
Evolutionary Learning of Graph Layout Constraints
from Examples

Toshiyuki MASUI
Software Research Laboratories

SHARP Corporation
2613-1 Ichinomoto-cho
Tenri, Nara 632, Japan
Tel: +81-7436-5-0987

E-mail: masui@shpcsl.sharp.co.jp

ABSTRACT
We propose a new evolutionary method of extracting user
preferences from examples shown to an automatic graph lay-
out system. Using stochastic methods such as simulated
annealing and genetic algorithms, automatic layout systems
can find a good layout using an evaluation function which
can calculate how good a given layout is. However, the
evaluation function is usually not known beforehand, and it
might vary from user to user. In our system, users show the
system several pairs of good and bad layout examples, and
the system infers the evaluation function from the examples
using genetic programming technique. After the evaluation
function evolves to reflect the preferences of the user, it is
used as a general evaluation function for laying out graphs.
The same technique can be used for a wide range of adaptive
user interface systems.

KEYWORDS: Graphic Object Layout, Graph Layout, Ge-
netic Algorithms, Genetic Programming, Programming by
Example, Adaptive User Interface

INTRODUCTION
One of the goals of user interface research is to create nice-
looking pictures of data structures. All the research on data
visualization and text formatting fit into this category. TEX,
the famous text formatting system, is one of these systems. It
lays out characters, words, paragraphs, and figures in a two-
dimensional space, treating them as boxes and evaluating the
layout using the “badness” value. Like most other visualiza-
tion systems, the layout scheme is coded deep in the system
and users cannot change it easily even when they do not like
it. Although users can change the behavior of TEX slightly by
changing the badness value and other parameters, they cannot
make great changes. In many other layout systems, users can
do almost nothing except accepting the system output as-is.
Complex layout systems are usually hard to build and hard to

Published in:
Proceedings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST’94) (November 1994), ACM
Press, pp. 103–108.

modify.

There are two reasons why layout systems are hard to build.
First, when the data structure is complex, the algorithm to lay
it out under some criteria also becomes complex and develop-
ing such an algorithm is usually difficult. Second, the criteria
themselves are usually not obvious either to the developer
or to the users. There usually exist many conflicting criteria
which cannot be satisfied at the same time.

One solution to the first problem is using stochastic opti-
mization techniques like simulated annealing[10] and ge-
netic algorithms(GA)[6][8]. Using these techniques, if an
evaluation function which can tell the goodness of a layout
is known, near-optimal layout can be computed after itera-
tions of searching in the solution space. These techniques
are widely used in VLSI layout systems, where the evalua-
tion function (usually the size of the chip) is clear and time
constraints are not severe [2][22][23].

To solve the second problem, by-example approaches[3] are
promising. If the system can guess a user’s intentions or
preferences from the examples given by the user, users don’t
have to specify preferences directly to the system. Many
researches have been working in this area. Myers[19] intro-
duced a WYSIWYG editor which can create text formatting
macros from user examples. With his system, for example,
users can make the system infer the formatting macros for sec-
tion titles just by drawing one sample section title. Hudson[9]
showed a graphic layout system which can generalize the lay-
out rules from a small number of examples. Since it is difficult
for the system to infer proper layout rules from a small num-
ber of examples, the system generates many possible rules
and shows the user how they work, and the user selects the
right one from them. Miyashita’s IMAGE system[18] can
infer more complicated rules from a small number of exam-
ples, also interacting with the user. Although these systems
can infer simple layout rules from examples, they consist of
many heuristics and cannot be used for more complex layout
tasks.

We propose taking a completely different approach of using
evolutionary learning technique for constructing the layout
evaluation function from examples. In our system, users
show the system several pairs of good and bad layout ex-

Bad
Layout

Better
Layout

(1) distance between
nodes

(2) arc direction (3) line crossing (4) symmetry (5) angle between
arcs

(6) uniformity

Figure 1: Constraints used in the layout of directed graphs.

amples, and the system infers the evaluation function using
genetic programming technique[12], where a population of
tree-structured evaluation functions “evolve” to a function
which reflects the user’s preferences, under many generations
of Darwinian selection pressure. Once such an evaluation
function is obtained, it is used as the user’s own preference
function to be used with stochastic layout systems such as
[16]. In this paper, we show how this technique works, using
the directed graph layout problem as an example.

DIRECTED GRAPH LAYOUT PROBLEM
Directed Graphs
A directed graph is a graph which consists of a set of nodes
and a set of arcs. An arc is an ordered pair of nodes

���������
,

where
�

is called the tail and
�

is called the head. Below is
a directed graph with four nodes and five arcs.

When a directed graph has many nodes and arcs, it becomes
very hard to lay out all of them so that the graph looks nice to
humans. Many constraints can be defined to make the layout
look nice. Some of them are listed in Table 1 and Figure 1.

1. There should be enough space between nodes.
2. The head of an arc should be below the tail.
3. Arc crossings should be avoided.
4. There should be as much symmetry as possible.
5. The angle between two arcs should not be too

small.
6. Nodes should be placed uniformly in the region.

Table 1: Constraints for laying out a directed graph.

Algorithms for Directed Graph Layout
Many graphic layout algorithms for directed graphs have
been proposed[24]. However, finding a layout which gives a

minimal number of line crossing is an NP-hard problem, and
many other problems are, too. So, most of the algorithms
for laying out directed graphs use heuristics. For example,
Eades and Sugiyama[5] introduced the following algorithm.

Step 1 Sort all the nodes according to the arc directions be-
tween nodes.
Step 2 Calculate the minimal number of “layers” from the
top of the graph to the bottom.
Step 3 Assign every node to one of the layers so that there
is no arc from a node in a layer to another node in the same
layer. Nodes should be scattered uniformly.
Step 4 If there is an arc between nonadjacent layers, add
dummy nodes between the head and the tail of the arc, and
put them onto layers between them.
Step 5 Arrange nodes in each layer so that there are as few
line crossings as possible.

Here, finding the best solution in step 2, 3, and 5 is NP-hard,
and several heuristic methods are used in their algorithm.

In this kind of algorithmic solution to graph layout problems,
the evaluation of the layout is coded implicitly in the algo-
rithm and cannot easily be changed without totally modifying
the algorithm.

Using Stochastic Methods for Graph Layout Problems
Using genetic algorithms for the layout of graphs is becom-
ing popular [7] [11] [16] [17] [20]. In these systems, the
evaluation function for the layout is given explicitly, and the
system designer can modify it fairly easily. However, getting
an appropriate evaluation function is not an easy task. For
example, in [16], the formula in Figure 2 is used as the eval-
uation function of the layout. (A small value reflects a good
layout here.)

3000 * (the number of arrows going upward) +
400 * (the number of arcs shorter than a constant 	 1) +
300 * (the number of arc crossings) +
400 * (the number of angles between arcs which are
smaller than a certain constant 	 2)

Figure 2: The layout evaluation function used in [16].

B

A

C

P

2ƒ—/3

2ƒ—/3

B

A

C

P

gravity
center

(a) Minimizing AP+BP+CP.

(b) Minimizing AP2+BP2+CP2.

+

x 2

*

y

-

x *

z y

+

x

*

y

-

x

*

z y

2

(x+2)*y (x+(z*y))*y

x-(z*y) x-2

+

x 2

*

y +

x z

*

y

(x+2)*y (x+z)*y

This formula contains many magic numbers. A number of
trial and error loops have been performed before getting these
values. Changing the values and functions slightly will pro-
duce totally different results that are quite unpredictable. We
show this by a simple example. If you want to put a node � at
some place within a triangle ����� and use ����� ���	� �
�
as the evaluation function to minimize, � should be at a point
where � ������
�� ������
�� �
����
 2 ��� 3. If you use

��� 2 � ��� 2 � �
� 2
instead, � should be at the gravity cen-

ter of ����� . (See Figure 3.) In this way, you cannot easily
guess what kind of layout is produced from a given evaluation
function.

Figure 3: Two evaluation functions and resulting lay-
out.

In [16], undesirable layouts can be modified interactively by
theuser and the inappropriateness of the evaluation function is
not a big problem, but in other systems, users can do nothing
but accept the resulting layout. In any case, if users can
show their preference somehow and specify the evaluation
function to the system, stochastic methods become much
more appealing.

DEVELOPING THE LAYOUT EVALUATION FUNCTION
THROUGH GENETIC PROGRAMMING
Genetic Programming
Genetic programming[12] is a technique to make randomly-
generated programs “evolve” to a program which conforms
to the specification given by the user, just like performing
optimization in genetic algorithms. Programs are usually
represented as trees, like the S-expressions of Lisp. The
algorithm starts with many randomly-generated tree-shaped
programs. First, all the programs are checked for differences
from the given specification. If a program works closer to
the specification, it will have a better chance of surviving
to the next iteration, or generation, and if it performs badly,
it will not survive to the next generation. After evaluating
all the programs and selecting what will survive to the next
generation, some pairs of the programs exchange their subtree
(called the crossover operation) like shown in Figure 4, so
that even better program can be generated. Also, some of

Figure 4: Crossover operation.

Figure 5: Mutation operation.

the programs substitute their subtree with other randomly-
generated program tree (called the mutation operation) like
shown in Figure 5. After many generations of these genetic
operations, programs which works close to the specification
will eventually emerge.

Getting User Preferences from Examples Using Genetic
Programming
Using genetic programming technique, we can generate the
layout evaluation function only from the examples given by
the user. We give the genetic programming system pairs of
good and bad layout examples. If a program yields a larger
value for a good layout and a smaller value for a bad layout,
there is a chance that the program can tell how good a layout
is. If it works the same way with many example pairs, the
chance becomes even greater. We use � graphs as examples
and for each graph ��� 1 ��� � , provide good layout ��� and bad
layout � � . To make an evaluation function � evolve, we use � � �
"!$#�&% 1 '

� � � � � as the evaluation function for � , where

'
� � � � �
 1 if � � ��� �)(� � �*� � , and '

� � � � �
 0, otherwise. If
� yields a larger value for good layouts than bad layouts for
all the given examples,

 � � � takes the value � . With many
examples, chances are we can get a good evaluation function
which truly reflects the user’s preferences.

EMPIRICAL RESULTS
We used only a small number of operators, arguments and
constants to construct the evaluation function, although using
control constructs like condition statements is also possible.

