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Evolutionary Algorithm Based Offline/Online
Path Planner for UAV Navigation

loannis K. Nikolos, Kimon P. Valavani§enior Member, IEEENikos C. Tsourveloudis, and Anargyros N. Kostaras

Abstract—An evolutionary algorithm based framework, a The final destination (end-point coordinates) is known and the
combination of modified breeder genetic algorithms incorporating  UAV must follow an as smooth as possible trajectory (imitating
cha}racterl_sncs of classic genetic algorithms, is ut|||ze<_j to design an real flight restrictions), planned and re-planned in real-time,
offline/online path planner for unmanned aerial vehicles (UAVS) - . . . . o
autonomous navigation. The path planner calculates a curved e.1v0|d|ng.statlc (”f"?‘{'”ta',”s)' a.nd movmg obsta.cles-gwen its ini-
path line with desired characteristics in a three—dimensional (3-D) tial position and initial flight direction. The vehicle is assumed
rough terrain environment, represented using B-Spline curves, to be a point (its actual size is taken into account by equivalent
with the coordinates of its control points being the evolutionary gbstacle—ground growing). Therefore, two problems are being
algorithm artificial chromosome genes. solved.

Given a 3-D rough environment and assuming flight envelope s . . L
restrictions, two problems are solved: i) UAV navigation using an 1) VAV NaV|ga'F|on Using an O_fflme Planner Considering
offline planner in a known environment, and, ii) UAV navigation @ Known 3-D EnvironmentThe offline planner generates col-
using an online planner in a completely unknown environment. lision free paths in environments with known characteristics
The offline planner produces a single B-Spline curve that connects and flight restrictions (acquired via 3-D GIS based generated
the starting and target points with a predefined initial direction. maps or otherwise). The derived path line is a single contin-
The online planner, based on the offline one, is given on-board 3-D B-Spli ) hile th lid b dari int
radar readings which gradually produces a smooth 3-D trajec- YOUS 9-D B-Spliné curve, while the Solid boundaries are inter-
tory aiming at reaching a predetermined target in an unknown preted as 3-D rough Surfaces. The alr Veh|C|e course Is aCtUa”y
environment; the produced trajectory consists of smaller B-Spline a curve with curvature continuity that cannot be modeled using
curves smoothly connected with each other. Both planners have straight-line segments (which is the usual practice for ground
been tested under different scenarios, and they have been proven i) Therefore, B-Spline curves based path representation is
effective in guiding an UAV to its final destination, providing tilized having the advant f being d ibed Usi I
near-optimal curved paths quickly and efficiently. utilized having the a van_age 0 em_g escribe g using a sma
amount of data (the coordinates of their control points), although
possibly producing very complicated curves.
2) UAV Navigation Using an Online Planner Considering
a Completely Unknown 3-D Environmerithe online planner
|. INTRODUCTION uses acquired information from the UAV on-board sensors (that
HIS work has been motivated by the challenge to devel(§|8art1 tiie area}(i/inthm a cetrtaln range fi_om the Utﬁ‘\t/r)] 'i'henonlige
and implement a single path planner for autonomous ut?i?n rohgi raplf lygi]ener_ates a n((;ai op '”f';%m P?th. tar: Wi gul e’
manned aerial vehicle (UAV) navigation and collision avoid- € vehicle salely to an intermediateé position within th€ Sensors
nge. The process is repeated until the final position is reached.

ance in known, completely unknown, and/or partially know[‘lfi] hline f h : . he final li h
3-D rough terrain environments. e path line from the starting point to the final goal is a smooth,

The problem being solved considers UAV flight envelopgontinuous 3-D line that consists of successive B-Spline curves,

restrictions in terms of enforced maximum flight height anamOOtth connected tq each other.. . _
minimum turning radius, obstacles being the 3-D rough ter- The UAV path-planning problem is considered within an evo-

rain (mountains, valleys, etc.), as well as moving ones. T ionary algorithm (EA) context, in which the path line is repre-

UAV is assumed to be equipped with a set of on-board sepented using B-Spline curves, with the coordinates of its control

sors, including radar, global positioning system (GPS), dif_reg_oints being the EAs artificial chromosome genes. The reasons

ential GPS (DGPS), inertial navigation system (INS), and gyr ehind choosing EAs as an optimization tool for the path-plan-

scopes, through which it can sense its surroundings and positiB'H.g prgblem are their high robustriess compared to othgr ex-
isting directed search methods, their ease of implementation in

problems with a relatively high number of constraints, and their

. . . . . high adaptability to the special characteristics of the problem
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lying between the UAV and its final destination. Further, ais not applicable in this case (UAV flight), due to flight enve-

additional EA-based procedure is introduced that forces thlmpe restrictions and stability problems. For the same reasons,

UAV to bypass concave obstacles and avoid local optima. gradually constructed B-Spline curves are adopted in the online
planner. The radar range provides the time needed for calcu-

A Related Work lating smooth near optimal curves C(_)nr_1ec_ted to each other, that
are naturally fitted to the UAV flight limitations.

There already exist methods that produce either 3-D, or 2-DThe rest of the paper is organized as follows: Section I
trajectories for guiding mobile robots in known, unknown, csummarizes EA fundamentals along with the basic features
partially known environments. In some cases, neural netwask B-Spline curves. Specific EA features as applied to the
based controllers were designed and trained to guide a ropatblem under consideration are presented. The offline planner
when unknown static obstacles were sensed [1]. In other casespresented in Section lll, followed by the presentation of
fuzzy based controllers were used to solve the 2-D mobile rolibe online planner in Section IV. Experimental results are
online navigation problem, with its parameters being optimizeshown in Section V, followed by discussion and conclusions in
in real time, through an evolutionary procedure, such as in [2ection VI. The algorithms developed for the online planner

During the past few years, it has been shown by many rare included in Appendix A and the basic equations for the
searchers that EAs are a viable candidate to solve such probrastruction of 3-D B-Spline curves in Appendix B. Finally, the
lems, including the path planning problem, effectively and prd=A parameters selection procedure is presented in Appendix C.
vide feasible solutions within a short time without demanding
excessive computer power. Traditionally, EAs have been used
for the solution of the path-finding problem in ground based or
sea surface navigation [3]. Commonly, the generated trajectoryEAs are a class of search methods with remarkable balance
had the form of a crooked line that guided a mobile robot orlsetween exploitation of the best solutions and exploration of
vehicle along a 2-D path on the earth’s surface or the sea siire search space. They combine elements of directed and sto-
face. The genes used, represented the path point coordinategtizgtic search and, therefore, are more robust than existing di-
vehicle changes its direction to. Other approaches took into ageted search methods [3]. Additionally, they may be easily tai-
count the time dimension by using genes that also described litved to the specific application of interest, taking into account
vehicle steady speed as it traversed a part of its path. When the special characteristics of the problem under consideration.
vehicle’s operational environment was partially known or dy- The natural selection process is simulated in EAs, using a
namic, a feasible and safe trajectory was planned offline by thember (population) of individuals (solutions to the problem)
EA, and the algorithm was used online whenever unexpectgdevolve through certain procedures. Each individual is rep-
obstacles were sensed [4], [5]. resented through a string of numbers (bit strings, integers, or

EAs (with binary coding) have also been used for solving tHeating point numbers) in a similar way with chromosomes
path-finding problem in a 3-D environment for underwater van nature. Each individual's quality is represented by a fithess
hicles, assuming that the path is a sequence of cells in a 3-D dtidction tailored to the problem to be optimized.

[6], [7]. In addition, B-Spline curves have been used for trajec- Classical EAs use binary coding for the representation of the
tory representation in 2-D environments (simulated annealiggnotype [3]. However, floating point coding moves the EAs
based path line optimization, combined with fuzzy logic coreloser to the problem space, allowing the operators to be more
troller for path tracking) [8], and in 3-D environments (evoluproblem specific. For this reason floating point coding is used
tionary algorithm based path line optimization for a UAV ovein the current work, which provides a better physical represen-
rough terrain) [9]. A 3-D heuristics-based planner has been ptation of the path line control points and easier control of the
sented in [10] for the local trajectory planning in a partiallgpace constraints. Additionally, two points that are close to the
known environment with moving obstacles but with predefingshysical space are also close in the representation space (the
global path (in the form of knot points with known coordinatesjgenotype encoding), and vice versa. With this type of encoding
Other related work for the 2-D case, may be found in [13]-[15¢lirected search techniques gain physical representation and they

The current work implements the EAs in the demanding eare easily applicable.
vironment of UAV flight over a rough, completely unknown The EA starts by generating, randomly, the initial chro-
ground surface, without considering a predefined path. Contranpsome population with their genes taking values inside
to the ground based, sea surface, or underwater vehicles, URé desired constrained space. After the evaluation of each
flight wrong decisions and strategies may easily result in dexdividual's fitness function, operators are applied to the pop-
stroying the UAV. For this reason, the feasibility of the path linalation, simulating the according natural processes. Applied
is the main concern, while special procedures are used to owgperators include various forms of selection, recombination,
come navigation problems with concave obstacles. Nevertlagyd mutation, which are used in order to provide the next
less, the high velocities and the flight dynamics impose specifieneration chromosomes. The process of a new generation
constraints for the smoothness and the curvature of the caleualuation and creation is successively repeated, providing
lated path line, leading to the adoption of the B-Spline formundividuals with high values of fithess function. Each chro-
lation. It is emphasized that the use of straight line segmentspsome consists of the same (fixed) number of genes (for the
or a sequence of cells for the construction of the path line (asoblem at hand, they are the coordinates of B-Spline control
it is the practice for surface and underwater 3-D environmen{sints).

Il. FUNDAMENTALS OF EVOLUTIONARY ALGORITHMS
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The first operator applied to the selected chromosomes |
the classical one-point crossover scheme [3]. Two randomly s¢
lected chromosomes are divided in the same (random) positio
while the first part of the first one is connected to the seconc
part of the second one, and vice-versa. The crossover operal
is used in order to provide information exchange between dif
ferent potential solutions to the problem.

The second operator applied to the selected chromosomes
the classic uniform mutation scheme. This asexual operator &
ters a randomly selected gene of a chromosome. The new ge 47
takes its random value from the constrained space, determinca
in the beginning of the process (in the offline planner being tfl‘g?g. 1
borders of the physical 3-D search space). The mutation oper-

ator is used in order to introduce some extra variability into the o
population. T being thethresholdof the procedure. Once chosen, these indi-

In order to provide fine local tuning, nonuniform mutatioryiduals are used for the generation of a new population through

and heuristic crossover are used, along with the classic mutatipf classic roulette wheel selection [3]. An elitist model assures
and crossover schemes [3]. The first operator chooses randorfilgt the best individual of each generation always survives the
with a predefined probability, the gene of a chromosome to gglection procedure and reproduces its structure in the next gen-

mutated. Contrary to the uniform mutation described above, tREALION.

search space for the new gene is not fixed, but it shrinks close to! NiS Scheme provides high flexibility to the evolutionary al-

the previous value of the corresponding gene as the algoritﬂm'thm' When threshold takes values close to 100% the scheme
converges. The search is uniform initially, but very local at lat@Ctually serves as a classic roulette scheme. For valuds of
stages. close to 10%, the scheme serves close to a classic truncation
The second operator generates a single offsprirfgom two model. The increased selective pressure that is produced with
parentss; andzs. If z, is not worse tham, , thenzs is given as lower values ofl” focuses the search on the top individuals, but
the genetic diversity is lost and the procedure is trapped in local
optima. Such observations and several trial-and-error runs led to
e selection of values etween ban o in this work.
@ th lect fval af between 40% and 70% in th k

Artificial terrain produced using (2).

x3 =1r(ze — 1) + T2

wherer is a random number between 0 and 1.
a search direction is adopted, providing fine local tuning and The solid terrain under the UAV is most generally represented
search in the most promising direction (keep in mind that th®y a meshed 3-D surface, produced using mathematical func-
chromosome genes are physical coordinates and the directions of the form

of search actually has a physical meaning). The two last oper- _ )

ators (especially the heuristic crossover operator), proved todé, ¥) = sin(y + a) + b - sin(z) + ¢ - cos (d Vyr+ $2)

critical in obtaining a high convergence rate and a feasible so- . T3

lution in a few generations (see Appendix C). +e-cos(y) +f- Sm(f' y ) +yg-cos(y) (2)

The initial population is created randomly in the constrained . '
. . Wherea, b, ¢, d, e, f, g are constants experimentally defined,
space of each gene. The lower and higher constraints of eac . i L
. a . -In_order to produce a surface simulating a rough terrain with
gene may be chosen in a way that specific undesirable solutions . P
mguntams and valleys (as shown in Fig. 1).

may be avoided, such as path lines with a higher than desire n order to generate concave terrains (as shown in Fig. 2), the

altitude. Although the shortening of the search space reducesftt“e . : X )
S . . ollowing mathematical function has been used:
computation time, it may also lead to sub-optimal paths, due 10

In this Wd§ Solid Boundary Representat|on

the lower variability between the potential solutions. ( [ a-cos (b 2 T y2>
The EA discussed in this work is a modified breeder ge- ( )
netic algorithm (BGA) incorporating some characteristics of the —c-exp(—ly|) = fexp(—|z — 2|)
classic genetic algorithms (GAs). Breeder genetic algorithms if [y| < 1.5and5 < = < 5.5
use floating-point representation of variables and both recom-
bination and mutation operators. The truncation model is used a cos (b z2 + yz)
as the selection scheme, with the bE&b of P initial individ-
uals to give origin to the individuals of the next generation, with #(%:¥) =\ \ +dsin (g 2% +y? ) ©)
equal probab_lllty. . _ o if 5 <|z]<80r5 < |yl <8
The selection scheme used is hybrid, a combination of the
truncation model of BGAs and the roulette procedure of tra- a- cos(b\/(azz + y2)
ditional GAs. Starting with the truncation model, orilib el- _
ements, showing the best fitness, are chosen in order to give +elz|l costmzHv)l — p|g|lsin(n(z+y))]
origin to the individuals of the next generation, with parameter L if |y| > 4.5 or|z| > 4.5
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ending points of the curve are fixed. A third point close to
the starting one is also fixed, determining the initial flight
direction. Between the fixed control points, free-to-move
control points determine the shape of the curve, taking values in
the constrained space. The number of the free-to-move control
points is fixed (user-defined). Their physical coordinates are
the genes of the EA artificial chromosome, resulting in a fixed
length chromosome.

/
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A. Fitness Function

The optimization problem to be solved minimizes a set of
four terms, connected to various constraints. The constraints are
associated with the feasibility and the length of the path line, a
wherea, b, ¢, d, e, f, g, h, m, n are again proper constantssafety distance from the obstacles and the UAVs flight envelope
experimentally defined. restrictions. The fitness function is the inverse of the weighted

A graphical interface has been developed for the visualizeam of the four different terms
tion of the terrain surface, along with the path line curve as in
[9]. The corresponding interface deals with different terrains, . !
produced either artificially or based on real geographical data, f=1 Z ai fi
and provides an easy verification of the feasibility and quality =t
of each solution. Horizontal sections of the surface in differe@fhereq; are weights ang;; are the above mentioned terms de-
heights may be plotted, visualizing the boundaries in the UAyhed as follows:
flight height (as presented in Fig. 6). The path-planning algo- Term f; penalizes the nonfeasible curves that pass through
rithm considers the scanned surface as a group of quadrgig solid boundary. The penalty value is proportional to the
mesh nodes with known coordinates. The same solid boundﬁmnber of discretized curve points (not the B_Sp“ne control
representation is used for both the online and the offline meth%ints) located inside the solid boundary. In this way nonfea-

sible curves with fewer points inside the solid boundary show
B. Path Line B-Spline Modeling better fitness than curves with more points inside the solid
{;}Rundary. Additionally, the fitter of the nonfeasible curves
survive the selection procedure and produce acceptable

Fig. 2. Atrtificial terrain produced using (3).

(4)

Straight-line segments cannot represent a flying object p
line, as usually the case with mobile robots, sea, and under

vessels. B-Splines are adopted to define the UAV desired pa"? $prings Fhr%uglh thehherI:]StiC crossove(rj_operafcion.l ith th
providing at least first order derivative continuity. B-Spline, /™M /2 IS the length of the curve (nondimensional with the

curves are well fitted in the evolutionary procedure, as th jstance between the starting and destination points) used to

need a few variables (coordinates of the control points) in or rowde shprter paths. ) ) ) )
to define complicated curved paths (see Appendix B). EachTerrn fsis deggned to prowc!e flight paths with a safety dis-
control point has a very local effect on the curve’s shape, afffice from solid boundaries, given as
small perturbations in its position produce changes in the curve nline nground
E)anI)]/. in the neighborhood of the changing control point [11], fs = Z Z 1/(7"i,j/7“safe,)2 (5)
A valuable characteristic of the adopted B-Spline curves is o
that the curve is tangential to the control polygon at the startifgherenline is the number of discrete curve pointsyround
and ending points. This characteristic can be used in orderigothe number of discrete mesh points of the solid boundary,
define the starting direction of the curve, by inserting an extya . is the distance between the corresponding nodes and curve
fixed point after the starting one. These two points can defiRgints, whiler, s is the minimum safety distance from the
the direction of the curve at the corresponding region. This églid boundary.
essential for the path planning of flying vessels, as their flight Term 7, is designed to provide curves with a prescribed
angles are continuously defined. Consequently the directionfifnimum curvature radius. This characteristic is essential for
the designed path line in the starting position must coincide wighflying vessel, as its flight envelope determines the minimum
the current direction of flight in this position, in order to ensurgadius of curvature. The angbe(Fig. 3) that is determined by
curvature continuity of the whole path line. The B-Spline curvgvo successive discrete segments of the curve (defined by the
is discretized, using a constant step, and it is used in this fofits in Fig. 3) is calculated and if less than a prescribed value,
for the calculation of its fitness. a penalty is added to the fourth term of the fitness function.
Weightsa,; are experimentally determined, using as criterion
the almost uniform effect of the last three terms in the fitness
value. Termaq f; has a dominant role in (4) providing feasible
The offline path planner generates a B-Spline curve oveurves in few generations, since path feasibility is the main con-
known, simulated or real, environments. The starting aroern.

[ll. OFFLINE PATH PLANNING
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connects the starting point with the ending one. Instead, at cer-
tain moments, the radar scans a region around the UAV, and a
path line is generated that connects a temporary starting point
with a temporary ending point. Each temporary ending point is
also the next curve starting point. Therefore, what is finally gen-
erated is a group of smooth curve segments, connected to each
other and eventually, connecting the starting point with the final
destination.

In the online problem, only four control points define each
B-Spline curve, the first two of which are fixed, determining the
direction of the current UAV path. The remaining two control
points are allowed to take any position within the scanned by the
radar known space, taking into consideration given restrictions.
Only the Cartesian coordinates of the nonfixed control points
form each individual's genes.

When the next path segment is to be generated, only the first
Fig.3. Schematic representation of the curvature angle used for the calculat(lzc%mroI point of the B-_Spllne curve .IS known, .as itis the same
of term f,. with the last control point of the previous B-Spline segment. The

second control point is not random, as it is used to make sure
o that at least first derivative continuity of two connected curves is

The maximization of Eq. (4), through the EA procedure, re5qyided at the point that the two curves are connected. Hence,
sults in a set of B-Spline control points, which actually represefife second control point of the next curve should lie on the line
the desired path. defined by the last two control points of the previous curve. It

. is also desirable that the second control point is near the first
B. Offline Procedure one, so that the UAV may easily avoid any obstacle suddenly

Initially, the starting and ending points are externally desensed in front of it. This may happen because the radar scans
termined, along with the direction of flight. The limits of thethe environment not continuously, but at intervals.
physical space, where the vehicle is allowed to 1, (Y, Z, . .
upper and lower coordinates), are also determined, along with Initial Population
the ground surface (in (2) or (3), or real GIS data). The given Arandom number generator is used to produce floating-point
flight direction is used to determine the third fixed point closealues within certain boundaries. Lower and upper boundaries
to the starting one. Its position is along the flight direction anfdrm the ground area the radar scans within which the UAV is
at a pre-fixed distance from the starting point. allowed to move. The control points that are randomly generated

The EA randomly produces a number of chromosomeare acceptable only if they are within the radar’s range distance
equal to the (fixed) population number. The genes of eafifom the UAV. Otherwise, they are ignored and new genes are
chromosome are the physical coordinates of the free-to-mdweing generated to replace them. Thus, all individuals represent
B-Spline control points. These coordinates take (random)rves whose control points are within the UAVs radar range.
values within the limits of the constrained physical 3-D The initial population size is now smaller compared to the of-
space. Each B-Spline curve is constructed by the three fixie path planner one, since the online problem calls for shorter
control points and the free-to-move ones (provided by tlemputation times.
corresponding chromosome). _ )

Each B-Spline is evaluated, using the aforementioned criterfe, Online Mechanism
and its fitness function is calculated. The EA proceeds, as deAs previously mentioned, the path-planning algorithm con-

scribed in Section II. siders the scanned surface as a group of quadratic mesh nodes.
All ground nodes are initially considered unknown. An algo-
IV. ONLINE PATH PLANNING rithm is used to distinguish between nodes visible by the radar

and nodes not visible as follows: A node is not visible by the

The EA used_by the online path planne_r IS ba_s_ed on the Ry if it is not within the radar's range or if it is within the
used by the offline path planner. The main modifications COD: yar's range but is hidden by a ground section that lies be-

cern the representation of the individuals, the initial populatiopW en it and the UAV. The corresponding algorithm, simulates

the optimization criteria, and the gradual segment generationtﬁ radar and checks whether the ground nodes within the radar
the complete path line. The terrain is considered unknown, ge are “visible” or not and consequently “known” or not

only an area near the UAV is supposed to be scanned by the %%he radar’s data are used to produce the first path line seg-

board sensors. ment. As the UAV is moving along this segment and until it has
traveled about 2/3 of its length, the radar scans the surrounding
area, returning a new set of visible nodes. The online planner,
As the terrain is completely unknown and the radar graduallgen, produces a new segment, whose first point is the last point
scans the area, it is impossible to generate a feasible path tifahe previous one and whose last point lies somewhere in the

A. Representation of the Individual
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Fig. 5. Potential field of (7). The dashed lines are the equal-potential lines,
while the solid lines are the “streamlines” normal to the previous ones. The

) . ) ) ojnts in the intersection of the streamlines are the starting and the final ones.
Fig. 4. Schematic representation of the online procedure. The curved s‘i‘ﬂjthe points that lie on an equal-potential curve have the same probability for

line is the generated path line, formed by 4 successive B-Spline segments (Yzdng chosen as a final point for each B-Spline segment (according tofterm
3-5, 5-7, 7-8). Point 1 is the starting position, while point 8 is the ending iha online procedure). ’

one. The dashed circles define the radar-covered area in the position where the
EA procedure starts to calculate the next B-Spline segment. The corresponding
circle centers are marked with white dots (points 1, 2, 4, 6). The ending poBtSpline curve. A visualization of the corresponding potential
of each generated B-Spline segment (points 3, 5, 7) lie close to the maximﬂ@qd is demonstrated in Fig 5
radius of each circle (except the final one—point 8). . a .
Term f3 is the same as terif3 used by the offline path planner

. - . _ and is applied to each segment of the total path line. Taria
newly scanned area, its position being determined by the EA Qe same as terrfy used by the offline path planner. Terfis
line procedure. The process is repeated until the ending poingofunction of the distance between the current path’s last point
the current path line segment lies close to the final destinatigAd the solid boundary, similar to terfa, and it penalizes a
(Fig. 4). The position at which the algorithm starts to generag@irve that ends too close to it. The purpose of this term is to help
the next path line segment (here taken as the 2/3 of the segmABIUAV avoid moving too close to the ground surface. Hence,
length) depends on the radar range, the UAVs velocity and ti@ile the UAV traverses its next partial trajectory, it does not

algorithm computational demands. change its direction abruptly in order to avoid a collision with
. . the ground.
D. Fitness Function Term f¢ is designed to prevent the UAV from being trapped

In this case, the fitness function to be maximized through t#g local optima and to force it move toward unexplored areas.

EA is the inverse of the weighted sum of eight different termdt may be possible that some segments of the path line are con-
centrated in a small area, away from the final target. In order to
8 help the UAV leave this area, terfg repels it from the points of
F=1/>" aifs (6) the path line it has already traversed. Furthermore, if the UAV
i=1 is wandering around to find a path that will guide it to its target,
the UAV will be forced to move toward areas it has not visited

whereaq; are the weights and; are the corresponding terms _
described below. before. This term has the form

Term f; is the same as ternf; used by the offline path npoint 1
planner. fo= Y - (8)
The value of termyf, depends on the value of a potential be- k=1 ¥

tween the starting point and the final target. The potential ﬁeWherenpomt is the number of the discrete curve points pro-
between the two points is the main driving force for the gradugliced so far and, is their distance from the last point of the
development of the path line in the online procedure. The pggrrent curve segment.
tential is similar to the one between a source and a sink, givenrerm f; is the same as ternfy used by the offline path
as planner. If the calculated angle is less than a prescribed value
ro4c-To (depending on flight restrictions of the considered UAV), a
(7) penalty is added to the seventh term of the fithess function. The
flight envelope of the UAV determines the minimum acceptable
wherer; is the distance between the last point of the curreangle.
curve and the starting point; is the distance between the last Term fs represents another potential field, which is developed
point of the current curve and the final destinatiog,is the in a small area around the final target. When the UAV is away
distance between the starting and final destination aigda from the final target, the term is given a constant value. When
constant. the UAV is very close to the target, the term’s value decreases
This potential allows for selecting curved paths that bypapsoportionally to the square of the distance between the current
obstacles lying between the starting and ending point of eadlirve’s last point and the target. Thus, when the UAV is near its

$ =1n

r+c-rg
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target, the value of this term is quite small and prevents the UAY Second Fitness Function of the Online Procedure

from moving away. The second fitness function is used within the local optima

Weightsa,; are experimentally determined, using as Criterioﬁvoidance mode of the online procedure, when the UAV is
the almost uniform effect of all the terms, except the first On‘ﬁ’apped in a local optimum

Terma, f, has a dominant role, in order to provide feasible i is the inverse of the weighted sum of three different terms
curve segments in a few generations, since path feasibility is
the main concern.

3
! gl
E. Local Optima Avoidance Mode of the Online Path Planner F=1 ; aifi ©)
Although termfs has been introduced in the fitness function
of the online procedure, the ground formation may cause théerea; are the weights angl; are the corresponding terms
UAV to be trapped in a local optimum area (consider a moufiescribed below. Terryi is the same as the teryi used by the
tain with a horseshoe shape as in Fig. 2 and that the UAV entéfline path planner. The value of terfy penalizes curves when
inside its concave part, while it is not possible to overpass tHeeir last point is far from the border node whose identification
mountain). In such cases, it is difficult for the UAV to escapBUmber was given the greater value. This term is used to enforce
from this area as it would have to move away from the obstadfee curve to circle the obstacle.
and thus away from its final target. To prevent this from hap- Term f3 is the nondimensional length of the current curve,
pening, a second fitness function and an algorithm is derivedi4ged in order to provide short and smooth paths. Weightse
predict when the UAV is about to be trapped in a local optimu@xperimentally determined. Ternj f; has a dominant role, in
and use a second mode of the online planner to overcome itorder to provide feasible curves in a few generations, since path
As already stated, every time a new segment is generated, &@sibility is the main concern.
the radar has scanned its environment, it checks whether theréhe second fitness function works in a different way than
is an “obstacle” very close (within a predefined safety distanct§rm fe of the first fitness function. Ternfs repels the UAV
to the UAV and toward its motion direction. An “obstacle” isfrom the points of the path line it has already traversed, in order
a group of ground nodes higher than the flight altitude that tfi@ explore new areas, and avoid “going around” in the local op-
UAV cannot overpass, due to the constrained space in whicliiffum area. The second fitness function forces the path line to
is allowed to move. As ternf; has been added to the fithnesgnove along the border of the obstacle that has caused the UAV
function, (6), which does not allow the UAV to come too clos0 be trapped, until that obstacle no longer lies between the UAV
to the ground. Itis reasonable to believe that the UAV will com@nd its final destination.
too close to the ground only if it is trapped in a local optimum This second fitness function is used to generate a new path
area. In addition, it is being checked whether there is an obstaléie segment if the UAV has been trapped in a local optimum
close to the UAV, and on its way to the final destination. If n@rea. After the calculation of the new path line segment, using
obstacle is found, the fitness function, given by (6), guides tfe second fitness function, the UAV moves along this segment,
UAV. until it reaches the 2/3 of segment’s length. If the obstacle is
The goal of the second mode of the algorithm is to force tH longer between the current UAV position and its final des-
UAV to move along the border of the obstacle that has caus@ggtion, the algorithm returns to the first mode of the online
the UAV to be trapped, until that obstacle lies no longer betwe®focedure, and the fitness function defined in (6) is used. If the
the UAV and its final destination. This is achieved by identifyin@bstacle is still between the UAV and the final destination, the
the obstacle that has caused the UAV to be trapped. An ald®xt path line segment will be generated with the fitness func-
rithm, presented in Appendix A, generates a map of all groupstéin defined in (9) (the second one), within the second mode of
nodes that form obstacles that are visible by the radar. Each stlt$ online procedure.
group of nodes contains nodes that lie adjacent to each other.
After this procedure terminates, each group of nodes has been V. EXPERIMENTAL RESULTS
given a unique number. All the nodes of a group have been given
the same number. As the coordinates of the node that lies’dn
the UAV's motion direction have been stored, it is known which The offline planner has been extensively tested, using a sim-
group of nodes (obstacle) has caused the UAV to be trappedilation environment. All experiments have been designed in
the local optimum area (see Appendix A). order to search for path lines between “mountains.” For this
Next, the borders (the corresponding nodes) of the obstatdason, an upper ceiling for flight height has been enforced. This
are located and assigned a numerical value, so that the nodg#ing is represented in the graphical environment by the hori-
with the greater value is far from the UAVs current positiorzontal section of the terrain (Fig. 6).
The second fitness function forces the UAV to move along the The (experimentally optimized) settings of the evolutionary
border and toward the border node with the larger value.  algorithm for the offline planner are as followsopulation size
When the UAV reaches its new position, the whole process100,threshold= 0.5, heuristic crossover probability 0.75,
goes over again (in the same mode) and the UAV keeps movitigssic crossover probability= 0.25, classic mutation proba-
across the obstacle’s borders, (momentarily) ignoring its finaility = 0.05,nonuniform mutation probability= 0.13. The de-
destination. The algorithm returns to the first mode when theiled procedure of the parameter selection is presented in Ap-
obstacle is no longer between the UAV and the final destinatigmendix C.

Offline Experiments
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Fig. 6. Firstoffline test case: Four free-to-move control points were used, witt
a prefixed direction at the starting position. The starting position is marked witt
a circle.

Fig. 8. Third offline test case.

Fig. 7. Second offline test case.

The algorithm was defined to terminate after 50 generations
although feasible solutions can be reached in less than 10 iter_.
tions. With 50 generations, and a population size equal to 100 . . . .
5000 evaluatio%s ofthe fitness funcF':ioFr)1 are performec(lal before %g 9. Early feasible solution of the third offline test case.
algorithm stops. The calculation corresponds to 15 s computa-
tion time per generation, in a 700 MHz PC, for a chromoson¥és set equal to the 1/15 of the terrainslimension. As it is
length equal to 12 (4 free-to-move control points), and a terrai§monstrated in Fig. 8, a higher distance from the solid bound-
described with 53« 53 nodes. aries was achieved, compared to test case 2 (Fig. 7). For the test

In the offline test cases presented here, the free-to-move c6@S€ 5, shown in Fig. 11, a wider terrain was used. For the test
trol points were taking values between 46, resulting in a totg#Se 6, showninFig. 12, a horseshoe terrain was used [produced
number of B-Spline control points equal to 7-9 (along with th&ith (3)], demonstrating the ability of the method to deal with
fixed starting and target points, and the fixed second point, usetghaped obstacles. _ -
for the determination of the initial direction). Greater number of Relatively high values of mutation probabilities were
control points resulted in higher computation time and slow@¢opted, in order to ensure the ability of the algorithm to over-
convergence rate, without any significant profit, concerning ti§@me local optima. As it was observed, initial feasible solutions
fitness of the curve. provided by the evolutionary algorithm, were progressively

The test cases shown in Figs. 10 and 11 were designed V\ygplaced by fitter ones, with a completely diff_erent structure.
the ceiling set to a low altitude which increased the path plahlgs- 8 and 9 demonstrate the above observation.
ning difficulty. The minimum distance from the mountain-like . ,
boundaries was empirically set equal to 1/30 of thdimen- B- Online Experiments
sion of the terrain, in all the cases, except for case 3, which isThe same environment was used for all the test cases consid-
presented in Figs. 8 and 9. In test case 3, the minimum distarced, with different starting and destination points and different
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Rt
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Fig. 10. Fourth offline test case, with 4 free-to-move control points, and a veryg. 12.  Different terrain was used for the sixth offline test case, demonstrating
low upper limit. the ability of the method in dealing with difficult obstacle shapes.

Fig. 13. Preliminary test cases for the second mode of the online procedure.
The figure demonstrates the ability of the second mode of the online procedure
in driving the UAV to by-pass an obstacle. The starting positions are on the left
side of each obstacle.

Fig. 11. Wider terrain was used for the fifth offline test case, along with 6
free-to-move control points and a very low upper limit.

initial flight directions. All the test cases presented here werg¢
designed with a maximum flight altitude, as in the offline pro-
cedure (different for each case).

Thepopulation sizevas set equal to 50, while the algorithm
was defined to terminate after 25 generations, although feasib
solutions can be reached in less than ten generations for eaci
curve. The lower values for the population size (50) and for they 14. First test case for the online path planner: Starting position is near the
maximum number of generations (25), compared to the offlitet corner.
procedure (100 and 50 respectively), were adopted in order to
minimize the computational time, which is essential for onlineomputation), less than five seconds per generation are needed,
applications. The shorter length of the chromosomes (only sixa 700 MHz PC.
genes—two control points) and the narrow search space (dek order to check the validity of the second mode of the on-
fined by the radar range), compared to the offline procedute procedure, specialized test cases were used. In these test
made possible the aforementioned reduction. For the calculataases the starting and ending points of the path line were posi-
of each segment of the path line (which needs a complete Eéned inthe opposite side of a “mountain,” while an upper flight
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Fig. 15. Second test case for the online path planner: Starting position is n
the left side.
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Fig. 17. Fourth test case for the online path planner: Starting position is near
the left corner.
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Fig. 16. Third test case for the online path planner: Starting position is nea
the upper corner.

ceiling was enforced. The results for two of the aforementione
test cases are shown in Fig. 13. As demonstrated, the procedt
produces a smooth path (consisted of 2—4 successive B-Splil
curve segments), bypassing the solid obstacle and reaching ¢
fectively the final target. Itis obvious that the UAVs radar cannot
“see” the final target from the starting position, and the knowl-
edge of the obstacle’s borders is gained gradually.

For the selection and optimization of the various terms (con ﬂ
stants and weights used in the first fithess function of the on ‘a T
line procedure), two initial test cases were adopted with thei
results shown in Figs. 14 and 15. In test cases 3-5 (Figs. 16-18),
only the first mode of the online procedure was used. The paty. 18. Fith test case for the online path planner: Starting position is near the
lines consist of more than 6 B-Spline curve segments, whitgft cormner.
are smoothly connected to each other. In the last test case con-
sidered (Fig. 19), the algorithm passed to the second mode, in VI. DISCUSSION
order to avoid an obstacle (at the second abrupt turn). As it can
be observed, the UAV surrounds the obstacle and then the firsAn evolutionary algorithm-based offline/online path planner
mode of the algorithm takes over, in order to guide it to thi®r unmanned aerial vehicles (UAVS) has been presented to cal-
final destination. The abrupt turns of the path line are due twlate a curved path line with desired characteristics in a 3-D
the fact that the last point of the corresponding B-Spline curveugh terrain environment.
segments is very close to the terrain border (the first) and theThe trajectory of a UAV cannot be, adequately, represented
obstacle (the second), while a solution to this malfunction issing line segments. Additionally, a flying vessel cannot follow
under consideration. a path line formed with straight line segments, without giving
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tive in producing curves that bypass the solid ground obstacles

S B T T positioned between the starting and target positions, provided
ﬁ : that they do not have a concave shape, and do not drive the fit-

ness function in local optima. In this last case the second mode

O HE ifecegeRs of the online i i
g maAY procedure governs the path planning, producing
ﬁﬁm ﬁ?ﬁ ﬁ.ﬁgﬁ smooth flight paths (consisting of successive B-Spline curves)
HIFE% o

s that by-pass the obstacle.

jy aemail shand - The proposed method proved capable for producing feasible
_ﬁiﬁj i (collision-free) paths after a small number of generations (less

than 10), rendering it suitable for real-time calculations. The

latter is particularly useful in online applications, where the

global terrain geography is unknown and a local knowledge is

gained through onboard sensors.

wi T
_ | Y The algorithms used for obstacle identification and enumer-
%ﬁ%ﬁ%ﬁ% ation of border nodes are presented.

A T PSSR A - If there is a node-obstacle close to the UAV and along its mo-

tion direction, its coordinates are stored. Then, the following al-

gorithm is used to generate a map of all groups of nodes that
Fig. 19. Sixth test case for the online path planner: Starting position is négfrm obstacles and are visible by the radar. Each group (ob-
the left corner. stacle) contains nodes that lie adjacent to each other.

APPENDIX A

rise to control and stability problems. The proposed method uses he followi i all A th isible b
parametric curves to produce a continuous path line, which hsDOt € odowrllng ugu a ieg?ednt(a, 7).t ?t arer\]/|3| € oy, h
described by a small set of parameters—the coordinates of g UAVs radar have been checked, starting from the upper-right

control points. The construction of the B-Splines based on Coif_gn;ent 9f the \gSlbIeI te;]raln
trol points, proved suitable for coupling with an EA. The direc' "0d€S is an obstacle then _
Ifitis the first obstacle checked, then the variable group

tion of the curve can easily be prescribed at its starting position, o )
valugi, j) = 1 and the variablanax = 1.

by inserting a second fixed point. The direction described b | heck whether there i h de-ob le eith .
these points is the initial direction of each curve and must coiﬁise checkw ether there Is another node-o stacle either on its
right or up-right or upper or up-left position

cide with the current flight direction. fth i< th di e |
The offline planner takes into consideration the vehicle flight If there is, then read its groupval ,@]) value. Set
the current node’$.S) groupvalué¢i, j) value equal

capabilities in the form of a prescribed minimum curvature ) !

angle and a maximum flight height. The resulting path is _to the one pfthe neighboring obstacle that was found

smooth and assumed to be easily generated by autonomous " the previous step _

navigation controllers. The online path planner, although it Else set groupvalg, j) = max +1, wheremax is

evaluates a minimum curvature angle, associated with the the greater yalue that the variable groupvaie;)

flight envelope, may produce paths that exceed the vessel's has been given so far

capabilities. In real-life implementations, the tuning of the End-if

optimization procedure is heavily based on UAVs speed aﬁ@d'”

maneuverability as much as sensor’s range and accuracy. R

tive-based control methods may be useful during the collision

avoidance procedure. Such methods are proved to cooperate

well with path planners when applied to ground robots [16].
The EA proved to be effective in finding feasible path lines

(for both offline and online procedures) under the forced con-

straints and within an acceptable time period, especially for : s e

the online planner, where the execution time is of great impor- If there is, then set the node’s groupva(iej) value

tance. The easy implementation of the various constraints of the equal to the one of segmefit

problem proved to be a valuable characteristic of EA. Neverthe-End'If

less, a feasible solution could be reached within a small numit4eP

of iterations, while the rest of the iterations were used in order

to optimize the solution, according to the rest of the criteria.  After this process has finished, each group of nodes (ob-
The introduced potential field between the initial and targstacles) has been given a unique number [equal tatbep-

position was the main driving force for the gradual developralug(i, j) value of the nodes that are part of it]. All the nodes

ment of the path line in the online procedure. As it was demoaof a group have been given the same number. As the coordinates

strated by the several test cases presented, it proved to be efdéthe node that lies on the UAVs motion direction have been

P
Do until all the nodegs, j) that are visible by the radar
have been checked, starting from the lower-down node of
the terrain
If nodeS is an obstacle then
Check whether there is another node-obstacle either on
its right or upper or up-left or up-right positian
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kept, it is known which group of nodes (obstacle) has caus:
the UAV to be trapped in a local optimum area.

Next, the obstacle’s borders are located and are enumera
so that the node with the greater number is far from the UAv
current position. The following algorithm is used in order tc
enumerate the nodes of the obstacle that are part of its borde

A. Counter-Clockwise Numeration

Give the value 0 to the variable num for the obstacle that lie
on the UAVs motion direction and whose coordinates have be
already stored.

Check whether there is another border-ndfief the group of
obstacles in the 8 surrounding positions, using counter cloc..
Wise dlrgctlon and startl_ng from t_he "?WGr position. Fig. 20. 2-D quadratic B-Spline cur{dX = 3), with its control points and
If there is, then the variableuwm is given the valueium =  the control polygon.

num + 1 and the same process is repeated for the new node

S. The process is repeated until there is no other border-noi
adjacent to the current nodg for which the variable num has
not been given a value.

If the current nodeS lies on the border of the terrain, then
clockwise numeration is needed, so as the UAV not to mo'
outside the terrain.

B. Clockwise Numeration

Give the value 0 to the variable num for the obstacle that lie
on the UAVs motion direction and whose coordinates have be
already kept.

Check whether there is another segment-bortgef the group
of obstacles, in the 8 surrounding positions, using clockwise q—'ii'g. 21. Corresponding B-Spline curve with the same control points as in
rection and starting from the upper position. Fig. 20 forK = 5.

If there is, then the variableum is given the valuewum =

num + 1 and the same process is repeated for the new segm@iifere B; i (t) the blending functions of the curve aidd the

S. The process is repeated until there is no other segment-bordgder of the curve, which is associated with curve’s smooth-
adjacent to the current segmefitfor which the variable num ness. Higher values df correspond to smoother curves, as it
has not been given a value. is demonstrated in Figs. 20 and 21. Parameter t varies between
0 and(n — K + 2) with a constant step, providing the dis-
crete points of the B-Spline curve. The sum of the values of the
blending functions for any value ofis always 1.

B-Spline curves are parametric curves, with their con- The blending functions are defined recursively in terms of

struction based on blending functions [11], [12]. Theig set ofknot values, with the most common form being the
parametric construction provides the ability to producgniform nonperiodimne, defined as:

nonmonotonic curves. If the number of control points

APPENDIX B

of the corresponding curve i$n + 1), with coordinates Knot(i) = 0, ifi <K
(zo, Yos 20)s - -+ (Tny Yn, 2n), the coordinates of the Knot(i)=i—K+1, fK<i<n (13)
B-Spline may be written as Knot(i)=n—K+2, ifn<i.
B - The blending functions3; i are defined recursively, using
X(t) = ; @i Bi (1) (10)  theknotvalues given by (13)
n 1, if Knot(i) <t < Knot(i+1)
Y(t) = Z; vi Bi k(1) (11) Knot(i) <t < Knot(i + 1)
Y Bia(t)=q1, if { and (14)
Z2(0) =Y 5 Bixt) (12) t=n—K+2
i—0 0, otherwise
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TABLE | TABLE Il
EPERIMENTAL RESULTS FORREURISTIC CROSSOVERPROBABILITY EPERIMENTAL RESULTS FORCLASSIC CROSSOVERPROBABILITY
heuristic fitness function number of classic crossover  fitness function number of
crossover at 30 generations  generations for probability at 30 generations  generations for
probability feasible solution feasible solution
0.25 0.755846 22 0.05 0.91033 8
0.50 0.038317 >30 0.10 0.967696 10
0.70 0.890083 16 0.15 0.980585 11
0.75 0.891374 9 0.20 0.91109 11
0.80 0.010973 >30 0.25 0.984536 7
0.85 0.010984 >30 0.50 0.047208 >30
population number = 100 population number = 100
number of generations = 30 number of generations = 30
non-uniform mutation probability = 0.15 heuristic crossover probability = 0.75
classic crossover probability = 0.15 non-uniform mutation probability = 0.13
classic mutation probability = 0.05 classic mutation probability = 0.05
EPERIMENTAL RESULTS FORL@EI-_UENIF“ORM MUTATION PROBABILITY TABLE IV
EPERIMENTAL RESULTS FORCLASSIC MUTATION PROBABILITY
non-uniform fitness function number of - - -
mutation at 30 generations  generations for classic mu,tf’t"m fitness functfon numb.er of
probability feasible solution probability at 30 generations fgen.el;'latlmllstf.'or
y - easible solution
0.10 0.010954 >30 001 096730 B
((])?5‘ %22?37835 191 0.03 0.983569 8
0'17 0.863955 14 0.05 0.984536 7
0.20 0.016226 >30 0.07 0.902685 0
population number = 100 8;8 832222 %2

number of generations = 30

heuristic crossover probability = 0.75
classic crossover probability =0.15
classic mutation probability = 0.05

population number = 100

number of generations = 30

heuristic crossover probability = 0.75
non-uniform mutation probability = 0.13
classic crossover probability = 0.25

(t - KI?Ot(L)) X Bz K—l(t)
B k(t) = Tonot(i ’ .
not(i + K — 1) — Knot (i) . . . .
results were obtained for monuniform mutation probability
(Knot(i + K) —t) X Biy1,k-1(t) (15) €qual to 0.13, which was fixed for the next calculations.
Knot(i+ K) — Knot(i +1) The procedure was repeated for ttlassic crossover prob-
If the denominator of either of the fractions is zero, that fraca-bmty’ with the results presented n Table lll. AS it is demon-
L . Strated, the best results were obtained falassic crossover
tion is defined to have zero value. .
probability equal to 0.25.
Finally, as it is demonstrated in Table 1V, the corresponding
experiments resulted in@assic mutation probabilitgqual to
In order to optimize the probabilities of the various EA operB.05 (with the previous parameters taking values equal to 0.75,
ators, a simplified experimental procedure was adopted (usidgd.3 and 0.25 respectively).
a reference offline test case), which is described below. The op¥ig. 22 presents the path line produced using the initial set
timization criteria were the value of the fitness function aftesf probabilities beuristic crossover probability: 0.75,classic
30 generations and the first generation at which a feasible satmessover probability= 0.15,nonuniform mutation probability
tion was reached. The population number was set equal to 20®.15, classic mutation probability= 0.05). Fig. 23 presents
(without optimization). the path line produced with the final (optimized) set (for the
Based on prior experience, from other EA applicationsame test case). The higher fithess function of the optimized set
an initial set of parameters was usatbnuniform mutation of parameters corresponds to a smoother path line in Fig. 23.
probability = 0.15,classic mutation probability= 0.05,classic  The EA convergence histories for the initial and final sets of pa-
crossover probability= 0.15. The results for different valuesrameters are presented in Fig. 24. The steps in the curves denote
of heuristic crossover probabilitgre presented in Table I. Thethe first generation where a feasible solution was obtained.
best results correspond to teeuristic crossover probability Fig. 25 demonstrates the influence of the various EA opera-
equal to 0.75, which was fixed for the next calculations. tors on the convergence rate of the algorithm. The same test case
The procedure was repeated for thenuniform mutation was used as a reference, with@pulation numbeequal to 100
probability, with the results presented in Table Il. The besind a maximunmumber of generationsqual to 30. The use of

APPENDIX C

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on October 5, 2009 at 16:19 from IEEE Xplore. Restrictions apply.



NIKOLOS et al: EVOLUTIONARY ALGORITHM BASED OFFLINE/ONLINE PATH PLANNER

911

0.80

060

040

020

*“‘é“l
0.00 - y " y " '

0 5 10 15 20 25 30 35

Fig. 22. Path line produced with the initial set of parameters of the EA

(heuristic crossover probability= 0.75, nonuniform mutation probability
0.15, classic crossover probability0.15, classic mutation probabiliy 0.05,
generations= 30). The starting position is near the left corner.

Fig. 25. Influence of the various EA operators in the convergence rate of the
algorithm. Curve (1) corresponds to an EA with only classic crossover and
mutation operators. Curve (2) corresponds to an EA with an additional heuristic
crossover operator, while curve (3) was obtained with the final EA (with all four
operators).

ally, a feasible solution was obtained in ten generations. Curve
2 of Fig. 25 shows the convergence rate of the corresponding
algorithm, with aheuristic crossover probabilitgqual to 0.75,

a classic (one-point) crossover probabiliggual to 0.25 and a
classic mutation probabilitgqual to 0.2.

The introduction of the nonuniform mutation operator moved
the first feasible solution to a lower generation number (gener-
ation 7), as it is demonstrated in Fig. 25 (curve 3). The value of
the fitness function is practically the same with the previous one
of curve 2, after 30 generations. The corresponding EA consists
of a heuristic crossover operator witp@babilityequal to 0.75,

Fig. 23. Path line produced with the final (optimized) set of parameters of thgc|assic crossover operator wittpabability equal to 0.25, a

EA (heuristic crossover probabilitg 0.75, nonuniform mutation probability
0.13, classic crossover probability 0.25, classic mutation probability 0.05,
generations= 30).
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Fig. 24. Convergence histories of the EA, corresponding to the initial (circles)

and optimized (triangles) set of parameters.

nonuniform mutation probabilitgqual to 0.13 and@assic mu-
tation probabilityequal to 0.05.
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