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Abstract—We attack the problem of controlling teams of
autonomous units during skirmishes in real-time strategy games.
Earlier work had shown promise in evolving control algorithm
parameters that lead to high performance team behaviors similar
to those favored by good human players in real-time strategy
games like Starcraft. This algorithm specifically encoded param-
eterized kiting and fleeing behaviors and the genetic algorithm
evolved these parameter values. In this paper we investigate
using influence maps and potential fields alone to compactly
represent and control real-time team behavior for entities that can
maneuver in three dimensions. A two-objective fitness function
that maximizes damage done and minimizes damage taken guides
our multi-objective evolutionary algorithm. Preliminary results
indicate that evolving friend and enemy unit potential field
parameters for distance, weapon characteristics, and entity health
suffice to produce complex, high performing, three-dimensional,
team tactics.

I. INTRODUCTION

Real-Time Strategy (RTS) games model decision making
in wartime. The game genre has become a popular research
platform for the study of Computational and Artificial Intelli-
gence (CI and AI). In RTS games, players need to establish
bases, collect resources, and train military units with the aim
of eliminating their opponents. To be good, RTS game players
require a variety of decision making skills [1], [2]. First, the
dynamic environment of RTS games requires real-time plan-
ning on several levels - strategic, tactical, and reactive. Second,
players have to make decisions with imperfect information
within the “fog of war.” Third, like poker, there is no one
optimal strategy; players must model their opponent and adapt
their strategies and tactics to the opponent’s playing “style.”
Fourth, players must employ spatial and temporal reasoning to
exploit existing terrain and the time-sensitive nature of actions
on a tactical and strategic level. All of the challenges described
above and their impact on decision making are crucial for
winning RTS games and there is a steep learning curve for
novices. In the video game industry, Starcraft (SC) and Star-
craft 2 (SC2) players earn significant prize money and points
during a series of championship games worldwide culminating
in a World Series Championship at Blizzcon [3]. Combining
the long time horizon of chess, with the opponent modeling
of poker, and the hand-eye coordination necessary for fast,
fine control of large numbers of game units, RTS games
have garnered significant interest within the computational
and artificial intelligence community. After the success of
AlphaGo, many researchers consider RTS games a significant

next frontier in the computational and articifial intelligence
field [4], [2].

An RTS player builds an economy that provides resources
to generate fighting units to destroy the opponent. The term
“Macro” specifies economy building and choosing the types
and numbers of units to produce. “Micro” refers to the fine-
grained, nimble, control of units and unit groups during a
skirmish to inflict maximum damage on the enemy while
sustaining minimal damage to friendly units. Most RTS games
only allow maneuvering in two dimensions (2D) with flying
units restricted to a plane and no real three dimensional
(3D) maneuvering (although there are notable exceptions like
Homeworld.1 This paper attacks the problem of generating
good micro for full 3D maneuvering in the context of RTS
games. We believe our approach is extendable to teams of
autonomous real-world entities.

Each RTS game unit type has different properties that
determine the unit’s effectiveness in a skirmish. Depending
on unit type, a unit’s weapons will have a specific range,
a specific amount of armor, and deal different damage to
different opponent unit types. Each unit type has different
movement speed and can take different amounts of damage.
Given this level of complexity, determining the outcome of
a skirmish usually requires a simulation and good RTS micro
can win skirmishes even when outnumbered and unfavourably
positioned.

A. Related work

Good micro for skirmishes in battle or more generally, coor-
dinated group behavior for adaptive agents, has applications in
many fields from wargaming and modeling industrial agents,
to robotics, simulations, and video games [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15]. From flocking, swarming,
and other distributed control algorithms [13], [14] drawn
from observing natural behavior to evolutionary algorithms
that tune the parameters of potential fields that control the
movement of autonomous vehicles [6], much research has
been done in the area of group tactics, adaptive behavior, and
distributed AI. In RTS games, there is strong research interest
in generating good micro since this can lead to your winning
skirmishes even when your forces are outnumbered or other-
wise disadvantaged. This paper focuses on an evolutionary

1http://www.homeworldremastered.com/



computing approach to generating coordinated autonomous
behaviors (micro) for groups of computer game units (or
entities). Specifically, we use an influence map and several
potential fields to represent entity disposition in order to evolve
effective group tactics, or good micro, for controlling a group
of entities battling an opposing group of entities. Good micro
maximizes damage to enemy units while minimizing damage
to friendly units.

Within the games community, Yannakakis [16] evolved
opponent behaviors while Doherty [17] evolved tactical team
behavior for teams of agents. Avery used an evolutionary
computing algorithm to generate influence map parameters
that led to effective group tactics for teams of entities [18],
[19] against a fixed opponent.

In physics, a potential field is usually a distance dependent
vector field generated by a force. For example, the force
of gravity generates a gravitational field, an attractive force,
on objects with mass. This gravitational force depends on
the distance between the objects and on their mass. Well
designed attractive potential fields can keep friendly units close
together while repulsive potential fields enable keeping your
distance from enemies. Combinations (usually linear vector
sums) of several attractive and repulsive potential fields can
lead to fairly complex behavior [20]. Potential fields were
introduced into robotics as a method for real-time obstacle
avoiding navigation and have been used in many video games
for controlling multi-unit group movement [21], [11], [12],
[13]. In this context, Hagelback and Johnson used potential
fields to drive micro in ORTS, a research RTS and partial
clone of Starcraft, a very popular commercial RTS [22], [23].

An influence map structures the world into a 2D or 3D
grid and assigns a value to each grid element or cell. Very
early work used influence maps for spatial reasoning to evolve
a LagoonCraft RTS game player [24]. Sweetser worked on
an AI player designed with an influence map and cellular
automata, where the influence map was used to spatially model
the game world and help the AI player’s decision making in
their RTS game EmerGEnt [25]. Bergsma et al. proposed a
game AI architecture which used influence maps for a turn
based strategy game [26]. Preuss et al. introduced an influence
map based path finding algorithm for group movement in the
RTS game Glest [27], [28]. Su-Hyung et al. used evolutionary
neural networks to evolve non-player characters’ strategies
based on the information provided by a layered influence map
algorithm in the RTS game Conqueror. Uriarte et al. used
influence maps for generating kiting behavior and used this for
their StarCraft (A popular RTS game and research platform)
player Nova [29]. We define potential fields and influence
maps in more detail later in the paper.

To the best of our knowledge, Liu’s work on evolving micro
bots for Starcraft Brood Wars is closest to the work reported in
this paper [30]. Although potential fields and influence maps
guide unit movement, Liu’s approach relies on a hand-coded,
parameterized, control algorithm that defines a space of tar-
geting, firing, and fleeing behaviors. A genetic algorithm then
searches this space for parameters specifying unit behaviors

aiming to maximize damage inflicted on enemy units while
minimizing damage to friendlies against a fixed opponent.
Behaviors like kiting (also known as hit and run) and opponent
encirclement emerge and lead to high performing micro that
can defeat this opponent [31].

Our work differs from Liu’s in that we use a larger number
of potential fields instead of a hand-coded control algorithm
specifying behaviors, and we generalize movement and ma-
neuvering to 3D. Our preliminary results show that we can
quickly evolve unit specific complex behavior including kiting,
fleeing, and englobing. In our experiments with two types
of units called vultures and zealots with different movement
speeds, weapons damage, and health, we can evolve high
performing micro that leads to winning skirmishes. For ex-
ample, three vultures (fragile, fast, longer ranged units) learn
to disperse and kite a much larger number of baseline zealots
(robust, relatively slow, short ranged units) while suffering
relatively little or no damage. Furthermore, zealots then evolve
against these high performing vultures and learn micro that
increases vulture damage with tactics such as englobing or
dispersing into smaller groups. This kind of manual co-
evolution points towards our future work where we plan to
co-evolve high performance micro for RTS games.

The next section introduces potential fields, influence maps,
and describes our simulation test-bed. Section III specifies
our representation and describes the genetic algorithm used to
evolve potential field and influence map parameters. We then
provide and discuss our results. The last section summarizes
our results and conclusions and points out directions for future
work.

II. SIMULATION ENVIRONMENT

Starcraft, released in 1998 and Starcraft 2, released in 2010
are the most popular RTS games [23]. In the RTS AI research
community, StarCraft has gained popularity as a research
platform due to the existence of the StarCraft: Brood War
Application Programming Interface (BWAPI) framework, and
the AIIDE and CIG StarCraft AI tournaments [1] which use the
BWAPI to compare Starcraft “Bots,” or Starcraft AI players.
Since Starcraft is essentially 2D and we do not have access to
Starcraft’s source code, we cannot use the BWAPI for our
research. Instead we use FastEcslent, our open source, 3D
capable, modular, RTS game environment. FastEcslent was
developed at the Evolutionary Computing System’s Lab for
computational intelligence research in games, human-robot
and human-computer interaction, and other applications [32].
We note that FastEcslent’s graphics engine runs on a separate
thread and can be turned off, a useful feature for use with
evolutionary computing techniques. We modeled game play
in FastEcslent to be similar to StarCraft.

We modeled two units from Starcraft, Vultures and Zealots.
A Vulture is a somewhat fragile unit with low hit-points but
high movement speed and a ranged weapon. Vultures are
effective when outmaneuvering slower melee units. A Zealot is
a melee unit with short attack range and low movement speed
but has high hit-points. In the rest of this paper, we use the



TABLE I
UNIT PROPERTIES DEFINED IN FASTECSLENT

Property Vulture Zealot

Hit-points 80 160

MaxSpeed 64 40

MaxDamage 20 16× 2

Weapon’s Range 256 224

Weapon’s Cooldown 1.1 1.24

term FVulture and FZealot to indicate that our units operate
in 3D and are the Flying versions of the Starcraft units. Since
our research focuses on micro, we disable “fog of war” in our
scenario.

We enabled 3D movement by adding maximum (1000) and
minimum (0) altitudes, as well as a climb rate, rc, of 2. All
units use the RTS physics used in Starcraft and Starcraft2[23].

Noting that a fvulture’s faster speed and longer ranged
weapon theoretically makes it possible for a single expertly
microed fvulture to kite a group of starcraft’s AI controlled
fzealots until all fzealots are eliminated, our experimental
scenarios pitted three fvultures against thirty fzealots. We
are primarily interested in evolving group fvulture micro and
thus chose three fvultures as our group size. Our baseline
AI consisted of hand tuned potential field parameters that
essentially caused fzealots to move towards and attack the
closest enemy unit.

To evaluate a member of the evolving population, we
extracted potential field parameters, created and initialized a
FastEcslent scenerio with these extracted parameters control-
ling our player’s micro and played against our baseline AI.
At the end of max simulation steps or if all units for one
side were destroyed, the resulting score was returned as this
member’s fitness. The next section describes our representation
and evaluation function in more detail.

III. REPRESENTATION AND GENETIC ALGORITHM

When we start our FastEcslent scenario, our player moves
towards a target location defined by the lowest value cell in
our evolving 3D influence map (IM). An IM is a 3D grid
with values assigned to each cell by an IM function. An
IMFunction is usually specified by two parameters, a starting
influence for the location of the entity and a maximum range
(of this influence) in a 3D game world. The influence linearly
decreases to zero as range increases. In this research, we
extend our IMFunction from using two parameters (starting
influence and maximum range) to five parameters in order to
represent more information as shown in Equation 1.

A. Influence maps

To calculate any grid-cell value Vc, we add the influence
from each of the units within the range r from the cell. r is
measured in number of cells and in our experiments can be

from 1to8 The influence of a unit at the cell occupied by the
unit is computed as the weighted linear sum below.

Is = w1Rh + w2Rc + w3

where Is is the starting influence, Rh is the entity’s percentage
health, Rc is the entity’s percentage cooldown time, and the
wi for i = [1..3] are evolvable weights. For cells within r
cells of the unit, we then compute the decrease per unit r as
a fraction of the starting influence.

Id = IsIf

The influence exerted by a unit at a distance d varying from
0 to r from the unit location is then

I = Is − (dId)

So the cell at the unit location receives an influence Is and the
eight neighboring cells (at distance 1) receive Is−Id influence,
while cells at distance 2 receive Is−(2Id). Thus the IM value
at a particular sum given by the sum of all entities’ influence
on that cell is

Vc =
∑
u∈r

(Is − (duId)) (1)

for all entities u at distance du of the cell. The genetic
algorithm evolves r, If , w1, w2 and w3.

This IMFunction not only considers units’ positions in
the game world but also includes the hit-points and weapon
cooldown of each unit. For example, an enemy unit with
low hit-points or its weapon in cooldown can, with the right
wi, generate a low influence map value. Our player always
select the cell with the minimum value as the target attack
location. Thus for example, our units can move towards and
attack a damaged unit (low hitpoints) that cannot fire until
the weapon cooldown period is over. In essence, changes in
the five parameters (w1, w2, w3, r, ∆f ) of the IMFunction
specifies a target location for friendly units. “Move towards
the lowest IM value location attacking enemy units as they
come within range” is our target selection algorithm. This very
simple algorithm can be contrasted with the more complex
target selection and movement algorithms found in [30].

B. Potential Fields

The IM provides a target location to move toward and we
use potential fields to control unit movement to this location.
Potential fields are a type of vector field over space of the
form f = cde where f is the field strength in the direction of
the entity producing the field, c and e are constants and d is
distance (usually). Potential fields in robotics, and in games,
have traditionally been used for obstacle avoidance where the
target location manifests an attractive potential field and all
obstacles repel the controlled entity. The vector sum of these
potential fields guides navigation. The direction of the force
is in the direction of the vector difference from the other unit.
c and e are the evolvable parameters for each of the potential
fields in our work.

For specific values of c and e, decentralized flocking and
swarming behaviors emerge when large numbers of units



independently use potential fields to maneuver [33]. Since
good RTS micro takes into account unit health, position, and
weapon state we define and use an attractive and a repulsive
potential field for each of these factors. We also assume that
enemy and friendly units generate different potential fields.

Specifically, the potential field controlling a unit’s behavior
is computed from 1) The influence map provided target
position ( T), and 2) The potential fields generated by health
(H), distance (D), and weapon cool-down state (W) of all
other units in the game. Thus the potential field acting on
a unit at position p is the sum of the four potential fields
F = T + D + H + W.

This potential field controls the unit’s desired heading and
desired speed. The desired heading points in the direction
of the vector and the desired speed is proportional to the
difference between current and desired unit heading. Unit
speed thus increases (up to a maximum) if the unit is already
pointing in the direction of the potential field and decreases
otherwise. In our game, unit speeds vary from 0 to a maximum
(smax). The D,H, and W potential fields are composed from
• A direction given by the normalized vector difference

between the current unit’s 3D position p and the other
unit’s 3D position (u)

n =
(u− p)

|u− p|
(2)

where |u−p| denotes the length of the difference vector.
• A magnitude given by either the distance to the other

unit, the health of the other unit, or the cool-down time
of the other unit.

• Whether the other unit is a friend or enemy
For example, D is given by

D =
∑
i∈F

(nc1d
e1
i − nc2d

e2
i ) +

∑
i∈E

(nc3d
e3
i − nc4d

e4
i )

where d is distance, n is given by equation 2, and where
odd subscripts for c and d correspond to attraction and even
subscripts correspond to repulsion. The first summation is over
friends (F ) and the second over enemies (E). In the same way,
H is given by

H =
∑
i∈F

(nc5h
e5
i − nc6h

e6
i ) +

∑
i∈E

(nc7h
e7
i − nc8h

e8
i )

where hi denotes the health percentage of the ith other unit,
and W is

W =
∑
i∈F

(nc9w
e9
i −nc10w

e10
i ) +

∑
i∈E

(nc11w
e11
i −nc12w

e12
i )

where wi denotes the percentage time remaining before the
weapon on unit i is ready to fire again. Finally, there is a
single attractive potential field exerted by the target location.

T = mc13d
e13
t

where dt is the distance to the target location and m is the
direction vector of the target location.

Thus 13 potential fields guide unit movement. The c coef-
ficients have a range of [−10000..10000] and we use 12 bits
for encoding these parameters. The e exponents range from
[−7..8] and we use 4 bits for their encoding. We thus need
12 + 4 = 16 bits per potential field and 16 × 13 = 208 bits
for all potential fields. The influence map parameter r ranges
between 0 to 8 cells while δ, w1, and w2 range between 0 and
1. Finally w3 also ranges between 0 and 8. This requires 18
bits for a total binary chromosome length of 208 + 18 = 226.

When FastEcslent receives a chromosome, it decodes the
binary string into corresponding parameters. These parameters
then control friendly units as they move in the game world.
The fitness of this chromosome is then computed based on the
amount of damage done to enemy forces and the amount of
damage received by friendly forces during a simulation run in
the game world.

C. Fitness Evaluation

We evaluate individuals in the genetic algorithm’s pop-
ulation in FastEcslent. The decoded chromosome specifies
the parameters needed to compute potential fields and the
influence map within FastEcslent. Every tick of the underlying
simulation clock, friendly units compute potential fields and
update their desired headings and desired speeds. If enemy
units come within weapons range of a friendly unit, the
friendly unit targets the nearest enemy unit. One difference
from Starcraft, is that all units in FastEcslent can fire in any
direction (oriented firing will be investigated as future work).

With the right set of potential fields and influence maps
we expect friendly units using this simple targeting algorithm
to significantly damage enemy units while themselves taking
minimal damage. The simple fitness function below tries to
maximize damage done and minimize damage taken.

fitness =
∑

enemies

De −
∑

friends

Df

Where De denotes damage to enemy units and Df , damage
to friendly units. This simple fitness function however, tends
to generate fleeing behavior that simply minimizes damage
to friendly units [30]. One approach to solving this issue
is to wait for the GA to find some way out of this fleeing
behavior, another approach is to fiddle with the fitness function
(for example, give more weight for damage done) to enable
the GA to more easily find a way out [30]. Instead, in this
paper, we re-frame the problem as the problem of exploring
the tradeoff between fleeing and fighting. Evolutionary multi-
objective optimization provides an elegant framework for
finding a pareto front of solutions that explore the tradeoff
between damage done and damage received.

Our two objective fitness function is then specified by

fitness = [(
∑

enemies

De), (1−
∑

friends

Df )]

where both De and Df are normalized to be between 0
and 1 and we are trying to maximize both objectives. Since
damage is measured in hitpoints, we normalize both objectives



to be between 0 and 1 by dividing by total hitpoints, for
enemies and for friends, in the equations above. We use our
own implementation of Deb’s well known non-dominated sort
elitist genetic algorithm NSGA-II as our evolutionary multi-
objective optimization algorithm [34]. NSGA-II, like other
evolutionary multi-objective algorithms seeks to progress the
pareto front of non-dominated solutions while maintaining a
good distribution of solutions on the front. The normalized,
two-objective fitness function used within our NSGA-II im-
plementation then produces the results described in the next
section.

IV. RESULTS

We begin by describing experiments conducted to investi-
gate our approach to evolving RTS micro. We drew inspiration
from Starcraft and earlier work by Liu using BWAPI and
created two unit types similar to vultures and zealots. Our
unit equivalents can fly and are hence named fvultures and
fzealots. Unit properties were specified earlier in the paper
in Table I. Because fvultures can kite much larger numbers
of fzealots dealing massive damage while receiving little, our
experiments used 3 fvultures versus 30 fzealots.

In our initial experiments, we had one clump of three
fvultures on the left against a clump of 30 fvultures on the
right side of the map. A clump is defined by a center and a
radius. All units in a clump are distributed randomly within
a sphere defined by this radius (400). Although fvultures
learned to do well against the 30 fzealot clump, their perfor-
mance degraded significantly when fzealots were not initially
clumped. In addition, when we tried to evolve fzealot micro
against fvultures, we found the same kind of over-specialized
behavior emerging. To reduce overspecialization, we created
three training scenarios (or maps). These scenarios are defined
in terms of clumps and clouds. We have already defined
clumps. A cloud, like a clump, is defined by a center and a
radius. However, the units in a cloud are distributed randomly
within 10 units around the sphere boundary defined by the
center and radius (also 400). The first scenario consists of a
clump of 3 fvultures versus a clump of 30 fzealots. The second,
a clump of 3 fvultures surrounded by a spherical cloud of 30
fzealots, and the last scenario consists of a clump of 30 fzealots
surrounded by a (small) cloud of 3 fvultures.

Unit locations within the clump and cloud were generated
randomly. Our evaluation function ran each of these three
scenarios and the objective function values for each objective
were averaged over these three scenarios. Evaluations took
longer but the resulting performance was better and seemed
to generalize well.

A. Pareto front evolution

Figure 1 shows the evolution of the pareto front at intervals
of five (5) generations for one run of our NSGA-II. We used
a population size of 50, run for 75 generations. Simple two
point crossover with a crossover probability of 0.9 and flip
mutation with a probability of 0.05 worked well with our

implementation of NSGA-II. The x-axis plots the first objec-
tive, damage done to fzealots, and the y-axis plots 1− damage
received by fvultures. Figure 2 shows the same information for

Fig. 1. Fvultures evolving against Fzealots

fzealots evolving against already evolved fvultures. Figure 1

Fig. 2. Fzealots evolving against Fvultures

and 2 illustrate how the pareto front progresses for one run
of the multi-objective GA. Broadly speaking, the pareto front
moves towards (1, 1) on the plot making progress towards
maximizing damage done and minimizing damage received.
We evolve micro that can destroy all fzealots but this also
involves taking significant damage as shown by the solutions
on the bottom right of Figure 1. We also see that when battling
fvultures from this area of the plot, fzealots can do significant
damage but never evolve micro to kill all the fvultures during
the single run of the NSGA-II shown in Figure 2.

In our experiments, we ran the genetic algorithm ten times
with different random seeds and Figure 3 shows the result.
This figure plots the combined pareto front in the first gen-



eration over all ten random seeds versus the combined pareto
front in the last generation over the ten random seeds. That is,
we first did a set union of the pareto fronts in the ten initial
randomly generated populations. The points in this union over
all ten runs are displayed as squares for the initial generation
(generation 0) points and as circles for the points in the
final generation (generation 74). Let us label the union of
the generation 0 pareto fronts as U10

0 and the union of the
generation 74 pareto fronts as U10

74 . We then compute and plot
the pareto front of this set union - the line on the left. We do
the same for the ten pareto fronts in the last generation - the
line on the right. Let P 10

0 denote the combined ten run pareto
front in the first generation and P 10

74 denote the combined ten
run pareto front in the last generation; Figure 3 then shows
progress between first and last generation over all ten runs
against an fzealot from the bottom right of Figure 2. Note that
P 10
0 represents not an average, but the best (non-dominated)

individuals over all ten runs. Individual runs produce initial
pareto fronts that look like the intial front in Figure 1. We also
have videos that show how the fvultures and fzealots behave
at http://www.cse.unr.edu/˜sushil/RTSMicro.
Figure 3 shows that even initial generations contain a range of

Fig. 3. The initial and final pareto front over ten runs for Fvulture micro.

acceptable micro behaviors. Since the target location is near
the opponents and exerts a purely attractive potential field and
units fire when in range, fzealots and fvultures usually come
together and fight. As the potential field parametes evolve,
fvultures learn to take less damage while doing more damage
to fzealots. The videos support this observation and also show
the range of micro behaviors evolving. Some can be simply
described as “fleeing,” while others, even in early generations,
defy succint explanation. Broadly speaking, the micro behav-
iors being evolved tend to keep fvultures outside the weapons
range of the fzealots while looking for an opportunity to dart in
opportunistically and deliver damage. Early on, if fvultures are
surrounded by zealots as in training scenario two, the fvultures
inflict significant damage but have not learned to kite and so

also suffer significant damage. It is worthwhile to note that
the opponent fzealots tend to favor tight circling on a plane,
sticking close together while the fvultures are more dispersed,
tend to change altitude more frequently, and try to keep their
distance from fzealots as they try to balance their attractive
and repulsive potentials.

In later generations the fvultures have learned potential field
parameter values that lead to kiting (or kiting-like) behavior
and this is reflected in the pareto front moving further to the
right (more damage done to fzealots) and higher (less damage
taken by fvultures). At generation 74, we have a choice of
micro control tactics provided by the points on the pareto front
at generation 74. At one extreme, indicated by the point at
the very top on the generation 74 pareto front (.87, 1.0), all
three fvultures stay alive with no damage while inflicting 87%
damage on the fzealots. 87% damage corresponds to killing
26 out of the 30 fvultures. At the other extreme, denoted
by the point on the bottom right (.99, .32), two fvultures die
while killing 99% of the fzealots. The points in between these
extremes represent other damage done versus damage received
tradeoffs and picking which of these tactics to use depends on
the player’s in-game needs of the moment. That our multi-
objective approach naturally provides a range of choices for
micro is an elegant side affect of this approach.

B. Random parameter values

We also investigated how random potential field parameter
values perform on our three scenarios and on random scenar-
ios. We generated random chromosomes that specified these
parameter values and evaluated them on the three training
scenarios and on a set of on hundred random scenarios. In
these random scenarios, the starting positions and orientations
of the 30 fzealots and 3 fvultures were randomly spread
within a larger clump with radius 500. Figure 4 plots the
average objective values and their standard deviations obtained
from evaluting the 3750 randomly generated chromosomes
on both sets of scenarios. The average objective value on
the three scenarios is averaged along each objective over
3750 evaluations. For the hundred (100) random scenarios, the
average is along each objective over 3750× 100 evaluations.
The 3750 comes from a 50 population size multiplied by 75
evolutionary generations equating to the number of evaluations
during one run of the GA. The horizontal and vertical lines
on the plot indicate variation along each objective and are
centered at the average objective values over the 3750 random
chromosomes on the three training scenarios and the hundred
random scenarios. Specifically, the length of a line equals one
standard deviation and we display half a standard deviation
on either side of the average. We also plot U10

0 and U10
74 for

reference. Figure 4 shows that the average randomly generated
micro behavior on our three training scenarios has fvultures
fleeing fzealots and doing little damage. On the other hand,
randomly generated behaviors on random scenarios average
out to be near the center of the pareto plot. They take a
little less damage than they mete out. Both these behaviors
can be explained by the positioning of units in the scenarios.



Fig. 4. Random chromosome performance on three training scenarios and on
100 random scenarios

Assuming random parameter values produce random move-
ment, initial positioning will play a large part in determing
both objectives in the fitness function. The three training
scenarios seperate opposing units and so fvultures tend to
stay seperated from other units and take little damage. On the
random scenarios, randomly positioned fvultures and fzealots
moving randomly will take damage from each other before
their random movement places them out of range and the
clump disperses.

C. Random locations

These results provide evidence that we can use our approach
to evolve a range of good micro against a fixed opponent on a
given set of scenarios. But does the evolved micro generalize
to other scenarios? To investigate this question we also ran the
solutions in P 10

0 and P 10
74 on a set of 100 random scenarios

(as described above). The average value of the two objectives
over all 100 random scenarios and their standard deviations
along each objective obtained by evaluating the individuals in
P 10
0 and P 10

74 on these random scenarios is shown in Figure 5
along with U10

0 and U10
74 , again for reference. With arbitrary

starting locations and orientations that do not correspond to
training scenarios, we do not expect fvultures to do as well
on average. We also expect wide variation in performance.
As expected the figure shows that the average performance
of the individuals from P 10

0 on the 100 random scenarios is
dominated by the points on the initial pareto front provided by
U10
0 . Let us label this average performance R100

0 . The average
performance of the individuals from P 10

74 on the 100 random
scenarios (R100

74 ) shows improvement over R100
0 , but this is

still dominated by points on U10
74 . We also see the existence

of significant variation along both objectives and that the
standard deviations along both objectives decreases from R100

0

to R100
74 . It is encouraging to see that although performance

degrades on these 100 random scenarios, individuals from
generation 74 perform better on average than individuals from

Fig. 5. Average performance of P 10
0 and P 10

74 on a set of 100 random starting
positions and orientations

the initial generation on the training scenarios. The change in
average performance from the initial generation to the final
generation works out to approximately three (3) more fzealots
eliminated and one more fvulture surviving. Although we
were not specifically after robust solutions, the micro tactics
from R10

74 on average do eliminate the majority of fzealots,
while keeping the majority of fvultures alive on random never-
seen scenarios. The figure provides evidence that initial unit
positioning can significantly affect skirmish outcome. This is
true for initial unit positioning in RTS games as well.

V. CONCLUSION AND FUTURE WORK

This paper proposed a new approach to evolving micro
for RTS games in three dimensions for two different units.
Using an influence map and an attractive potential field to
determine a target position to attack, we used attractive and
repulsive potential fields for distance, health, and weapon
cooldown to evolve micro behavior for units in our 3D
RTS game arena. Our NSGA-II implementation optimized
micro based on a multi-objective formulation of the fitness
function that maximized damage done and minimized damage
taken. The results show that we can evolve a range of
micro behaviors that go from taking and doing little damage,
through micro that balances damage done and taken, and
finally to micro that does maximal damage while taking
some damage. On the three training scenarios, the evolved
micro can eliminate 25 out of 30 fzealots while keeping
all three (3) fvultures alive. Other evolved micro (on the
pareto front) can eliminate all fzealots but at the cost of
two fvultures. The multi-objective problem formulation and
the NSGA-II lead to evolving pareto fronts that directly and
naturally produce this wide range of micro choices. The
fast, longer ranged, but fragile units (fvultures) learned micro
behavior similar to hit and run (kiting) that is used by human
players in RTS games like Starcraft. Videos of the micro
behavior of these fvultures versus fzealots are available at



http://www.cse.unr.edu/˜sushil/RTSMicro and
show the range of complex behavior evolved.

Our genetic algorithm took 3750 evaluations to evolve the
above micro. We generated 3750 random chromosomes and
evaluated their fitness on our three training scenarios as well as
a hundred random scenarios. As expected, the average micro
behavior of random parameter values on the three training
scenarios was well dominated by the evolved pareto front on
the three training scenarios. Random chromosomes also led to
an average micro performance that balanced damage done and
taken and were explained based on the random dispositions of
units in these scenarios. Finally, experiments on a hundred
random, never before encountered scenarios show that the
potential field values evolved on three training scenarios used
during evolution performs well on new random test scenarios.

We plan to follow two paths in the future. First, we would
like to investigate how our approach scales with multiple
unit types. That is, we would like to investigate micro for
a group composed from multiple unit types versus another
group also composed of multiple unit types. Second, we
plan to investigate the co-evolution of micro using our new
representation and appoach. Our current results show that we
can evolve good micro against a fixed opponent, we would
like to use a multi-objective, co-evolutionary algorithm to co-
evolve a range of micro that is robust against a range of
opposition micro.
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[2] S. Ontañon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill,
M. Preuss et al., “A survey of real-time strategy game AI research
and competition in StarCraft,” IEEE Transactions on Computational
Intelligence and AI in games, vol. 5, no. 4, pp. 1–19, 2013.

[3] (2016) Starcraft world championship series. [Online]. Available:
http://wcs.battle.net/sc2

[4] D. Hassabis. (2016) Official google blog: What
we learned in seoul with alphago. [Online].
Available: https://googleblog.blogspot.com/2016/03/what-we-learned-
in-seoul-with-alphago.html
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