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Abstract 

 

This study develops a Genetic Algorithm with TRANSYT Hill-Climbing optimization 

routine, referred to as GATHIC, and proposes a method for decreasing the search space, 

referred to as ADESS, to find optimal or near optimal signal timings for area traffic control 

(ATC). The ADESS with GATHIC model is an algorithm, which solves the ATC problem to 

optimize signal timings for all signal controlled junctions by taking into account co-ordination 

effects. The flowchart of the proposed model with ADESS algorithm is correspondingly 

given. The GATHIC is applied to a well-known road network in literature for fix sets of 

demand. Results showed that the GATHIC is better in signal timing optimization in terms of 

optimal values of timings and performance index when it is compared with TRANSYT, but it 

is computationally demanding due to the inclusion of the Hill-Climbing method into the 

model. This deficiency may be removed by introducing the ADESS algorithm. The GATHIC 

model is also tested for 10% increased and decreased values of demand from a base demand.  
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Nomenclature 

 

 iψ∆  = the precision of design variable 

minψ  = the whole lower bound vector of signal timings  

maxψ  = the whole upper bound vector of signal timings  

[ ; ]m nφ= ∀ ∈φ N  be the vector of green times, where element inφ  is the duration of green 

for stage i at junction n  

1[ ; ]n nθ= ∀ ∈θ N  be the vector of start of green for stage 1 at each junction n relative to an 

arbitrary time origin for the network as a whole, i.e. signal offset 

),,( φθψ c=  the vector of feasible signal timings 

maxφ = maximum allowable green time for each stage m (sec) 

minφ = minimum allowable green time for each stage m (sec) 

0Ω = whole vector of feasible signal timings 

iΘ =integer number resulting from binary representation of the timing variables 

c = the common cycle time (sec) 

ccrit = critical value of common cycle time (sec) 

cmax = the maximum acceptable common cycle time (sec) 

cmin = the minimum acceptable common cycle time (sec) 

copt = the optimal cycle time (sec) 

Da = the delay in vehicles-hours/hour on link a in L  

I = intergreen time (sec) 
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K = the overall cost per 100 veh-stops  

ka = stop weighting factors on link a per unit time  

L = {1,2,3,….,NL} be a set of NL links where each traffic stream approaching any junction is 

represented by its own link  

l= length of chromosome 

M = total number of stages at all signal controlled junction 

m= number of stages at each signalized junction 

N = {1,2,3,…,Nj} be a set of Nj nodes each of which represents a signal-controlled junction 

PI= network performance index (£/h or veh/h) 

pz = the size of population 

q = the vector of average arrival flow (in vehicles/hour) for link a in L  

sa = the number of vehicle-stops on link a in L  

T = the period (hours) over which the estimation is made  

W=Overall cost per average veh-hr of delay 

wa = delay and stop weighting factors on link a per unit time 

x = vector of chromosomes in the population  

z= number of control variables in an signalized network  

 

1. Introduction 

Traffic signal control is a multi-objective optimization encompassing delay, queuing, 

pollution, fuel consumption and traffic throughput, combined into a network performance 

index (Akcelik, 1981). It can be either stage-based (e.g. TRANSYT) or group-based (e.g. 

SIGSIGN) (Silcock and Sang, 1990; Allsop, 1992). Signal optimization applies to several 

decision variables, such as green time, cycle length, stage sequence and offset. The 

optimization of signal timing for an isolated junction is relatively straight forward, but 
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optimizing the timing in dense networks where the distances between the intersections are too 

small to dissipate the platoons of traffic is a difficult task. The difficulty comes from the 

complexity of the signal co-ordination. Optimization of signal timings is well established at 

individual junctions (Heydecker and Dudgeon, 1987; Gallivan and Heydecker, 1988; Allsop, 

1992; Heydecker, 1992), but optimization of timings in coordinated signalized networks 

requires further research due to the offsets and the common network cycle time. The reason 

for further research to optimize the offset and network cycle time in coordinated signalized 

networks is at least two fold: One is the non-convexity of the problem when it is formulated 

as a mathematical program, and the second is that there is no feasible constraint for the start 

of the green (i.e. signal offsets), thus it is an unconstraint optimization problem. 

Among the current optimization models for area traffic control, TRANSYT is one of the most 

useful network study software tools for optimizing splits, offsets and stage ordering and also 

the most widely used program of its type. TRANSYT was developed by TRRL (Robertson, 

1969) and is a stage-based optimization program. Main features of TRANSYT are: The cyclic 

flow profile and platoon dispersion models, and the hill-climbing algorithm. It consists of two 

main parts: A traffic flow model and a signal timing optimizer. The traffic model in 

TRANSYT (Vincent et al., 1980) is a deterministic, mesoscopic, time-scan simulation. It 

simulates traffic in a network of signalized intersections to produce a cyclic flow profile of 

arrivals at each intersection and to compute a performance index (PI) for a given signal timing 

and staging plan. The performance index is defined as the sum for all signal-controlled traffic 

streams of a weighted linear combination of estimated delay and number of stops per unit 

time. The PI is evaluated by the cyclic flow profile model of traffic movement and a simple 

analytical expression in all the links and is used to measure the overall cost of traffic 

congestion.  
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The optimization procedure in TRANSYT is based on an iterative search technique known as 

‘Hill-Climbing’ (HC), which basically searches for the best signal timings by a trial and error 

method. The HC consists of two kinds of signal setting variables; the offset, which affects the 

coordination between junctions, and the stage start and end times. It can be derscribed as 

follows:  

 
First, TRANSYT calculates the performance index for an initial set of signal timings, in 

which all constraints are satisfied for considerations of safety. Next, one of the signal control 

variables is changed by a predetermined number of steps and the corresponding value of 

performance index is calculated. If the calculated value of performance index decreases, 

which means the system performance is improved as the signal setting variable changes in 

that direction by the predetermined number of steps, the signal setting variable is altered in 

the same direction by the same number of steps until a minimum value of the performance 

index is obtained. On the other hand, if the calculated value of performance index does not 

decrease, which shows that the system performance is not improved as the signal setting 

variable changes in that direction, the same variable is altered in the opposed direction by the 

same number of steps until a minimal value of the performance index is obtained. This 

process continues for each signal setting variable in the road network in turn. The steps by 

which the different variables are changed can be determined in advance (see for details, 

Vincent et al., 1980).  

The HC uses the iterative improvement technique, which is applied to a single point in the 

search space. A new point is selected from the neighborhood of the current point. If the new 

point provides a better value of the objective function, the new point becomes the current 

point. It terminates if no further improvement is possible. On the other hand, the Genetic 
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Algorithms (GA) performs a multi-directional search by maintaining a population of potential 

solutions and encourages information exchange between these directions.  

GAs are a family of computational tools inspired by evolution. These algorithms encode a 

potential solution to a specific problem on simple chromosome string like data structure and 

apply recombination operators to these structures so as to preserve critical information, and to 

produce a new population with the intent of generating strings which map to high function 

values. GAs utilize concepts derived from biology. The crucial point of utilizing GAs is based 

on Darwin's theory of survival of the fittest. The paradigms of analysis and design based on 

the principles of biological evolution have been around since 1960s and the early 

developments in the area of GAs are generally credited. 

 
The present study includes an implementation of binary-coded GA. Local rules of interaction 

replace the traditional stochastic operations of selection, and crossover. The evolution process 

is conducted locally with probabilistic transformation rules. Each site contains a binary bit 

description of the signal timings. The convergence characteristics of the GA are improved 

through the use of a shuffle mechanism that simply relocates members of the population to 

new sites within the search space at random after the mutation operations. This allows for new 

information to be introduced in the local neighborhood. The representation of the coefficients 

of GA into binary strings requires determining the bit string length. The lower bound value 

corresponds to all zero digits (0000...), while the upper bound value corresponds to all one 

digits (1111...).  

The GA works with the expression operation that are performed based on fitness evaluation. 

The fitness indicates the objective function is a logical choice for the fitness measure. The GA 

searches the most fit members by minimizing the total network PI obtained by TRANSYT 

traffic model.  
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Both GA and HC optimization have advantages and disadvantages as optimization routines in 

terms of global solution found and CPU time. The population-based search attempts to escape 

from falling into bad local optima. Hence, good optimization routine may be obtained by 

mathematically combining GA and HC techniques in order to remove being trapped bad local 

optima or to locate good global optimum. In addition, there is no study to decrease the search 

space for the GA and HC so that the performance of the TRANSYT may be improved in 

terms of CPU time.  

The TRANSYT-7F release 10 features the separate Genetic Algorithm (GA) optimization of 

cycle length, stage sequence, splits, and offsets. The phasing sequence optimization by 

TRANSYT-7F is also available not only for the entire network and but also for each 

individual intersection. But any of the versions of the TRANSYT may not explicitly combine 

the GA and the Hill Climbing (HC) method to optimize all signal timing variables at the ATC 

problem.  

 

Heydecker (1996) proposed a decomposition approach to optimize signal timings at 

individual and at network levels based on the group-based variables. In this approach, two 

levels of optimization were carried out alternatively until certain convergence criteria were 

satisfied. Considerable computational advantages obtained. It was however pointed out that 

each level of optimization could only produce sub-optimal results and hence there was no 

guarantee of convergence. Each level of optimization was sub-optimal because the effects of 

the coordination between adjacent junctions were not taken into account.  

 

Wong (1996) proposed an optimization of signal timings for area traffic control using group-

based control variables. The TRANSYT performance index is considered as a function of the 
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group-based control variables, cycle time, start and duration of green time. In this approach, 

the signal timing optimization problem is formulated as non-linear mathematical programs, in 

which the performance index of a network is minimized subject to certain constraints. The 

problem is solved using integer-programming methods. A trial network from Leicestershire 

was used to demonstrate the effectiveness of the proposed method. About 10% improvements 

in the optimal performance indices over the stage-based method in TRANSYT were obtained. 

But it was reported that obtaining the derivations of the performance index for each of the 

control variable was mathematically difficult. In addition, random offset calculation was 

proposed to locate better local minimum, but it requires much longer computational time.  

 

In relation to the network common cycle time, selection of the best cycle times for each node 

within a network is a complex and, as yet, unsolved optimization problem. In TRANSYT it is 

selected on the basis of the performance indices of isolated junctions without taking into 

account of the effect of co-ordination. It is one of the advantages of the GA that the common 

cycle time can be considered as a control variable in optimization, so that a common cycle 

time which works in the most harmonious way with the coordination patterns of a network 

can be determined.  

 

A difficulty could arise in traditional methods because of the use of a common cycle time for 

all signal-controlled junctions in the network. Imposing this an all junctions might lead to the 

sub-optimality of the sequence and interstages that were generated et each of them 

individually with a free choice of cycle time. Optimality of the sequences and interstage 

structures is controlled by reoptimizing each junction individually with the cycle time 

constraint to be equal to the common cycle time. If this leads to the selection of new 

sequences or interstage structures, the common network cycle time can then be re-optimized 
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with the new data and process repeated (Heydecker, 1996). However, the possible need to 

revise the sequences and interstage structures several times adds to the complexity of the 

problem. Thus, in order to optimize common cycle time at network level and then adjust the 

individual junction’s timings need a heuristic search methods such as combined GA and the 

HC.  

 

The common cycle time variable can only be increased, decreased or remain unchanged. It is 

well-known that the longer the cycle time the more the capacity, but the more delay. 

Moreover, network implication of selecting a cycle that provide sufficient capacity at all 

intersections, but may impose undue large delays at many intersections. Thus there is a need 

for new search methods to take into account the network common cycle time as a decision 

variable and optimizing individual junction’s signal timings simultaneously such as green 

time. For this purpose the one-step optimization heuristic, which combines GA with the HC, 

is developed, where the common cycle time is decreased, increased or remain unchanged. For 

each change of cycle time, the GA with HC is performed, called GATHIC with ADESS, to 

find the minimum PI in the signal-controlled network. Although the TRANSYT-7F may 

perform a common cycle length evaluation with GA, but there is no optimization routine for 

the Hill-Climbing procedure and no algorithm for reducing the search space for the GA as 

mathematical program.  

 

As a solution for above mentioned problems, the ADESS (Algorithm for DEcreased Search 

Space) is introduced. It provides a common cycle time, decreased, increased or fixed, and 

reports an optimum cycle time with GATHIC. With this approach the disadvantage of CPU 

time of the GA search space may also be relaxed. This study proposes a combined GA with 
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the HC method, referred to as GATHIC, and proposes an algorithm to reduce the search space 

for the GA, referred to as ADESS.  

 

2. Genetic Algorithms 

 

Genetic Algorithms (GAs) are a family of adaptive search procedures that are loosely based 

on models of genetic changes in a population of individuals. GAs were elucidated by 

Goldberg (1989) while Gen and Cheng (1997) have later attracted the growing interest of 

optimization problems. The main advantage of GAs is their ability to use accumulating 

information about initially unknown search space in order to bias subsequent searches into 

useful subspaces. GAs differ from conventional nonlinear optimization techniques in that they 

search by maintaining a population of solutions from which better solutions are created rather 

than making incremental changes to a single solution to the problem.  

 

2.1. GA Operators 

 

The key feature of a GA is the manipulation of a population whose individuals are 

characterized by possessing a chromosome. This chromosome can be coded as a string of 

characters of given length, l, with each string representing a feasible solution to the 

optimization problem. A chromosome is further composed of strings of symbols called bits 

Each bit is attached to a position within the string representing the chromosome to which it 

belongs. If, for example, the strings are binary, then each bit can take any value of 0 and 1. 

The link between the GA and the problem at hand is provided by the fitness function (F). The 

F establishes a mapping from the chromosomes to some set of real numbers. The greater the 

F value, the better is the adaptation of the individual. 
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The procedure is generative. It makes use of three main operators; reproduction, crossover 

and mutation. Each generation of a GA consists of a new population produced from the 

previous generation. The number of individuals in a population is assigned feature value to 

their chromosomes, where the assignment can be either deterministic or random. 

Reproduction is a process that selects the fittest chromosomes according to some selection 

operator. 

 

One example of a selection operator is the tournament selection (Goldberg and Deb, 1991). 

This operator chooses the members that will be allowed to reproduce during the current 

generation according to the fitness values. Further manipulation is carried out by crossover 

and mutation operator before the replacement is actually done in the view of the next cycle. 

 

Crossover provides a mechanism for the exchange of chromosomes between mated parents. 

Mated parents then create a child with a chromosome set that is some mix of the parent’s 

chromosomes. For example, Parent#1 has chromosomes ‘abcde’, while Parent#2 has 

chromosomes ‘ABCDE’; one possible chromosome set for the child is ‘abcDE’, where the 

position between the ‘c’ and ‘D’ chromosomes is the crossover point. 

 

Mutation is an operator which produces spontaneous random changes in various 

chromosomes. A simple way to achieve mutation would be to alter one or more bits. The 

mutation operator serves a crucial role in genetic algorithms either by (a) replacing genes lost 

from the population during the selection process or (b) providing genes that were not present 

in the initial population. The mutation process has a small probability that (after crossover) 

one or more of the child’s chromosomes will be mutated, e.g. the child ends up with ‘abcDF’. 
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The purpose of this operator is to prevent the process becoming trapped at a bad local 

optimum. 

 

Apart from the main operators described so far, the other operator used in this study is the 

elitism operator, which is used to ensure that the chromosome of the best parent generated to 

date is carried forward unchanged into the next generation. After the population is generated, 

the GA checks to see if the best parent has been replicated; if not, then a random individual is 

chosen and the chromosome set of the best parent is mapped into that individual.  

 

2.2. String Representation  

 

The representation of the signal timings into binary strings requires determining the bit string 

length. The lower bound value corresponds to all zero digits (0000...), while the upper bound 

value corresponds to all one digits (1111...). The values between the lower and upper bound 

are linearly scaled and associated to corresponding binary strings. A design with multiple 

variables can be represented by stacking, head-to-tail, the strings in any given order. Stacking 

of signal setting variables can be represented as follows. 

1 2 1 2, ,...., , ,....,Decision variables
Mapping

Chromosome (string) 01010101 01010111,....,1010101110101010,.......,01010010

j jN Nc=
↓ ↓ ↓ ↓

=

θ θ θ

x

φ φ φψ
 

 

While dealing with binary string representation, one may need to use large number of bits to 

represent the variables to high accuracy. Although a higher degree of precision can be 

obtained by increasing the string length, it is not always desirable because the computational 

cost of GAs also increase as the binary string gets longer. The higher number of bits will 
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improve the performance of the GA algorithm due to the small step-sizes as given in Eqn. (2), 

but higher cost. The number of binary digits needed for an appropriate representation can be 

calculated from the following equation 

 

1/)(2 min,max, +∆−≥ iii
li ψψψ , i=1,2,3,…,z      (1) 

 

where  iψ∆  can be calculated as:  

 

 )12/()( min,max, −−=∆ il
iii ψψψ        (2) 

 

Suppose that the possible values of a cycle time, offset and green times were 35, 9, 12, 15, 8, 

20, 12 and 15 secs. Then the binary coding would be as shown bellow:  

 

 
01111001101000001100000100111111
22243083491438
43213121 φφφφθθθc

 

 

Then  iψ∆ =2 secs, and l=4, minψ =8 and maxψ =38. So, if that section of chromosome reads 

“1100” then iΘ =13, and ψ =34 sec. 

 

Mapping from a binary string of design variables to real numbers is carried out in the 

following way: 

 

 i i, min i iψ ψ ψ= + ∆Θ  i=1,2,3,……,z      (3) 
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2.3. Fitness Evaluation 

 

With previous operations, a population is changed in form and characteristics, and represents 

a new generation. Iterative search after many generations of evolution leads the population to 

optimal near-optimal signal timing variables. Although the operations mentioned above can 

improve the solution to signal timing problems as a collective population and, consequently, 

also best design, optimization searches are generally more interested in finding the best 

design.  

 

The GA works with the expression operation that are performed based on fitness evaluation. 

The fitness indicates the goodness of design, and therefore, the objective function is a logical 

choice for the fitness measure. The fitness function, F(x), selected is:  

 

( ) 1/ ( )
q fixed

Max F x PI
=

= ψ          (4) 

 

where the total network performance index (PI) is formulated as:  

 

,
( ( ) ( ))a a a a

q fixed a
Min PI Ww D Kk Sψ ψ

= ∈

= +∑
Lψ

       (5) 

Subject to 

min max

0 min max

1

cycle time constraints
0 values of offset constraints

( , , ) ; green time constraints

( )
m

i
i

c c c
c

c

I c m n

θ
φ φ φ

φ
=

≤ ≤⎧
⎪ ≤ ≤⎪⎪∈ ≤ ≤⎨
⎪
⎪ + = ∀ ∈ ∀ ∈
⎪⎩
∑

ψ

M N

θ φ Ω

,
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2.4. Variable Discretization 

 

a) Common network cycle time 

 

12/)( minmaxmin −−Φ+= il
i cccc  i=1      (6) 

 

b) For offsets 

 

)12(i −Φ= ilcθ   i=2,3….Nj      (7) 

 

Mapping the vector of offset values to a corresponding signal stage change time at every 

junction is carried out as follows: 

 

 jii S ,=θ  i=1,2,……,Nj; j=1,2,..,m      (8) 

 

where Si,j is the signal stage change time at every junction 

 

c) For stage green timings  

 

Let p1, p2, …, pi be the numbers representing by the genetic strings for m stages of a particular 

junction, and I1, I2,…, Im be the length of the intergreen times between the stages.  

 

The binary bit strings (i.e. p1, p2, …, pi) can be encoded as follows first; 

 

 )12/(( min)maxmin −−Φ+= il
ii cccp ,  i=1,2,…,m 
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Then, using the following relation the green timings can be distributed to the all signal stages 

in a road network as follows second: 

 

⎟
⎠

⎞
⎜
⎝

⎛
−−⎟

⎠

⎞
⎜
⎝

⎛
+= ∑∑∑

===

m

k
k

m

k
k

m

i
iiii Icpp

1
min,

11
min, / φφφ  i=1,2,…,m   (9) 

 

2.5. Translation of Signal Timings into TRANSYT variables 

 

A decoded genetic string is required to translate into the form of TRANSYT inputs, where 

TRANSYT model accepts the green times as stage start times, hence offsets between signal-

controlled junctions. The assignment of the decoded genetic strings to the signal timings is 

carried out using the following relations in the GATHIC. 

 

1. For road network common cycle time  

 

( , )c u i j←  i=1, j=1,2,3………, pz  

 

where u represents the corresponding decoded parent chromosome, j represents the population 

index and i represents the first individual in the chromosome set. 

  

2. For offset variables  

 

( , ) ( , )n i j u i jθ ← ,   i=2,3,4,…..,Nj j=1,2,3………, pz 
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Since there is no closed-form mapping for offset variables, it is common to map these values 

to the interval (0, c), hence offset values are mapped using Eqn. (8). The decoded offset 

values are in some cases higher than the network cycle time due to the coding process in the 

GA. In this case, the remainder of a division between u(i,j) and the c is assigned as a stage 

change time as:  

 

( , ) MOD( ( , ), )n i j u i j cθ ←   i=2,3,4,…..,Nj j=1,2,3………, pz 

 

3. For green timing distribution to signal stages as a stage change time is 

 

, , 1 ,( , ) ( , ) (( ) ( , ))n m n m n mi j i j I i j cθ θ φ−= + + ≤ ; n∀ ∈N , m∀ ∈M , i=1,2,3,….,m 

 

2.6. Optimization Steps 

 

The steps of GATHIC are set out below: 

 

Step 0.  Initialisation. Define the permissible range ( minψ  to maxψ ) for the decision 

variables.  

There are no clear theoretical formulae for the appropriate population sizing, but Carroll 

(1996) suggestion for this kind of problems is between 10-50. 

 

Step 1.  Generate the initial random population of signal timings Xt; set t=1  

 

All binary bits for each chromosome are initialized randomly using a random number 

generator. Due to the given minimum and maximum bounds for the signal timing variables as 
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an input to the GATHIC, the generated sequence for signal timings are not likely to produce 

infeasible sets. If signal-timing constraints do not satisfy for generated signal settings, the 

GATHIC will automatically discards those generated signal timings by way of TRANSYT 

program.  

 

Step 2.  Decode all signal timing parameters using (6), (7) and (9) to map the 

chromosomes to the corresponding real numbers.  

Step 3 Run TRANSYT 

Step 4  Get the network performance index (PI)  

Step 5  Calculate the F for each chromosome xj using (3) 

Step 6  Reproduce the population in proportion to the F values.  

Step 7  Carry out the crossover operator by a random choice with probability pc. 

 

Crossover probability (denoted by pc) is defined as the ratio of the number of offspring 

produced in each generation to the population size. This ratio controls the expected number 

pc*pz of chromosomes to undergo the crossover operation. A higher crossover rate allows 

exploration of more of the solution space and reduces the chances of settling for a bad local 

optimum, but the higher the crossover rate, the longer the computation time. Based on 

previous studies, Goldberg (1989) and Carroll (1996) set the probability of crossover (pc) 

between 0.5 and 0.8. Hence, pc is selected as 0.5 in this study. 

 

Step 8  Carry out the mutation operator by a random choice with probability pm. 

 

Mutation probability (denoted by pm) is a parameter that controls the probability with which a 

given string position alters its value. If pm is too low, many genes that would have been useful 
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are never tried out; but if it is too high, there will be much random perturbation, the offspring 

will start losing their resemblance to the parents, and the algorithm will lose the ability to 

learn from the history of the search. pm can be set to 1/pz (Carroll, 1996). 

 

Step 9 Carry out the elitism operator if the best fit individual has replicated; if not, a 

random individual is chosen and the chromosome set of best parent is mapped 

into that individual.  

 

Step 10.  If the difference between the population average fitness and population best 

fitness index is less than 5% then go to the Step 11 otherwise go to Step 2.  

Step 11.  If the maximal generation number is achieved or 

0.0001Max F Average F− ≤ , then the chromosome with the highest fitness is 

adopted as the optimal solution of the problem. Else increase the generation 

number by one and return to Step 2. 

 

The main disadvantage of the GATHIC model is the CPU time which increases when it is 

combined with the HC algorithm. One of the main reasons for this is that the search space for 

the GATHIC is quite large when it is set in the usual way (Ceylan and Bell 2004a and 2004b). 

Therefore, if the search space is decreased analytically, the CPU time for the GATHIC may 

considerably be decreased. Thus the ADESS is developed. It seeks the lower and upper 

bounds for the signal timing variables by way of performance index and common cycle 

length. 

 

A typical cycle length and the performance index=delay curve can be seen in Figure 1. For 

consistency with the traffic model of TRANSYT, let cmax be the longest acceptable common 
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cycle length, and for the junction being considered let copt be the TRANSYT optimal cycle 

length and ccrit be the critical cycle length. If copt<cmax, the network PI follows the right hand 

side of Figure 1, and the performance index becomes very large when the cycle time 

approaches ccrit. The performance index attains minimum delay, PIopt, when the cycle time is 

equal to copt.  

 

Let L
optc  and U

optc be the lower and upper bound for the reduced range for the GATHIC model 

parameter space. To obtain the reduced range, the ADESS algorithm is given as:  

 

Step 1: Set c=ccrit and ∆c=1; 

Step 2: Read signals, flows and turning flows data; 

Step 3: Run TRANSYT; 

Step 4: Get the network PI; and draw it versus cycle length curve as in Figure 1; 

Step 5: If c=cmax;then stop; else c=cmin+∆c and go to Step 1. 

Step 6.  Find the minimum copt versus PI and and set the L
optc  as 15th value before copt 

and U
optc  as 25th value after copt, and subsequently adjust the GATHIC parameter 

space as cmin= L
optc and cmax= U

optc .  

Step 7:  Follow the previously given GATHIC steps (see Figure 2). 

 

At Step 1, ccrit is given as cmin for this study.  

 

The flowchart of the ADESS algorithm is given in Figure 2. The ADESS algorithm performs 

the process until the pre-specified number iterations are completed. During the run of the 

algorithm, the signal settings constraints should be satisfied due to practicability and safety 
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reasons. The ADESS finds the minimum PI versus copt, which is the TRANSYT optimal cycle 

length, then the parameter ranges for the GATHIC is reduced to between L
optc and U

optc by 

taking the 15th value before copt ad 25th value after copt. The reason for taking the 15th and 25th 

values is that GATHIC optimal cycle length lies between those ranges, which are empirically 

determined; therefore it would be enough to reduce the search space to those values.  

 

3. Numerical Application 

 

A test network is chosen based upon the one used by Allsop and Charlesworth (1977). Basic 

layouts of the network and stage configurations are given in Figure 3 and 4. Set of fixed link 

flows are given in Table 1. This numerical test includes 21 signal setting variables at 6 signal-

controlled junctions. The GATHIC model performance is also tested for decreased and 

increased the values of Table 1 by 10%. 

 

3.1. The GATHIC application without ADESS Algorithm 

 

The GATHIC parameter ranges are given as: 

 

min max, 36, 135c c =  seconds Common network cycle time 

min max, 0, 135θ θ =  seconds Offset values 

7min =φ  seconds Minimum green time for signal stages 

      5iI =  seconds Intergreen time between the stages. 
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Based on previous studies (Goldberg, 1989; Carroll, 1996), the GATHIC is performed with 

the following GA parameters in all cases: 

 

Population size (pz)    = 20;  

Reproduction operator    = binary tournament selection; 

Crossover operator     = uniform crossover,  

Probability of crossover (pc)   = 0.5; 

Probability of mutation (pm)   = 1/pz = 0.05;  

Bits per timing parameter    =8, 

Number of timing variables   =21 

Chromosome length     =168 bit  

The maximal number of generation (t) = 40. 

 

Eight-bit representation of timing parameters are chosen in this study. The reason for 

choosing the eight-bit representation of the parameters is to increase the precision per design 

parameter.  

 

The application of the GATHIC to the example network can be seen in Figure 5, where the 

convergence of the algorithm and improvement on the network performance index and hence 

the signal timings can be seen. Model analysis is carried out for the 40th generation, and 

network performance index obtained for that generation is 672.0 £/h. The re-start process 

began after the 13th generation and there was not much improvement to the population best 

fitness previously found. The reason for this is that in the first iterations, the algorithm finds a 

chromosome with good fitness value which is better than average fitness of the population. 

The algorithm keeps the best fitness then starts to improve population average fitness to the 
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best chromosome while improving the best chromosome to optimum or near optimum. The 

considerable improvement on the objective function usually takes place in the first few 

iteration because the GATHIC start with randomly generated chromosomes in a given 

population pool. After that, small improvements to the objective function takes place since the 

average fitness of the whole population will push forward the population best fitness by way 

of genetic operators, such as mutation and crossover. 

 

Table 2 shows the signal timings and the final value of the performance index in terms of £/h 

and veh-h/h. The common network cycle time obtained from the GATHIC application is 56 

seconds and the start of greens for every stage in the signalized junction is presented in Table 

2.  

 

As for the computation efforts, the GATHIC performed on P4 2800 Mhz PC in Fortran 90. 

The total computation effort for complete run of the GATHIC model run was 33.6 minutes 

without revised search space.  

 

3.2. The GATHIC application with ADESS Algorithm 

 

The application of the ADESS algorithm in an example road network provided the possible 

ranges of L
optc  and U

optc  that may lead to narrow the search space for the GATHIC in order to 

locate good local optimum with less CPU time. The output of the ADESS is further processed 

for subsequent use in the GATHIC as:  

 

( )
2 1i

U L
opt optL

opt i l

c c
c c

−
= + Φ

−
 i=1   
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and the reduced lower and upper bounds for signal timings are  

 

, 54, 84L U
opt optc c =  seconds Common network cycle time 

min max, 0, 84θ θ =  seconds Offset values 

7min =φ  seconds  

      5iI =  seconds i=1,2,3,…m 

 

The application of the GATHIC in this section is carried out by running the ADESS and 

GATHIC model. The network performance index and signal timings are given in Table 3. The 

network performance index is improved to a value of 666.6 £/h and the cycle length is 56 sec. 

The CPU time is reduced to the 13.8 minutes. The CPU improvement over the unrevised GA 

search space is about 60% and the performance improvement is about 1%. 

 

The resultsof the 10% increased and decreased values of demand from Table 1 by way of 

GATHIC with ADESS algorithm is given in Table 4. The performance index is improved 

when the demand in Table 1 is decreased by 10% with a decreased CPU and cycle length. The 

CPU increases when the demand increases. This happens due to the TRANSYT program that 

evaluates the network PI in a longer time than lower demand from the base value. 

 

4. Conclusions 

 

This study solves the area traffic control problem by combining GA and HC method. The 

GATHIC model is developed and its disadvantage in terms of CPU time may be removed by 

introducing the ADESS algorithm to reduce search space. The ADESS with GATHIC is an 
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optimization heuristics to optimize the network common cycle length by taking into account 

coordination both in network and at individual junction level simultaneously. Other lower and 

upper bounds for signal timing parameter ranges are also possible in GATHIC methodology, 

but setting the signal timing parameters at original level considerably increases the CPU time 

about 13 min to 37 min for this example. CPU time improvement of the GATHIC is about 

60% with ADESS algorithm. The GATHIC provides signal timings for further use in 

TRANSYT-HC method. The convergence of the model may be guaranteed for this example 

due to the one-step solution algorithm for signal timing optimization.  

 

Although TRANSYT-7F introduced the GA optimization method, the GATHIC combines the 

GA with HC and introduces an algorithm to reduce the search space for the GA in order to 

cope with the CPU disadvantage during the optimization process. The main advantages of the 

GATHIC algorithm over TRANSYT is that it produces the initial set of signal timings for HC 

algorithm, and it also optimizes the network common cycle time, where each changes on the 

cycle time is consequently evaluated by GATHIC with ADESS algorithm.  

 

The HC optimization technique may be more effectively used with GA notion with the cost of 

CPU time, but optimal or near optimal solution of the signal timings parameters may be 

obtained without using a complex procedure as given in Heydecker (1996). Although the 

CPU time can be reduced by introducing the ADESS algorithm together with GATHIC, the 

CPU time is considerably high over traditional methods.  

 

It is also obtained that the GATHIC application for the example network is better to locate an 

initial starting point for TRANSYT optimization routine. In this way deficiency of 

TRANSYT to initial signal timings can also be relaxed. It is well known that TRANSYT 
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provides local optimum values only and these values depend on the selection of the starting 

point. Furthermore, there is no information available on the relative error with respect to the 

global optimum of the solution found. 

 

The GATHIC model, which takes full advantage of flexibility by obtaining each of the 

optimal or near optimal signal timings at a signal-controlled road network, is the simultaneous 

optimization of control variables at the network and individual junction level with considering 

coordination of closely-spaced junctions. 

 

For this small network, the effect of stage ordering is not taken into account due to the small 

numbers of the stage ordering permutations and the difficulties in GA coding in developed 

GATHIC algorithm. Further study should take into account the effect of stage ordering in 

signal timing optimization using the permutation coding (in this study binary coding is used). 

Further study should also be on testing the GATHIC with realistic size networks.  
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Figure 1. The common cycle time versus network performance index 
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Figure 2. The flowchart of the ADESS algorithm and the GATHIC model 
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Figure 3 Layout for the test network 
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Figure 4 Stage configurations for the test network 
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Figure 5. The convergence of the GATHIC 
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Table 1. Fixed set of link flows 

Link 

No 

Flow 

(veh/h)

Saturation 

Flow 

(veh/h) 

Free-Flow 

travel time 

c0 (seconds) 

1 716 2000 0* 

2 463 1600 0* 

3 716 3200 10 

4 580 3200 15 

5 636 1800 20 

6 174 1850 20 

7 463 1800 10 

8 478 1850 15 

9 121 1700 15 

10 478 2200 10 

11 500 2000 0* 

12 249 1800 0* 

13 450 2200 0* 

14 791 3200 20 

15 793 2600 15 

16 669 2900 10 

17 407 1700 10 

18 346 1700 15 

19 619 1500 10 

20 1290 2800 0* 

21 1056 3200 15 

22 1250 3600 0* 

23 840 3200 15 
*these are the entry links and no travel time are given during the calculations in TRANSYT 
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Table 2 The final values of signal timings derived from the GATHIC 

Start of green in seconds Performance 
Index 

£/h veh-
h/h 

Cycle 
time 

c 
(sec) 

 
Junctio

n 
Numbe

r 
i 

Stage 1
Si,1 

Stage 2 
Si,2 

Stage 3 
Si,3 

1 21 43 - 
2 9 39 - 
3 18 52 - 
4 27 48 10 
5 22 33 53 

672.0 69.3 56 

6 51 21 - 
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Table 3 The final values of signal timings derived from the GATHIC with ADESS algorithm 

Start of green in seconds Performance 
Index 

£/h veh-
h/h 

Cycle 
time 

c 
(sec) 

 
Junctio

n 
Number

i 

Stage 
1 

Si,1 

Stage 2 
Si,2 

Stage 3 
Si,3 

1 3 25 - 
2 47 21 - 
3 55 34 - 
4 9 30 48 
5 4 14 34 

666.6 68.3 56 

6 33 3 - 
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Table 4 The final values of signal timings derived from the GATHIC with ADESS algorithm 

10% decreased values of Table 1 10% Increased values of Table 1 
Peformance Index Peformance Index

£/h Veh-h/h 
Cycle 
c (sec)

CPU 
(min) £/h Veh-h/h 

Cycle 
c (sec) 

CPU 
(min) 

531.1 53.8 53 8.25 881.1 93.7 76 19.65 
 

 


