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Abstract

Genetic Algorithms (GAs) have received a great deal of attention
regarding their potential as optimization techniques for complex
functions. The level of interest and success in this area has led to a
number of improvements to GA-based function optimizers and a good
deal of progress in characterizing the kinds of functions that are
easy/hard for GAs to optimize. With all this activity, there has been a
natural tendency to equate GAs with function optimization. However,
the motivating context of Holland’s initial GA work was the design
and implementation of robust adaptive systems. In this paper we argue
that a proper understanding of GAs in this broader adaptive systems
context is a necessary prerequisite for understanding their potential
application to any problem domain. We then use these insights to
better understand the strengths and limitations of GAs as function
optimizers.

1 INTRODUCTION

The need to solve optimization problems arises in one form or other in almost every field

and, in particular, is a dominant theme in the engineering world. As a consequence, an

enormous amount of effort has gone into developing both analytic and numerical

optimization techniques. Although there are now many such techniques, there are still



large classes of functions which are beyond analytical methods and present significant

difficulties for numerical techniques. Unfortunately, such functions are not bizarre,

theoretical constructs; rather, they seem to be quite commonplace and show up as

functions which are not continuous or differentiable everywhere, functions which are

non-convex, multi-modal (multiple peaks), and functions which contain noise.

As a consequence, there is a continuing search for new and more robust optimization

techniques capable of handling such problems. In the past decade we have seen an

increasing interest in biologically motivated approaches to solving optimization

problems, including neural networks (NNs), genetic algorithms (GAs), and evolution

strategies (ESs). The initial success of these approaches has led to a number of

improvements in the techniques and a good deal of progress in understanding the kinds

of functions for which such techniques are well-suited.

In the case of GAs, there are now standard GA-based optimization packages for practical

applications and, on the theoretical side, continuing efforts to better understand and

characterize functions that are "GA-easy" or "GA-hard". However, with all this activity,

there is a tendency to equate GAs with function optimization. There is a subtle but

important difference between "GAs as function optimizers" and "GAs are function

optimizers".

The motivating context that led to Holland’s initial GA work was the design and

implementation of robust adaptive systems. In this paper we argue that a proper

understanding of GAs in this broader adaptive systems context is a necessary

prerequisite for understanding their potential application to any problem domain. We

then use these insights to better understand the strengths and limitations of GAs as

function optimizers.

2 WHAT IS A GENETIC ALGORITHM?

Figure 1 provides a flow diagram of a fairly generic version of a GA. If we ask what this

algorithm is intended to do, we find ourselves in an awkward "cart before the horse"

situation. The algorithm in question wasn’t designed to solve any particular problem

(like sorting, tree traversal, or even function optimization). Rather, it is a high level

simulation of a biologically motivated adaptive system, namely evolution. As such, the

kinds of questions one asks have a different slant to them. We would like to know what

kind of emergent behavior arises from such a simple set of rules, and how changes in the

algorithm affect such behavior. As we understand better the kind of adaptive behavior

exhibited by GAs, we can begin to identify potential application areas that might be able

to exploit such algorithms.

Such discussions about evolutionary systems are not new, of course, and certainly

predate the emergence of GAs. Although a precise and agreed upon statement of the

role of evolution is difficult to find, I think it is fair to say that there is general agreement

that its role is not function optimization in the usual sense of the term. Rather, one

thinks of evolution in terms of a strategy to explore and adapt to complex and time-

varying fitness landscapes.



Randomly generate an

initial population M(0)

Compute and save the fitness u(m)

for each individual m

in the current population M(t)

Define selection probabilities p(m)

for each individual m in M(t)

so that p(m) is proportional to u(m)

Generate M(t+1) by probabilistically

selecting individuals from M(t) to produce

offspring via genetic operators

Figure 1. A Canonical Genetic Algorithm

Analyzing this evolutionary adaptive behavior is surprisingly difficult even for high level

abstractions such as GAs. Holland’s analysis [Holland75] in terms of near-optimal

allocation of trials in the face of uncertainty is still today one of the few analytical

characterizations we have of global GA behavior. Much of the early GA research was

an attempt to gain additional insight via empirical studies in which the fitness landscape

was defined by carefully chosen time-invariant memoryless functions whose surfaces

were well understood and by observing how GA populations evolved and adapted to

these landscapes (see, for example, [DeJong75] or [Bethke81]).

Several important observations came out of these early studies. First, the actual behavior

exhibited by such a "simulation" varied widely as a function of many things including

the population size, the genetic representation chosen, the genetic operators used, and

the characteristics of the fitness landscape. Second, it became very clear that there was

no universal definition of what it meant for one simulation run to exhibit "better"

adaptive behavior than another. Such measures were more easily motivated by particular

task domains and, as such, frequently emphasized different aspects of adaptive behavior.

Finally, the robust adaptive behavior observed on these artificial fitness functions gave



rise to the belief that GAs might serve as a key element in the design of more robust

global function optimization techniques. We explore these observations in more detail

in the next few sections.

3 BEHAVIOR EXHIBITED BY GAs

Suppose we select a simple function like f (x)=x 2 to define an (unknown) fitness

landscape over the interval [0,4] with a precision for x of 10−4 . Suppose further that we

represent all the legal values in the interval [0,4] as binary strings of fixed length in the

simplest possible manner by mapping the value 0.0 onto the string 00...00, 0.0 + 10−4

onto 00...01, and so on, resulting in an order-preserving mapping of the interval [0,4]

onto the set {00...00,...,11...11}. Finally, suppose we run the simulation algorithm in

Figure 1 by randomly generating an initial population of binary strings, invoking f(x) to

compute their fitness, and then use fitness-proportional selection along with the standard

binary string versions of mutation and crossover to produce new generations of strings.

What sort of behavior do we observe? The answer, of course, is not simple and depends

on many things including the choice of things to be measured. In the following

subsections we illustrate 3 traditional viewpoints.

3.1 A GENOTYPIC VIEWPOINT

The traditional biological viewpoint is to consider the contents of the population as a

gene pool and study the transitory and equilibrium properties of gene value (allele)

proportions over time. In the case of a canonical GA, it is fairly easy to get an intuitive

feeling for such dynamics. If fitness-proportional selection is the only active

mechanism, an initial randomly generated population of N individuals fairly rapidly

evolves to a population containing only N duplicate copies of the best individual in the

initial population. Genetic operators like crossover and mutation counterbalance this

selective pressure toward uniformity by providing diversity in the form of new alleles

and new combinations of alleles. When they are applied at fixed rates, the result is a

sequence of populations evolving to a point of dynamic equilibrium at a particular

diversity level. Figure 2 illustrates how one can observe these effects by monitoring the

contents of the population over time.

Note that, for the fitness landscape described above, after a relatively few number

of generations almost all individuals are of the form 1..., after a few more generations,

the pattern 11... dominates, and so forth. After several hundred generations we see that,

although more than 50% of the gene pool has converged, the selective pressures on the

remaining alleles are not sufficient to overcome the continual diversity introduced by

mutation and crossover, resulting in a state of dynamic equilibrium at a moderate level

of genetic diversity.



Gen 0 Gen 5 Gen 50 Gen 200 Gen 500

01111100010011 11000001011100 11111101010101 11111111010011 11111111011110

00010101011100 11100001000010 11111110011101 11110111011110 11111111110011

01001000110010 11110100010100 11111011001001 11111011010110 11111110010001

00110001110010 11110111100011 11111101000001 11111110101011 11111111011010

01010001110010 11111110100001 11111100110111 11111100001011 11111111110000

00010000010001 11111100011001 11111101000101 11111111011111 11111111111011

11001100000110 11010100000110 11111101001001 11111110100001 11111011010101

10110001110010 11111101000001 11111001011001 11111111110001 11111111110110

10100001111100 11111100111001 11010111110001 11111111111111 11111111110000

00100001101001 11110111011001 11111101011101 11110110110101 11111111000010

01010100100011 11110001111111 11101111100111 11111101110011 11111111001010

01000101100011 11110111100011 11111100110111 11111100010001 11111111111000

00010001111110 11110111100001 11111111010011 11111111011001 11111111110000

10101111100111 11110111011100 11111111010011 11101111111001 11111111010001

01111101010100 11101010100100 11110100000111 11111111100011 11111111011000

11000011100110 11010100011000 11111101011001 11111111110011 11111111010001

11001101100001 11100001110001 11111100101001 11111111111011 11111111110110

11110111011100 11110110011011 11111011100101 11111001001010 11111111110010

11001010100000 11010101000001 11111100000001 11111110111010 11111111110100

00101000101111 11010001010110 11111111100101 11111110011011 11111111110011

01000011111110 11110100010101 11111111001001 11111110110111 11111111111000

11100101000001 11110101100001 11111001010011 11111111101001 11111111101111

01001001100110 11110111100001 11111100101011 11111101010011 11111111001111

01000101100011 11111101000001 11111011011000 10111100111010 11111111011000

00111001100000 11110010011100 11110110001101 11111111010011 11111111011000

01110100100100 11111100111001 11111100111011 11111101111010 11111111010110

Figure 2: A Genotypic View a GA Population

3.2 A PHENOTYPIC VIEWPOINT

An alternative to the genotypic point of view is to focus on the "phenotypic"

characteristics of the evolving populations produced by GAs. The phenotype of an

individual is the physical expression of the genes from which fitness is determined. In

the example introduced above, the phenotype is simply the real number x defined by a

particular binary gene value. Although not true in general, in this particular case there is

a one-to-one mapping between genotypes and phenotypes.

Since fitness is defined over this phenotype space, one gains additional insight into the

adaptive behavior of GAs by plotting over time where the individuals in the population

"live" on the fitness landscape. Figure 3 illustrates this behavior for the fitness landscape

defined above. As one might expect, the population is observed to shift quite rapidly to

inhabiting a very small niche at the rightmost edge of the phenotype space.

Suppose one creates more interesting landscapes with multiple peaks. Does a GA

population evolve to steady states in which there are subpopulations inhabiting each of

the peaks? For the typical landscapes used which are memoryless and time-invariant,
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Figure 3: A Phenotypic View of a GA Population

there is no negative feedback for overcrowding. The net result for canonical GAs is a

population crowding into one of the higher fitness peaks (see, for example, [DeJong75]

or [Goldberg89]). Frequently, the equilibrium point involves the highest fitness peak,

but not always.

3.3 AN OPTIMIZATION VIEWPOINT

There are of course other ways of monitoring the behavior of a GA. We might, for

example, compute and plot the average fitness of the current population over time, or the

average fitness of all of the individuals produced. Alternatively, we might plot the best

individual in the current population or the best individual seen so far regardless of

whether it is in the current population. In general such graphs look like the ones in

Figure 4 and exhibit the properties of "optimization graphs" and "learning curves" seen

in many other contexts.
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Figure 4: GA Fitness Measures

Measurements of these sorts have encouraged the view of GAs as function optimizers.

However, one must be careful not to adopt too simplistic a view of their behavior. The

genotypic and phenotypic viewpoints provide ample evidence that populations do not in

general converge to dynamic steady states containing multiple copies of the global

optimum. In fact it is quite possible for the best individual to never appear or appear and

then disappear from the population forever. With finite and relatively small populations,

key alleles can be lost along the way due to sampling errors and other random effects

such as genetic drift. In theory, as long as mutation is active, one can prove that every

point in the space has a non-zero probability of being generated. However, if the

population evolves toward subspaces not containing the optimum, the likelihood of

generating optimal points via mutations of the current population becomes so small (e.g.,

< 10−10) that such an event is unlikely to be observed in practice.

With a canonical GA every point generated (good or bad) has a relatively short life span

since the population is constantly being replaced by new generations of points. Hence,

even if a global optimum is generated, it can easily disappear in a generation or two for

long periods of time.

These observations suggest that a function optimization interpretation of these canonical

GAs is artificial at best and raise the question as to whether there might be a more

natural behavioral interpretation.



4 ANALYSIS OF GA BEHAVIOR

Holland [Holland75] has suggested that a better way to view GAs is in terms of

optimizing a sequential decision process involving uncertainty in the form of lack of a

priori knowledge, noisy feedback, and time-varying payoff function. More specifically,

given a limited number of trials, how should one allocate them so as to maximize the

cumulative payoff in the face of all of this uncertainty?

Holland argues that an optimal strategy must maintain a balance between exploitation of

the best regions found so far and continued exploration for potentially better payoff

areas. Too much exploitation results in local hill climbing, sensitivity to noise, and an

inability to adapt to time-varying fitness functions. Too much exploration ignores the

valuable feedback information available already early in the search process.

Holland has shown via his Schema Theorem that, given a number of assumptions, GAs

are quite robust in producing near-optimal sequences of trials for problems with high

levels of uncertainty. Regardless of whether or not one believes that real GA

implementations, as opposed to mathematic models of GAs, achieve these near-optimal

sequences of trials, I think that Holland’s formulation in terms of trying to optimize a

sequential decision process in the face of uncertainty is the best behavioral description

we currently have for canonical GAs. 1

5 GAs AS FUNCTION OPTIMIZERS

Once we view a canonical GA as attempting to maximize the cumulative payoff of a

sequence of trials, we gain a better understanding of their usefulness as a more

traditional function optimization technique. While maximizing cumulative payoff is of

interest in some function optimization contexts involving online control of an expensive

process, it is much more frequently the case that optimization techniques are compared

in terms of the "bottom line" (the best value found), or in terms of the best value found as

a function of the amount of effort involved (usually measured in terms of the number of

trials).

The standard way of using GAs as function optimizers in this context is to keep track of

the (globally) best individual produced so far regardless of whether that individual exists

in the current population. That is, the population is viewed as a database (an

accumulating world model) of samples from which potentially better individuals are to

be generated. Hence, converged alleles represent a "focus of attention" in the sense that

most new trials will share these values (i.e., live in the same subspace), while the

residual diversity in other genes provides the building blocks for creating new

individuals. The genetic operators in conjunction with selection use this focussed

diversity to generate new individuals with potentially higher fitness.

If we apply GAs in this way as function optimizers, how well do they perform relative to

other techniques? An accumulating body of experience has yielded performances
__________________

1 Recent work by Vose [Vose92] and Whitley [Whitley92] presented elsewhere in this book provide the

beginnings of additional behavior insights.



ranging from spectacular to lousy. As a consequence, considerable effort has gone into

studying and improving GA-based function optimizers. We summarize a few of these

efforts in the following subsections.

5.1 SCALING ISSUES

From a function optimization point of view, GAs frequently don’t exhibit a "killer

instinct" in the sense that, although they rapidly locate the region in which a global

optimum exists, they don’t locate the optimum with similar speed. If one looks at this

behavior from a "maximizing cumulative returns" point of view, it makes perfect sense.

If the range of payoff values is, for example, [0,100], the population evolves quite

rapidly to one in which most individuals are in the range [99,100], and selective

differential between 99.988 and 100.000 provides little incentive for the GA to prefer

one over the other. However, if such differentials are important to the goal of function

optimization, then the GA must be provided with a payoff incentive to exploit such

differentials.

A typical solution involves providing feedback to the GA in the form of a dynamically

scaled fitness function in order to maintain sufficient selective pressure between

competing individuals in the current population (see, for example, [DeJong75] or

[Goldberg89]). Unfortunately, there is currently no theory to suggest how to achieve an

optimal scaling strategy.

5.2 RANKING APPROACHES

An alternative approach is to change the canonical GA itself, substituting rank-

proportional selection for the traditional fitness-proportional selection. By keeping the

population sorted by fitness and performing selection of the basis of rank, a constant

selection differential is maintained between the best and worst individuals in the

population (see, for example, [Whitley89]). The effect is to slow down initial

convergence to promising subspaces, but to increase the killer instinct in the final stages.

Such approaches can frequently improve the performance of GA-based function

optimizers, but depend on appropriate choices of rank-based selection functions (linear,

quadratic, exponential, etc.). Unfortunately, currently theory is not strong enough to

indicate how general such observations are or to provide guidance as to when to use a

particular ranking scheme.

5.3 ELITIST STRATEGIES

Frequently, performance improvements can be obtained by singling out the best and/or

worst individuals in the current population for special treatment. Examples of such

tactics include always keeping the best individual found so far in the population (it only

gets replaced by globally better individuals), or conversely, systematically replacing the

worst members of the population with newly generated individuals (e.g., [DeJong75] or

[Whitley89]).



The effect is to shift the balance toward more exploitation and less exploration which, for

some classes of functions, works quite well. However, if no a priori information is

available about the functions to be optimized, this can result in suboptimal hill-climbing

behavior on multi-peaked functions.

5.4 REPRESENTATIONAL ISSUES

The binary representation chosen in the earlier example is just one of many ways to

represent the space to be searched. It was noted very early that the choice of

representation can itself affect the performance of a GA-based function optimizer.

Suppose, for example the global optimum just happened to be represented by the string

0111111, but from a payoff point of view the subspace represented by 1... was slightly

better. In such circumstances, a GA-based optimizer can get caught on a "Hamming

cliff" by evolving a population dominated by individuals of the form 1000... which are

very close to the optimum in the phenotype space, but far apart in terms of Hamming

distance.

Such observations led to alternative representations such as gray codes in an attempt to

avoid such problems. Unfortunately, without knowledge about the function to be

optimized, it is always possible to have picked a poor representation. Adaptive

representation strategies have been suggested as an alternative, but are difficult to

efficiently implement.

In the case in which the function arguments are real-valued, one might view a floating

point representation as more natural. Again, we have little in the way of theoretical

guidance as to whether this will help or hinder the performance of a GA-based function

optimizer.

5.5 DOMAIN-SPECIFIC ALTERATIONS

A canonical GA achieves its robustness in part by making no strong assumptions about

the properties of the fitness landscape to be explored. If we then compare the

performance of a GA-based optimizer with another optimizer on a class of functions for

which that optimizer was specifically designed, the GA-based optimizer is frequently

outperformed. There are two typical responses to such comparisons. One is to illustrate

the robustness of the GA-based optimizer and the brittleness of the specialized one by

making minor modifications to the test suite (e.g., add some noise and/or additional

peaks).

The other response is to build a specialized GA-based optimizer which takes advantage

of this a priori knowledge in the form of specialized representations, specialized genetic

operators, etc. (e.g., traveling salesperson problems or continuous real-valued functions).

This can lead to significant improvements in performance on the selected problems class,

but the development process can be time consuming since current theory does not

provide strong guidance for making such alterations.



6 SOME FUNDAMENTAL MISCONCEPTIONS

The previous sections have attempted to provide evidence for the following strong

claims. First, the canonical GA given in Figure 1 is not a function optimizer in the

traditional sense. Rather, it is better viewed as solving sequential decision processes.

Second, by modifying a canonical GA in a variety of ways (such as those noted in the

previous section) one can build very powerful and effective GA-based optimizers. Third,

the strongest theoretical results currently available are for canonical GAs.

Fourth, and finally, there is a tendency to assume that the theoretical and behavioral

characteristics of canonical GAs are identical to those of GA-based function optimizers.

This is simply not true in general. As we have seen, an effective strategy for solving

sequential decision problems does not necessarily also result in an effective function

optimization strategy. A GA that satisfies the Schema Theorem does not necessarily

make it a good optimizer. Conversely, when we add scaling, introduce ranking and/or

elitist strategies, change the way crossover and mutation work, etc., we have

significantly changed the behavior of a canonical GA so that there is no a priori reason

to believe that it continues to solve sequential decision problems effectively. In fact,

many of the strong sampling biases introduced into GA-based optimizers are known to

negatively affect cumulative (online) payoff.

This last point leads to some fairly fundamental misconceptions about the meaning and

implications of some of the current work in the field regarding understanding what

makes problems hard (easy) for GAs to solve. 2 Although not clearly stated, the

motivating context for characterizing GA-hard and GA-easy problems is function

optimization. So to be precise we should be talking about classes of functions which are

hard (easy) for GA-based optimizers to solve. The important point here is that GA-hard

optimization problems may or may not represent hard sequential decision problems. In

fact the notion of GA hard (easy) is much less well defined for canonical GAs solving

sequential decision problems. Let me illustrate these points with two examples.

6.1 DECEPTIVE PROBLEMS

Since canonical GAs use sampled averages to bias the direction in which future

individuals are generated, it is easy to construct fitness landscapes which "deceive" a

GA-based optimizer by hiding the global optimum in a part of the landscape with low

average payoff, thus making it highly unlikely to be found (see, for example,

[Goldberg89] or [Whitley91]). What is important to understand here is that there is no

strong sense of deception from a canonical GA’s point of view. It is attempting to

maximize cumulative payoff from arbitrary landscapes, deceptive or otherwise. In

general, this is achieved by not investing too much effort in finding cleverly hidden

peaks (the risk/reward ratio is too high).

On the other hand, since most interesting optimization problems are NP-hard, we might

reasonably drop our demand (expectation) that a GA-based optimizer find the global
__________________

2 See [Grefenstette92] elsewhere in this book for a related discussion of misconceptions.



optimum and think more in terms of using it as a heuristic that finds good values quickly.

Notice that in this case deception becomes less of a concern since GA-based optimizers

frequently turn out to be excellent heuristics for most deceptive problems.

This is not to say that the work on deception is irrelevant or incorrect. Rather, it is a step

in a direction badly needed: theoretical results for GA-based optimizers (as opposed to

canonical GAs). Without such work we are left in the uncomfortable position of

assuming "what’s good for the goose (canonical GAs) is good for the gander (GA-based

optimizers)".

6.2 BUILDING BLOCK HYPOTHESES

The theoretical analysis that we have for canonical GAs suggests a view in which

selection, mutation, and crossover work synergistically to construct new individuals

from an evolving set of useful building blocks represented by the genetic makeup of the

individuals in the population. It is easy to show that deception, finite populations and

sampling errors can result in the loss of important low level building blocks which can,

in turn, negatively affect future "construction projects".

Suppose, however, we select landscapes which have all the right properties with respect

to encouraging the formation of useful building blocks. Are we correct in assuming that

these landscapes are necessarily GA-easy from a function optimization point of view in

that the global optimum is easily found? In general, the answer is no. Rather than view

such results as "anomalous" (e.g., [Forrest91]), we should expect this once we understand

that canonical GAs are not optimizers. Moreover, the addition of scaling, elitism, and

other optimization-motivated features to a canonical GA can result in improved

optimization behavior, but can also sufficiently distort and bias the sampling so as to

make some of these "easy" landscapes appear hard.

7 SUMMARY AND CONCLUSIONS

The intent of this paper is not to question the usefulness of GAs as function optimization

techniques. In fact, the intent is quite the opposite. GA-based function optimizers have

already demonstrated their usefulness over a wide range of difficult problems. At the

same time, there are obvious opportunities for improvements and extensions to new

function classes. In order to achieve this we need to understand better how GA-based

optimizers work.

The concern expressed here is that there is a tendency to think of GAs as function

optimizers, and thus blur the distinction between a canonical GA and a GA which has

been modified for use as an optimizer. By blurring that distinction, it is easy to

mistakenly assume that what we know and understand about canonical GAs carries over

to the GA-based optimizers. It is certainly the case that both canonical GAs and GA-

based optimizers share many properties. However, it is also quite clear that they are

quite different in some important respects. In order to improve our GA-based optimizers

we must continue to clarify both the similarities and the differences.
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