performance
over the four training scenarios translates robustly to testing
scenarios.

B. UAV Movement Modeling
Initially, each UAV starts near the center of the AOI and

has zero speed. The speed (s) increases, with a constant
acceleration (rs) of 0.1 meter/sec2 until speed becomes the
max speed of 15 meter/sec, using equation 2. Here ∆t is the
simulation time step interval.

s = s± rs∆t (2)

Each UAV moves under the influence of a set of potential
fields and the direction of the vector sum of these potential
fields provides the desired heading or direction for the UAV

(∈ (0, 2π)) to move along. A UAV (kth) experiences attractive
(P⃗a) and repulsive (P⃗r) potential fields from neighboring UAVs
within the range of Uar and given by equation 3. Each potential
field is of the form cde where d is distance and has two
optimizable parameters (c, e) that determine field effect.

P⃗k =
n∑

i=0

P⃗a +
n∑

i=0

P⃗r

P⃗k =
n∑

i=0

a⃗kicad
ea
ki +

n∑
i=0

a⃗ikcrd
er
ki

(3)

Here a⃗ki is a unit vector pointing from the kth UAV to the
ith neighbor and a⃗ik is the unit vector pointing from ith

neighboring UAV back to the kth UAV. n is the number of
h-hop neighbor UAVs, dki = dik is the distance between
the kth and ith UAVs. ca, cr are potential field coefficients
and ea, er are potential field exponents. The GA optimizes
these coefficients and exponents to specify UAV movement
and P⃗k’s direction specifies the kth UAV’s heading. In our
model, UAVs change their current heading to this new desired
heading instantaneously. Using speed, heading, and equation 4
we compute a UAV’s velocity (

−→
vel) and position (−→pos).

−→
vel = (s× cos(heading), 100, s× sin(heading))
−→pos = −→pos+

−→
vel ×∆t

(4)
Having specified UAVs movement model, next we describe
how to use potential fields for area coverage during the first
phase.
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(a) (b)

Fig. 5. 10 randomly distributed UAVs (a), and each UAV moves under the
influence of attractive and repulsive potential fields with parameters (ca =
1, e1 = 1, cr = 3 ×

√
3 × 1003, er = −2). Figure (b) shows that using

potential fields, we can get network deployment similar to networks inspired
from DT.

C. Network Deployment

1) First Phase: Search: In this phase, UAVs move to cover
the entire AOI to find users’ distribution. This is also called
static network deployment and we use potential fields to
deploy UAVs to maximize area coverage with minimal overlap.
Since Delaunay Triangulation maximizes area coverage with
minimal overlap, the aim is to mimic DT style network deploy-
ment with potential fields. We thus use Ming’s [13] Delaunay
Triangulation based result that shows that the distance between
any two adjacent UAV must be

√
3 Ugr to cover the AOI with

minimum coverage overlap. We thus need to find values of
ca, cr, ea, er such that when dki =

√
3 Ugr the magnitude

of the attractive potential field equals the magnitude of the
repulsive potential field (∥P⃗a∥ = ∥P⃗r∥). This is shown by
equation 5.

âkicad
ea
ik = âkicrd

er
ik

ca(
√
3Ugr)

1 = cr(
√
3Ugr)

−2

cr = ca(
√
3Ugr)

3
(5)

In the equation, the directions of unit vectors a⃗ki and a⃗ik are
opposite to each other (a⃗ik = - a⃗ki). In addition, earlier work in
potential fields based movement has shown that the attractive
potential should be proportional to distance and the repulsive
potential field should be inversely proportional to distance
squared to provide collision free cohesive movement [34]–[37].
Thus we set ea = 1, er = −2, and dik =

√
3Ugr and ignore

the unit vectors in equation 5 to find the relationship between
ca and cr. In simulation experiment, Ugr = 100 meters and,
for simplicity, assumed ca = 1 to derive the value of cr to be
3
√
3 1003 by simplifying equation 5. These parameter values

of ca = 1, e1 = 1, cr = 3
√
3 1003, and er = −2 were then

used to control the movement of 10 randomly distributed UAVs
as shown in figure 5(a) and the resulting deployment covering
the AOI is shown in figure 5(b), similar to figure 2(a).

Noting the similarity to figure 2, figure 5 shows that with
these parameter values, UAVs moving under the influence of
potential fields can be used to mimic DT and cover the entire
area with minimal overlap. Also, there exist multiple sets of
values of the coefficients and exponents that will result in

Fig. 6. Deployment of UAVs at the end of the first phase on the third training
scenario. Blue dots represent users, green circles represent UAVs’ coverage
areas, and the red circle represents the location of the command center. A
black circle shows an inactive UAV and the magenta circle shows an inactive
UAV.

similar coverage. Assuming we can, in general, directly derive
potential field parameter values for the search phase we focus
more on the service phase in the rest of the paper. Using the
same potential field parameter values, we moved to our main
scenarios and deployed 156 UAVs in an AOI of 2000× 2000
meter2 where UAVs start within an area of 10 × 10 meter2

near the center of the AOI. At the end of the first phase, UAVs
are distributed over the given AOI as shown in figure 6. In the
figure, users, represented with blue dots, are distributed in three
clusters. Green circles show UAV coverage areas, the red circle
represents the command center. A black circle shows a UAV
serving no users within its ground sensing range (Ugr) and is
an example of an inactive UAV. Similarly, the magenta circle
shows a UAV serving multiple users and is an example of an
active UAV. Increasing the number of UAVs that serve the same
users leads to bandwidth sharing that decreases per active UAV
energy consumption and thus increases network longevity. The
second phase seeks to increase the number of active UAVs by
moving UAVs from areas with lower bandwidth requirements
(fewer users) to areas with higher bandwidth requirements
(more users) while maintaining network connectivity with the
command center.

2) Second Phase: Service: In this phase, a different set of
potential fields optimized by a genetic algorithm re-deploys
UAVs to serve found users better. Algorithm 2 specifies the
Genetic Adaptive Network Deployment Algorithm (GANet)
that runs the simulation to compute the fitness of candidate
solutions. That is, the Evaluate function of Algorithm 1 runs
Algorithm 2 to evaluate each candidate solution’s fitness. Once
computed, this fitness drives evolutionary optimization.

In Algorithm 2, UAVs and Users are lists of available UAVs
and users respectively. The simulation runs for a maximum
number of time steps (MT = 1500) on each training sce-
nario. As mentioned earlier, we use four training scenarios
and thus MaxScenarios (MS) is four. At each time-step (t),
AssociateUsers scans users within Ugr for each UAV
in the list and computes these users’ bandwidth consumption.
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Algorithm 2: Evaluation and fitness computation
Input : UAV s, Users, CS,MS,MT,H
Output: fit

1 fit = 0;
2 for scenario in MS do
3 t, bwc, AUs = 0;
4 while t ≤ MT do
5 AssociateUsers(UAV s, Users);
6 FindNeighbors(UAV s);
7 ActivePotentials(H,CS);
8 Dir = ComputeDir();
9 MoveAll(Dir);

10 t=t+1;
11 end
12 for i in UAV do
13 bwc += ubi;
14 AUs += αi;
15 end
16 fit += bwc / MaxBW + AUs / UAVs;
17 end
18 fit = fit / MS;
19 return(fit);

FindNeighbors finds other UAVs within Uar and records
them as neighbors. ActivePotentials uses the number
of hops and potential field parameter values supplied by a
candidate solution from the genetic algorithm’s population,
to compute potential field values. Now that the potential
field information needed is available, ComputeDir computes
potential field directions at each UAV by summing all potential
fields acting on a UAV using equation 6 and stores this in
Dir. Next, MoveAll(Dir) moves each UAV in the direction
computed. After MT time steps, the algorithm computes the
fitness for each training scenario by summing the bandwidth
coverage fraction and active AU fraction. Finally, once the
evaluation on all four scenarios is over, the algorithm returns
the average of these fitness values as the fitness of this
candidate solution to the genetic algorithm.

P⃗k = P⃗b +

h∑
i=1

(P⃗ui + δrP⃗ri) + δcP⃗c (6)

Note that in equation 6, h refers to the number of hops for
communication between UAVs. The vector sum of the potential
fields for UAV k given by P⃗k provides a desired heading for the
kth UAV to turn towards. Each term in the equation describes
a potential field whose parameters need to be optimized (or
tuned). Since we want UAVs to be attracted towards users
based on their bandwidth requirements, we use an attractive
potential field, (P⃗b), to model this attraction. To reduce per
UAV bandwidth coverage and save energy, the kth UAV uses
an attractive potential field towards neighboring UAVs whose
magnitude depends on the neighbors bandwidth load (P⃗u).
At the same time, to avoid collisions, a repulsive potential
field, P⃗r, ensures that UAVs do not collide with each other.

This potential field only applies to UAVs that are less than
d∗ distance away and we use the Dirac delta function, δr to
model this. δr(∈ {0, 1}) has value 1 when UAV j is less than
d∗ distance away and 0 otherwise. When a UAV has no users
within its user sensing range and no UAVs within Uar, that is,
the UAV is inactive, we want it to move towards the command
center as a default behavior. We model this with an attractive
potential field, P⃗c, based on distance to the command center. δc
is another Dirac delta function to ensure that this potential field
only acts on inactive UAVs. Assuming UAVs communicate
only with one-hop neighbors, equation 6 can be rewritten as
equation 7 given below.

P⃗k =
mk∑
i=0

c1⃗b
e1
i +

nk∑
j=0

(c2u⃗
e2
kj + c3r⃗

e3
kj) + c4s⃗

e4
k (7)

Here c1, c2, c3, c4 are the coefficients and e1, e2, e3, e4 the
exponents of the potential fields in equation 7. The first
summation is over mk which is the number of users within
kth UAV sensing range while the second summation is over nk

which is the number of one hop neighbors. b⃗ is the bandwidth
required by the ith user and points towards the user. u⃗ is
the bandwidth being served by the jth 1-hop neighbor of
kth UAV and points towards this neighbor. r⃗ is the vector
difference between the positions of UAV k and UAV j and
points from j to k. In the last term, s⃗ is the vector difference
between the command center position and UAV k pointing
from k to the command center. Including four coefficients,
four exponents, and d∗, a total of nine parameters need to be
optimize. When UAVs are allowed to communicate with upto
two-hop neighbors, equation 6 can be re-written as equation 8.

P⃗k =
mk∑
i=0

c1⃗b
e1
i +

nk∑
j=0

(c2u⃗
e2
kj + c3r⃗

e3
kj)

+
nk′∑
j′=0

(c4u⃗
e4
kj′ + c5r⃗

e5
kj′) + c6s⃗

e6
k

(8)

Here nk′ is the number of two hop neighbors, that is, the
number of one-hop neighbors’ neighbors. Note that for h = 1
and h = 2, the kth UAV experience 4 and 6 different potential
fields respectively. In general for h-hop communication, the
kth UAV will experience 2(h + 1) different potential fields.
Since each potential field has two tunable parameters (c, e),
a total of 2 × 2(h + 1) potential field parameters will need
to be optimized. Due to the non-linearity of these potential
fields, optimizing these parameters is difficult and we thus use
a genetic algorithm. Coefficients and exponents are encoded
in chromosomes, where c′s ∈ (−8192, 8192) with a precision
of 1, e′s ∈ (−5.12, 5.12) with precision 0.01, and d∗ ranges
between 0 ≤ d∗ ≤ 28. We then compared deployed network
performance using GANet against the performance of the
current state-of-the-art ATRI algorithm.

V. RESULTS AND DISCUSSION

This section starts by evaluating genetic algorithm parameter
tuning performance on a simple tractable problem by compar-
ing genetic algorithm performance against a random exhaustive
search and a hill climber (gradient ascent). Once we show that
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TABLE I. COMPARING THREE SEARCH ALGORITHMS

Techniques Evaluations
Hill Climber 105
Exhaustive Search 92
Genetic Algorithm 39

(a) Initial positions (b) Optimal positions

Fig. 7. UAV deployment within an AOI with 10 users (blue dots). Initial
positions covering the area (a), final positions focusing on user locations and
bandwidth sharing (b).

the genetic algorithm finds the optimum significantly more
quickly than either of the other algorithms, we run the GA
on the larger, more realistic problem as in the four training
scenarios.

A. Experiments on A Simple Test Problem
We begin with a test problem to deploy 10 UAVs in a small

AOI of 450×450meter2 where the command center is located
at (0, 0). We want to provide bandwidth coverage to 10 users
as shown in Figure 7(a). Using one-hop information, each UAV
moves in a direction computed using equation 7. On this simple
problem, we applied three search techniques; an exhaustive
search, a hill climber based search technique, and our genetic
algorithm, for finding optimal potential field parameters that
result in the optimum fitness of 2. Our exhaustive search
randomly samples points in the search space of parameter
values and computes their fitness until it finds optimal fitness of
2. Exhaustive search is guaranteed to find the optimal solution,
if one exists. We also ran hill climber and GA for searching
optimal potential field parameters. Since the algorithms are
randomized, we ran 10 times and use averages for this perfor-
mance comparison. Table I compares the performance of the
three algorithms and shows that the genetic algorithm finds
the optimum in significantly fewer evaluations than the others.
The genetic algorithm (39) is more than twice as fast as its
nearest competitor (92).

The results suggest that this simple problem is multi-modal
with multiple different optimal solutions. Starting with UAV
positions (center of green circles) at the end of the search
phase shown in Figure 7(a) the following parameter values
found by the genetic algorithm, c1 = 50, e1 = 0.5, c2 =
0.1, e2 = 0.1, c3 = 7000, e3 = −5, c4 = 0.1, e4 = 0.1,
resulted in the optimal UAV deployment (with fitness 2) shown
in figure 7(b). Note that with changes in UAV’s attributes,

Fig. 8. Comparing GANet one-hop (green), two-hop (blue) versus ATRI
(magenta) on four training scenarios. The rightmost bars show averages across
the four scenarios.

users’ requirements, or the size of AOI, the complexity and
scale of the problem changes and we will need to run the
genetic algorithm again. These results show the effectiveness
of GA for searching potential field parameters, we move to a
larger more realistic problem and compare performance against
the ATRI algorithm of Ming [13].

B. Evolving Solution On Larger Problems
1) Experiments on Training Scenarios: We started with 200

users distributed as shown in figure 3, 156 UAVs, and one
hop communications. We assume that UAVs start within an
area of 10× 10 m2 near the command center. During the first
phase each UAV moves for 1500 time steps to maximize area
coverage and find users. Figure 6 shows UAV positions at the
end of the first phase on the third training scenario. The figure
shows that a few UAVs (who found users within their coverage
range) have started providing bandwidth coverage demanded
by users while many other UAVs hover idle throughout the
coverage area. In the second phase of network deployment,
we aim to move UAVs towards different sub-regions in the
AOI that demand wireless bandwidth. Simulation runs for 1500
time steps for UAVs to move towards users under the influence
of a GA optimized set of potential fields.

Our final genetic algorithm parameter values were taken
after a grid search through genetic algorithm parameter values
with populations sizes ranging from 10 to 60, the number
of generations from 10 to 90, and probabilities of crossover
and mutation based on values and ranges found in the lit-
erature [38]. The potential field parameters were encoded in
a population of 20 individuals and GA evolved solutions on
the four training scenarios for 20 generations. We encoded
real valued parameters, and from the results of preliminary
experiments, used simulated binary crossover with probability
0.95 and polynomial mutation with probability 0.05.

As a common practice in the GA community when dealing
with long run time fitness computations, we ran the GA 10
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(a) ATRI (fitness=1.60) (b) Best1h (fitness=1.69) (c) Best2h (fitness=1.93)

Fig. 9. Comparing network deployment on our first training scenario. ATRI (a) versus GANet 1-hop (b) and 2-hop (c). GANet obtains better performance by
focusing more on areas with users and avoiding areas with no users.

(a) Average bandwidth coverage (b) Average number of AUs

Fig. 10. Comparing the average (a) bandwidth coverage, and (b) number of
AUs of Best1h and Best2h on training scenarios.

times with different random seeds. The best solution over these
10 runs, (Best1h, best one hop fitness) achieved a fitness of
1.64 out of 2. We observed that the network deployed using
Best1h contains a number of inactive UAVs which contribute
to the reduced fitness. Thus, to improve performance, we next
tested with two hop communication. Results show that the fit-
ness of the best solution obtained with two hop UAVs (Best2h)
was 1.95 which is significantly better than one hop and is
near-optimal. For comparison, the same experiments were
conducted using ATRI, and the deployed network achieved
a performance/fitness of 1.38. Figure 8 shows the fitness
obtained using Best1h, Best2h, and ATRI on the four training
scenarios as well as the average performance across the four
scenarios. The green and blue bars in figure 8 show Best1h and
Best2h performance while magenta shows ATRI performance.
The figure shows that GANet network deployment performs
better than ATRI across all four training scenarios with two
hop GANet providing more significant gains.

The visualizations in figure 9 help explain the differences
in performance on the first training scenario. Figure 9 (a)
shows a network deployed using ATRI with fitness of 1.60
and we can see that although the UAVs cover the area well,
they do not adapt well to the current user distribution. Only
120 of 156 UAVs are active, and the rest (36) are inactive.
These 120 active UAVs collectively provide a 245.7 Mbps data
rate to users. On average, therefore, the per AU data rate is
245.7/120 ≈ 2.04 Mbps. Similarly, Figure 9 (b) shows the

network deployed using Best1h with fitness of 1.69, has 132
active UAVs and provides 250 Mbps to users. The figure shows
that GANet deployed UAVs more closely follow the user
distribution and thus result in more active UAVs. On average,
each active AU provides a data rate of 250/132 ≈ 1.89
Mbps. Finally, Figure 9 (c) shows the network deployed using
Best2h with a fitness of 1.93. UAVs cluster around users and
the number of active UAVs has now increased to 152 and
collectively serve a data rate of 282.7 Mbps with each active
UAV serving a data rate of 282.7/152 ≈ 1.85 Mbps. These
figures provide evidence that GANet with one hop and two
hop communication performs better than ATRI on Tr1.

To tease out whether bandwidth coverage or longevity is the
key factor for the performance difference between 1-hop and 2-
hop UAV communication, we plotted the graph of the average
bandwidth coverage and the average number of active UAVs
on training scenarios with 156 UAVs and different numbers
of users. Figure 10(a) shows average bandwidth coverage for
Best1h and Best2h for 50, 100, 150, and 200 users on the four
scenarios and we see that there is no significant difference
in bandwidth coverage. Figure 10(b) shows the number of
active UAVs. Here we see significantly larger numbers of
active UAVs with Best2h compared to Best1h thus providing
evidence that the difference in the performance must be caused
by the difference in the number of active UAVs. ATRI on
the other hand tries to minimize movement away from the
Delaunay triangulated locations and works well with more
uniform user distributions.

Figure 11 shows networks deployed using ATRI and Best1h
on the second (Tr2) and third (Tr3) training scenarios as
shown by figure 3 (b,c). Tr2 has two user clusters and ATRI’s
performance is 1.12 which is 28.2% lower than Best1h’s and
42.5% lower than Best2h’s performance. Similar behavior can
be seen for Tr3 as well. ATRI deployed UAVs are more
uniformly distributed across the AOI while GANet UAVs
have learned parameter values that enable them to cluster
around users while maintaining connectivity to the command
center. On Tr2 and Tr3 per AU data rates with ATRI are 4.54
and 3.76 Mbps respectively. Whereas per AU data rate with
Best1h are lower at 3.09 and 2.86 Mbps respectively, and
with Best2h, still lower with 1.99 and 1.88 Mbps respectively.
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TABLE II. COMPARING FITNESS OF Best1h , Best2h , AND ATRI WITH DIFFERENT NUMBER OF UAVS AND USERS ON TRAINING SCENARIOS.

Users Methods Tr1Tr1Tr1 Tr2Tr2Tr2 Tr3Tr3Tr3 Tr4Tr4Tr4 Average Tr1Tr1Tr1 Tr2Tr2Tr2 Tr3Tr3Tr3 Tr4Tr4Tr4 Average Tr1Tr1Tr1 Tr2Tr2Tr2 Tr3Tr3Tr3 Tr4Tr4Tr4 Average

156 UAVs 117 UAVs 78 UAVs

200 ATRI 1.60 1.12 1.34 1.47 1.38 1.50 1.02 1.29 1.40 1.30 1.32 0.76 1.13 1.26 1.11
200 1 hop 1.69 1.56 1.59 1.71 1.64 1.52 1.53 1.61 1.62 1.57 1.47 1.25 0.98 1.57 1.30
200 2 hop 1.93 1.95 1.97 1.94 1.95 1.64 1.88 1.90 1.84 1.86 1.65 1.53 1.59 1.69 1.62
150 ATRI 1.52 1.11 1.29 1.43 1.34 1.38 1.09 1.28 1.33 1.27 1.20 0.71 1.14 1.28 1.08
150 1 hop 1.58 1.44 1.53 1.62 1.54 1.52 1.52 1.62 1.71 1.59 1.36 1.38 0.93 1.60 1.32
150 2 hop 1.97 1.96 1.95 1.93 1.96 1.69 1.88 1.80 1.91 1.82 1.63 1.66 1.64 1.66 1.65
100 ATRI 1.34 1.13 1.24 1.42 1.28 1.26 1.40 1.28 1.34 1.25 1.10 0.81 0.93 1.23 1.02
100 1 hop 1.58 1.29 1.39 1.55 1.46 1.42 1.33 1.48 1.57 1.45 1.24 1.31 1.50 1.58 1.41
100 2 hop 1.84 1.98 1.93 1.98 1.93 1.78 1.86 1.78 1.91 1.84 1.61 1.49 1.66 1.78 1.64
50 ATRI 1.18 1.13 1.16 1.20 1.16 1.05 1.06 1.12 1.06 1.07 0.81 0.37 0.71 0.84 0.69
50 1 hop 1.23 1.20 1.29 1.38 1.27 1.22 1.27 1.36 1.25 1.27 1.08 1.34 1.27 1.15 1.20
50 2 hop 1.32 1.92 1.29 1.64 1.54 1.51 1.77 1.85 1.60 1.68 1.21 1.70 1.67 1.55 1.53

(a) ATRI on Tr2 (b) Best1h on Tr2

(c) ATRI on Tr3 (d) Best1h on Tr3

Fig. 11. Network deployments of Best1h and ATRI.

Lower data rates correspond to less energy consumption and
longer network lifetimes. Figure 12 shows the per AU data on
the training scenarios where ATRI per AU data rate is highest
and GANet 2-hop is lowest. Also note that on the first training
scenario where users are distributed more uniformly, ATRI’s
performance is comparable to GANet.

Note that Best1h and Best2h were evolved with 156 UAVs
and 200 users on the four training scenarios but an earlier plot,
figure 10 depicted their performance with different numbers of
users. This shows that GANet finds parameter values that work
on scenarios that have not been used for training and provides
early evidence that evolved solutions may be robust. To further
investigate robustness, we systematically varied the numbers of
UAVs, the numbers of users and computed performance on the
four training scenarios. Table II shows performance obtained
using Best1h, Best2h, and ATRI with 156, 117, 78 UAVs and
200, 150, 100, 50 users on the four training scenarios. Best2h
performed statistically significantly better than Best1h with p-
value less than < 0.00002 while Best1h outperformed ATRI
with p < 0.008. This provides evidence that even with different

Fig. 12. Comparing per AU data rate on four training scenarios.

numbers of users and UAVs, our approach works well on
scenarios with similar user distributions. In the next subsection,
we provide details on experiments on testing scenarios that
vary the distributions of users to better investigate robustness.

2) Experiments on Testing Scenarios: To measure the ro-
bustness of Best1h and Best2h, we evaluated and compared
performance on 100 testing scenarios with different user dis-
tributions, three of which are shown in figure 4 and the rest,
randomly generated. Table III compares GANet 1-hop and 2-
hop versus ATRI performance with 156, 117, and 78 UAVs and
different numbers of users on these testing scenarios. The table
is segmented by the number of UAVs. The first two columns
list the number of users and the deployment algorithm. The
next three columns provide performance on the three test
scenarios from figure 4. Since we can see the non-uniform
user distributions for these scenarios in the figure, while the
next subsequent column provides the average performance
over all 100 test scenarios. This table shows that Best2h
performed better on 95% (34 of 36) combinations of UAVs,
users, and three testing scenarios, compared to Best1h and in
all 36 compared to ATRI. These performance differences are
also statistically significant with p < 0.008 for GANet 1-hop
versus ATRI and p < 0.00002 for GANet 2-hop versus 1-hop.
These results provide evidence of the robustness of GANet
deployment. Once GANet optimizes potential field values for
a set of UAVs on a set of training scenarios, the results indicate
that we should expect similar network performance on new
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TABLE III. COMPARING FITNESSES OF Best1h , Best2h , AND ATRI WITH DIFFERENT NUMBER UAVS AND USERS ON TESTING SCENARIOS.

Users Methods Te1Te1Te1 Te2Te2Te2 Te3Te3Te3 Average Te1Te1Te1 Te2Te2Te2 Te3Te3Te3 Average Te1Te1Te1 Te2Te2Te2 Te3Te3Te3 Average

156 UAVs 117 UAVs 78 UAVs

200 ATRI 1.54 1.47 1.43 1.6 1.69 1.37 1.57 1.48 1.48 1.28 1.32 1.19
200 1 hop 1.69 1.71 1.64 1.69 1.80 1.72 1.63 1.56 1.74 1.67 1.75 1.35
200 2 hop 1.97 1.97 1.94 1.96 1.97 1.83 1.92 1.84 1.91 1.65 1.83 1.59
150 ATRI 1.47 1.33 1.38 1.51 1.58 1.31 1.47 1.33 1.48 1.22 1.34 1.16
150 1 hop 1.61 1.69 1.54 1.63 1.73 1.71 1.66 1.49 1.83 1.67 1.72 1.30
150 2 hop 1.98 1.99 1.97 1.97 1.98 1.84 1.96 1.85 1.9 1.64 1.86 1.58
100 ATRI 1.41 1.31 1.31 1.39 1.50 1.09 1.40 1.23 1.50 1.05 1.40 1.1
100 1 hop 1.53 1.56 1.48 1.52 1.67 1.60 1.58 1.4 1.71 1.55 1.72 1.17
100 2 hop 1.99 1.76 1.98 1.92 2 1.84 2 1.77 1.91 1.59 1.91 1.53
50 ATRI 1.28 1.20 1.26 1.16 1.27 1.12 1.31 1.09 1.32 1.02 1.17 0.78
50 1 hop 1.33 1.35 1.39 1.33 1.47 1.34 1.43 1.3 1.62 1.32 1.56 1.01
50 2 hop 1.96 1.87 1.91 1.59 1.59 1.56 1.97 1.52 1.84 1.36 1.78 1.37

unseen scenarios with different numbers of users, UAVs, and
user distributions.

Fig. 13. GANet performance when maximizing the average performance
across four training scenarios (green) compared to maximizing the minimum
performance (blue).

3) Maximizing The Minimum Objective: In all previous
experiments, we aimed to maximize fitness computed as the
average performance (Equation 1) over four training sce-
narios. A common alternative is to maximize the minimum
performance [39]. In experiments, comparing GANet 1-hop
performance with maximizing the minimum (maximin) versus
maximizing the average, we found that maximizing the average
performs significantly better. Figure 13 shows that the best
solution evolved using averaged fitness, green bar, performed
better than the best solution evolved with maximin fitness,
blue bar, on all four scenarios. On average, averaged fitness
performed 45.13% better than maximin fitness. We conjecture
that averaging performance better maintains diversity in the
population and hence genetic algorithm explore more and thus
leads to better performance.

VI. CONCLUSIONS

This paper uses genetic algorithm optimized potential fields
to optimize UAV-based ad-hoc wireless network deployment.
Unlike prior work, potential fields serve to unify representation
across both search and service phases of network deployment

and our proposed GANet optimizes potential field parameters
that work robustly for different user distributions. We showed
how to derive potential field parameters for the search phase
and designed an elitist genetic algorithm to optimize non-
linear potential field parameters for the service phase. We then
formulated the service phase network deployment problem as a
single objective optimization problem that maximizes the sum
of bandwidth coverage and longevity of the deployed network.
Performance is computed from running a simulation of UAVs
moving under the influence of GANet optimized potential
fields and provides a fitness metric for the genetic algorithm’s
search for optimal potential field parameter values. We showed
that GANet is significantly better than gradient ascent and
exhaustive search by finding a global optimum on a tractable
problem more than twice as quickly as the nearest competitor.
We then attacked larger, more realistic problems using four
training scenarios with 156 UAVs and 200 users distributed
uniformly and non-uniformly over an area of interest.

Results show that GANet network deployment is signifi-
cantly better than the state of the art ATRI deployment and
that GANet with two-hop UAV communications beats one-
hop UAV communication performance. These results carry
over to 100 test scenarios with never before seen user dis-
tributions, numbers, and to different numbers of UAVs. This
provides evidence for GANet’s robustness and our potential
fields based representation. GANet adapts better when users
are non uniformly distributed and matches or exceed ATRI
performance with more uniform user distributions. Since with
sufficient numbers of UAVs we get to optimal or near-optimal
performance with two-hop UAV communication, we believe
that going to higher hop counts for communications will not
significantly improve performance.
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[14] Z. Gáspár and T. Tarnai, “Upper bound of density for packing of equal
circles in special domains in the plane,” Periodica Polytechnica Civil
Engineering, vol. 44, no. 1, pp. 13–32, 2000.

[15] T. Chevet, C. S. Maniu, C. Vlad, and Y. Zhang, “Voronoi-based uavs
formation deployment and reconfiguration using mpc techniques,” in
2018 International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2018, pp. 9–14.

[16] M.-l. Lam and Y.-h. Liu, “Heterogeneous sensor network deployment
using circle packings,” in Proceedings 2007 IEEE International Con-
ference on Robotics and Automation. IEEE, 2007, pp. 4442–4447.

[17] J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, “Placement optimization
of uav-mounted mobile base stations,” IEEE Communications Letters,
vol. 21, no. 3, pp. 604–607, 2016.

[18] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient de-
ployment of multiple unmanned aerial vehicles for optimal wireless
coverage,” IEEE Communications Letters, vol. 20, no. 8, pp. 1647–
1650, 2016.

[19] N. Bartolini, T. Calamoneri, T. F. La Porta, and S. Silvestri, “Au-
tonomous deployment of heterogeneous mobile sensors,” IEEE Trans-
actions on Mobile Computing, vol. 10, no. 6, pp. 753–766, 2010.

[20] A. N. Patra, P. A. Regis, and S. Sengupta, “Distributed allocation
and dynamic reassignment of channels in uav networks for wireless
coverage,” Pervasive and Mobile Computing, vol. 54, pp. 58–70, 2019.

[21] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[22] A. C. Woods and H. M. La, “A novel potential field controller for use on
aerial robots,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 4, pp. 665–676, 2017.

[23] R. Dubey, J. Ghantous, S. Louis, and S. Liu, “Evolutionary multi-
objective optimization of real-time strategy micro,” in 2018 IEEE
Conference on Computational Intelligence and Games (CIG). IEEE,
2018, pp. 1–8.

[24] R. Dubey, S. Louis, A. Gajurel, and S. Liu, “Comparing three ap-
proaches to micro in rts games,” in 2019 IEEE Congress on Evolu-
tionary Computation (CEC). IEEE, 2019, pp. 777–784.
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