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Abstract. A Bayesian network is a graphical model that encodes probabilistic relationships among variables of
interest. When used in conjunction with statistical techniques, the graphical model has several advantages for
data modeling. One, because the model encodes dependencies among all variables, it readily handles situations
where some data entries are missing. Two, a Bayesian network can be used to learn causal relationships, and
hence can be used to gain understanding about a problem domain and to predict the consequences of intervention.
Three, because the model has both a causal and probabilistic semantics, it is an ideal representation for combining
prior knowledge (which often comes in causal form) and data. Four, Bayesian statistical methods in conjunction
with Bayesian networks offer an efficient and principled approach for avoiding the overfitting of data. In this
paper, we discuss methods for constructing Bayesian networks from prior knowledge and summarize Bayesian
statistical methods for using data to improve these models. With regard to the latter task, we describe methods
for learning both the parameters and structure of a Bayesian network, including techniques for learning with
incomplete data. In addition, we relate Bayesian-network methods for learning to techniques for supervised and
unsupervised learning. We illustrate the graphical-modeling approach using a real-world case study.
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1. Introduction

A Bayesian network is a graphical model for probabilistic relationships among a set of
variables. Over the last decade, the Bayesian network has become a popular representation
for encoding uncertain expert knowledge in expert systems (Heckerman et al., 1995a).
More recently, researchers have developed methods for learning Bayesian networks from
data. The techniques that have been developed are new and still evolving, but they have
been shown to be remarkably effective for some data-modeling problems.

In this paper, we provide a tutorial on Bayesian networks and associated Bayesian tech-
niques for data mining—the process of extracting knowledge from data. There are numerous
representations available for data mining, including rule bases, decision trees, and artificial
neural networks; and there are many techniques for data mining such as density estimation,
classification, regression, and clustering. So what do Bayesian networks and Bayesian
methods have to offer? There are at least four answers.

One, Bayesian networks can readily handle incomplete data sets. For example, consider
a classification or regression problem where two of the explanatory or input variables are
strongly anti-correlated. This correlation is not a problem for standard supervised learning
techniques, provided all inputs are measured in every case. When one of the inputs is not
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observed, however, many models will produce an inaccurate prediction, because they do
not encode the correlation between the input variables. Bayesian networks offer a natural
way to encode such dependencies.

Two, Bayesian networks allow one to learn about causal relationships. Learning about
causal relationships are important for at least two reasons. The process is useful when we are
trying to gain understanding about a problem domain, for example, during exploratory data
analysis. In addition, knowledge of causal relationships allows us to make predictions in
the presence of interventions. For example, a marketing analyst may want to know whether
or not it is worthwhile to increase exposure of a particular advertisement in order to increase
the sales of a product. To answer this question, the analyst can determine whether or not
the advertisement is a cause for increased sales, and to what degree. The use of Bayesian
networks helps to answer such questions even when no experiment about the effects of
increased exposure is available.

Three, Bayesian networks in conjunction with Bayesian statistical techniques facilitate
the combination of domain knowledge and data. Anyone who has performed a real-world
modeling task knows the importance of prior or domain knowledge, especially when data
is scarce or expensive. The fact that some commercial systems (i.e., expert systems) can be
built from prior knowledge alone is a testament to the power of prior knowledge. Bayesian
networks have a causal semantics that makes the encoding of causal prior knowledge par-
ticularly straightforward. In addition, Bayesian networks encode the strength of causal
relationships with probabilities. Consequently, prior knowledge and data can be combined
with well-studied techniques from Bayesian statistics.

Four, Bayesian methods in conjunction with Bayesian networks and other types of models
offers an efficient and principled approach for avoiding the over fitting of data.

This tutorial is organized as follows. In Section 2, we discuss the Bayesian interpretation
of probability and review methods from Bayesian statistics for combining prior knowledge
with data. In Section 3, we describe Bayesian networks and discuss how they can be con-
structed from prior knowledge alone. In Section 4, we discuss algorithms for probabilistic
inference in a Bayesian network. In Sections 5 and 6, we show how to learn the probabilities
in a fixed Bayesian-network structure, and describe techniques for handling incomplete data
including Monte-Carlo methods and the Gaussian approximation. In Sections 7 through 10,
we show how to learn both the probabilities and structure of a Bayesian network. Topics
discussed include methods for assessing priors for Bayesian-network structure and parame-
ters, and methods for avoiding the overfitting of data including Monte-Carlo, Laplace, BIC,
and MDL approximations. In Sections 11 and 12, we describe the relationships between
Bayesian-network techniques and methods for supervised and unsupervised learning. In
Section 13, we show how Bayesian networks facilitate the learning of causal relationships.
In Section 14, we illustrate techniques discussed in the tutorial using a real-world case
study. In Section 15, we give pointers to software and additional literature.

2. The Bayesian approach to probability and statistics

To understand Bayesian networks and associated data-mining techniques, it is important to
understand the Bayesian approach to probability and statistics. In this section, we provide
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an introduction to the Bayesian approach for those readers familiar only with the classical
view.

In a nutshell, the Bayesian probability of an eventx is a person’sdegree of beliefin
that event. Whereas a classical probability is a physical property of the world (e.g., the
probability that a coin will land heads), a Bayesian probability is a property of the person
who assigns the probability (e.g., your degree of belief that the coin will land heads). To
keep these two concepts of probability distinct, we refer to the classical probability of an
event as the true or physical probability of that event, and refer to a degree of belief in an
event as a Bayesian or personal probability. Alternatively, when the meaning is clear, we
refer to a Bayesian probability simply as a probability.

One important difference between physical probability and personal probability is that,
to measure the latter, we do not need repeated trials. For example, imagine the repeated
tosses of a sugar cube onto a wet surface. Every time the cube is tossed, its dimensions
will change slightly. Thus, although the classical statistician has a hard time measuring the
probability that the cube will land with a particular face up, the Bayesian simply restricts
his or her attention to the next toss, and assigns a probability. As another example, consider
the question: What is the probability that the Chicago Bulls will win the championship in
2001? Here, the classical statistician must remain silent, whereas the Bayesian can assign
a probability (and perhaps make a bit of money in the process).

One common criticism of the Bayesian definition of probability is that probabilities seem
arbitrary. Why should degrees of belief satisfy the rules of probability? On what scale
should probabilities be measured? In particular, it makes sense to assign a probability of
one (zero) to an event that will (not) occur, but what probabilities do we assign to beliefs
that are not at the extremes? Not surprising, these questions have been studied intensely.

With regards to the first question, many researchers have suggested different sets of
properties that should be satisfied by degrees of belief (e.g., Ramsey, 1931; Cox, 1946; Good,
1950; Savage, 1954; DeFinetti, 1970). It turns out that each set of properties leads to the
same rules: the rules of probability. Although each set of properties is in itself compelling,
the fact that different sets all lead to the rules of probability provides a particularly strong
argument for using probability to measure beliefs.

The answer to the question of scale follows from a simple observation: people find it
fairly easy to say that two events are equally likely. For example, imagine a simplified wheel
of fortune having only two regions (shaded and not shaded), such as the one illustrated in
figure 1. Assuming everything about the wheel as symmetric (except for shading), you
should conclude that it is equally likely for the wheel to stop in any one position. From
this judgment and the sum rule of probability (probabilities of mutually exclusive and

Figure 1. The probability wheel: a tool for assessing probabilities.
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collectively exhaustive sum to one), it follows that your probability that the wheel will stop
in the shaded region is the percent area of the wheel that is shaded (in this case, 0.3).

Thisprobability wheelnow provides a reference for measuring your probabilities of other
events. For example, what is your probability that Al Gore will run on the Democratic ticket
in 2000? First, ask yourself the question: Is it more likely that Gore will run or that the
wheel when spun will stop in the shaded region? If you think that it is more likely that
Gore will run, then imagine another wheel where the shaded region is larger. If you think
that it is more likely that the wheel will stop in the shaded region, then imagine another
wheel where the shaded region is smaller. Now, repeat this process until you think that
Gore running and the wheel stopping in the shaded region are equally likely. At this point,
your probability that Gore will run is just the percent surface area of the shaded area on the
wheel.

In general, the process of measuring a degree of belief is commonly referred to as a
probability assessment. The technique for assessment that we have just described is one
of many available techniques discussed in the Management Science, Operations Research,
and Psychology literature. One problem with probability assessment that is addressed in
this literature is that of precision. Can one really say that his or her probability for event
x is 0.601 and not 0.599? In most cases, no. Nonetheless, in most cases, probabilities
are used to make decisions, and these decisions are not sensitive to small variations in
probabilities. Well-established practices ofsensitivity analysishelp one to know when
additional precision is unnecessary (e.g., Howard and Matheson, 1983). Another problem
with probability assessment is that of accuracy. For example, recent experiences or the
way a question is phrased can lead to assessments that do not reflect a person’s true beliefs
(Tversky and Kahneman, 1974). Methods for improving accuracy can be found in the
decision-analysis literature (e.g., Spetzler et al., 1975).

Now let us turn to the issue of learning with data. To illustrate the Bayesian approach,
consider a common thumbtack—one with a round, flat head that can be found in most
supermarkets. If we throw the thumbtack up in the air, it will come to rest either on its point
(heads) or on its head (tails)1. Suppose we flip the thumbtackN + 1 times, making sure
that the physical properties of the thumbtack and the conditions under which it is flipped
remain stable over time. From the firstN observations, we want to determine the probability
of heads on theN + 1th toss.

In the classical analysis of this problem, we assert that there is some physical probability
of heads, which is unknown. Weestimatethis physical probability from theN observations
using criteria such as low bias and low variance. We then use this estimate as our probability
for heads on theN + 1th toss. In the Bayesian approach, we also assert that there is some
physical probability of heads, but we encode our uncertainty about this physical probability
using (Bayesian) probabilities, and use the rules of probability to compute our probability
of heads on theN + 1th toss2.

To examine the Bayesian analysis of this problem, we need some notation. We denote a
variable by an upper-case letter (e.g.,X,Y, Xi ,2), and the state or value of a corresponding
variable by that same letter in lower case (e.g.,x, y, xi , θ ). We denote a set of variables by
a bold-face upper-case letter (e.g.,X,Y,X i ). We use a corresponding bold-face lower-case
letter (e.g.,x, y, xi ) to denote an assignment of state or value to each variable in a given



              
P1: RPS/ASH P2: RPS/ASH QC: RPS

Data Mining and Knowledge Discovery KL411-04-Heckerman February 26, 1997 18:6

BAYESIAN NETWORKS FOR DATA MINING 83

set. We say that variable setX is in configurationx. We usep(X = x | ξ) (or p(x | ξ) as
a shorthand) to denote the probability thatX = x of a person with state of informationξ .
We also usep(x | ξ) the denote the probability distribution forX (both mass functions
and density functions). Whetherp(x | ξ) refers to a probability, a probability density, or
a probability distribution will be clear from context. We use this notation for probability
throughout the paper.

Returning to the thumbtack problem, we define2 to be a variable3 whose valuesθ
correspond to the possible true values of the physical probability. We sometimes refer
to θ as aparameter. We express the uncertainty about2 using the probability density
function p(θ | ξ). In addition, we useXl to denote the variable representing the outcome
of the l th flip, l = 1, . . . , N + 1, andD = {X1 = x1, . . . , XN = xN} to denote the set of
our observations. Thus, in Bayesian terms, the thumbtack problem reduces to computing
p(xN+1 | D, ξ) from p(θ | ξ).

To do so, we first use Bayes’ rule to obtain the probability distribution for2 given D
and background knowledgeξ :

p(θ | D, ξ) = p(θ | ξ) p(D | θ, ξ)
p(D | ξ) (1)

where

p(D | ξ) =
∫

p(D | θ, ξ) p(θ | ξ) dθ (2)

Next, we expand the termp(D | θ, ξ). Both Bayesians and classical statisticians agree on
this term: it is the likelihood function for binomial sampling. In particular, given the value
of 2, the observations inD are mutually independent, and the probability of heads (tails)
on any one observation isθ (1− θ ). Consequently, Eq. (1) becomes

p(θ | D, ξ) = p(θ | ξ) θh (1− θ)t
p(D | ξ) (3)

whereh andt are the number of heads and tails observed inD, respectively. The probability
distributionsp(θ | ξ) and p(θ | D, ξ) are commonly referred to as theprior andposterior
for 2, respectively. The quantitiesh andt are said to besufficient statisticsfor binomial
sampling, because they provide a summarization of the data that is sufficient to compute
the posterior from the prior. Finally, we average over the possible values of2 (using the
expansion rule of probability) to determine the probability that theN + 1th toss of the
thumbtack will come up heads:

p(XN+1 = heads| D, ξ) =
∫

p(XN+1 = heads| θ, ξ) p(θ | D, ξ) dθ

=
∫
θ p(θ | D, ξ) dθ ≡ Ep(θ |D,ξ)(θ) (4)

whereEp(θ | D,ξ)(θ) denotes the expectation ofθ with respect to the distributionp(θ | D, ξ).
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Figure 2. Several beta distributions.

To complete the Bayesian story for this example, we need a method to assess the prior
distribution for2. A common approach, usually adopted for convenience, is to assume that
this distribution is abetadistribution:

p(θ | ξ) = Beta(θ |αh, αt ) ≡ 0(α)

0(αh)0(αt )
θαh−1(1− θ)αt−1 (5)

whereαh > 0 andαt > 0 are the parameters of the beta distribution,α = αh+αt , and0(·)
is theGammafunction which satisfies0(x+ 1) = x0(x) and0(1) = 1. The quantitiesαh

andαt are often referred to ashyperparametersto distinguish them from the parameterθ .
The hyperparametersαh andαt must be greater than zero so that the distribution can be
normalized. Examples of beta distributions are shown in figure 2.

The beta prior is convenient for several reasons. By Eq. (3), the posterior distribution
will also be a beta distribution:

p(θ | D, ξ) = 0(α + N)

0(αh + h)0(αt + t)
θαh+h−1(1− θ)αt+t−1 = Beta(θ |αh+ h, αt + t) (6)

We say that the set of beta distributions is aconjugate family of distributionsfor binomial
sampling. Also, the expectation ofθ with respect to this distribution has a simple form:∫

θ Beta(θ | αh, αt ) dθ = αh

α
(7)

Hence, given a beta prior, we have a simple expression for the probability of heads in the
N + 1th toss:

p(XN+1 = heads| D, ξ) = αh + h

α + N
(8)
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Assumingp(θ | ξ) is a beta distribution, it can be assessed in a number of ways. For
example, we can assess our probability for heads in the first toss of the thumbtack (e.g.,
using a probability wheel). Next, we can imagine having seen the outcomes ofk flips, and
reassess our probability for heads in the next toss. From Eq. (8), we have (fork = 1)

p(X1 = heads| ξ) = αh

αh + αt
p(X2 = heads| X1 = heads, ξ) = αh + 1

αh + αt + 1

Given these probabilities, we can solve forαh andαt . This assessment technique is known
as the method ofimagined future data.

Another assessment method is based on Eq. (6). This equation says that, if we start with
a Beta(0, 0) prior4 and observeαh heads andαt tails, then our posterior (i.e., new prior)
will be a Beta(αh, αt ) distribution. Recognizing that a Beta(0, 0) prior encodes a state of
minimum information, we can assessαh andαt by determining the (possibly fractional)
number of observations of heads and tails that is equivalent to our actual knowledge about
flipping thumbtacks. Alternatively, we can assessp(X1 = heads| ξ) andα, which can be
regarded as anequivalent sample sizefor our current knowledge. This technique is known
as the method ofequivalent samples. Other techniques for assessing beta distributions are
discussed by Winkler (1967) and Chaloner and Duncan (1983).

Although the beta prior is convenient, it is not accurate for some problems. For example,
suppose we think that the thumbtack may have been purchased at a magic shop. In this
case, a more appropriate prior may be a mixture of beta distributions—for example,

p(θ | ξ) = 0.4 Beta(θ, 20, 1)+ 0.4 Beta(θ, 1, 20)+ 0.2 Beta(θ, 2, 2)

where 0.4 is our probability that the thumbtack is heavily weighted toward heads (tails).
In effect, we have introduced an additionalhiddenor unobserved variableH , whose states
correspond to the three possibilities: (1) thumbtack is biased toward heads, (2) thumbtack
is biased toward tails, and (3) thumbtack is normal; and we have asserted thatθ conditioned
on each state ofH is a beta distribution. In general, there are simple methods (e.g., the
method of imagined future data) for determining whether or not a beta prior is an accurate
reflection of one’s beliefs. In those cases where the beta prior is inaccurate, an accurate
prior can often be assessed by introducing additional hidden variables, as in this example.

So far, we have only considered observations drawn from a binomial distribution. In
general, observations may be drawn from any physical probability distribution:

p(x |θ, ξ) = f (x,θ)

where f (x,θ) is the likelihood function with parametersθ. For purposes of this discussion,
we assume that the number of parameters is finite. As an example,X may be a continuous
variable and have a Gaussian physical probability distribution with meanµ and variancev:

p(x |θ, ξ) = (2πv)−1/2 e−(x−µ)
2/2v

whereθ = {µ, v}.
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Regardless of the functional form, we can learn about the parameters given data using
the Bayesian approach. As we have done in the binomial case, we define variables corre-
sponding to the unknown parameters, assign priors to these variables, and use Bayes’ rule
to update our beliefs about these parameters given data:

p(θ | D, ξ) = p(D |θ, ξ) p(θ | ξ)
p(D | ξ) (9)

We then average over the possible values of2 to make predictions. For example,

p(xN+1 | D, ξ) =
∫

p(xN+1 |θ, ξ) p(θ | D, ξ) dθ (10)

For a class of distributions known as theexponential family, these computations can be
done efficiently and in closed form5. Members of this class include the binomial, multi-
nomial, normal, Gamma, Poisson, and multivariate-normal distributions. Each member
of this family has sufficient statistics that are of fixed dimension for any random sample,
and a simple conjugate prior6. Bernardo and Smith (pp. 436–442, 1994) have compiled
the important quantities and Bayesian computations for commonly used members of the
exponential family. Here, we summarize these items for multinomial sampling, which we
use to illustrate many of the ideas in this paper.

In multinomial sampling, the observed variableX is discrete, havingr possible states
x1, . . . , xr . The likelihood function is given by

p(X = xk |θ, ξ) = θk, k = 1, . . . , r

whereθ = {θ2, . . . , θr } are the parameters. (The parameterθ1 is given by 1−∑r
k=2 θk.)

In this case, as in the case of binomial sampling, the parameters correspond to physical
probabilities. The sufficient statistics for data setD = {X1 = x1, . . . , XN = xN} is
{N1, . . . , Nr }, whereNi is the number of timesX = xk in D. The simple conjugate prior
used with multinomial sampling is the Dirichlet distribution:

p(θ | ξ) = Dir(θ |α1, . . . , αr ) ≡ 0(α)∏r
k=10(αk)

r∏
k=1

θ
αk−1
k (11)

whereα = ∑r
i=1 αk, andαk > 0, k = 1, . . . , r . The posterior distributionp(θ | D, ξ) =

Dir(θ |α1+N1, . . . , αr +Nr ). Techniques for assessing the beta distribution, including the
methods of imagined future data and equivalent samples, can also be used to assess Dirichlet
distributions. Given this conjugate prior and data setD, the probability distribution for the
next observation is given by

p(XN+1 = xk | D, ξ) =
∫
θk Dir(θ |α1+ N1, . . . , αr + Nr ) dθ = αk + Nk

α + N
(12)
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As we shall see, another important quantity in Bayesian analysis is themarginal likelihood
or evidence p(D | ξ). In this case, we have

p(D | ξ) = 0(α)

0(α + N)
·

r∏
k=1

0(αk + Nk)

0(αk)
(13)

We note that the explicit mention of the state of knowledgeξ is useful, because it reinforces
the notion that probabilities are subjective. Nonetheless, once this concept is firmly in place,
the notation simply adds clutter. In the remainder of this tutorial, we shall not mentionξ

explicitly.
In closing this section, we emphasize that, although the Bayesian and classical approaches

may sometimes yield the same prediction, they are fundamentally different methods for
learning from data. As an illustration, let us revisit the thumbtack problem. Here, the
Bayesian “estimate” for the physical probability of heads is obtained in a manner that is
essentially the opposite of the classical approach.

Namely, in the classical approach,θ is fixed (albeit unknown), and we imagine all data
sets of sizeN thatmay begenerated by sampling from the binomial distribution determined
by θ . Each data setD will occur with some probabilityp(D | θ) and will produce an
estimateθ∗(D). To evaluate an estimator, we compute the expectation and variance of the
estimate with respect to all such data sets:

Ep(D | θ)(θ∗) =
∑

D

p(D | θ) θ∗(D)

Varp(D | θ)(θ∗) =
∑

D

p(D | θ) (θ∗(D)− Ep(D | θ)(θ∗))2
(14)

We then choose an estimator that somehow balances the bias (θ−Ep(D | θ)(θ∗)) and variance
of these estimates over the possible values forθ .7 Finally, we apply this estimator to the
data set that we actually observe. A commonly-used estimator is the maximum-likelihood
(ML) estimator, which selects the value ofθ that maximizes the likelihoodp(D | θ). For
binomial sampling, we have

θ∗ML (D) =
Nk∑r

k=1 Nk

In contrast, in the Bayesian approach,D is fixed, and we imagine all possible values ofθ

from which this data setcould have beengenerated. Givenθ , the “estimate” of the physical
probability of heads is justθ itself. Nonetheless, we are uncertain aboutθ , and so our final
estimate is the expectation ofθ with respect to our posterior beliefs about its value:

Ep(θ | D,ξ)(θ) =
∫
θ p(θ | D, ξ) dθ (15)

The expectations in Eqs. (14) and (15) are different and, in many cases, lead to different
“estimates”. One way to frame this difference is to say that the classical and Bayesian
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approaches have different definitions for what it means to be a good estimator. Both
solutions are “correct” in that they are self consistent. Unfortunately, both methods have
their drawbacks, which has lead to endless debates about the merit of each approach.
For example, Bayesians argue that it does not make sense to consider the expectations in
Eq. (14), because we only see a single data set. If we saw more than one data set, we
should combine them into one larger data set. In contrast, classical statisticians argue that
sufficiently accurate priors can not be assessed in many situations. The common view that
seems to be emerging is that one should use whatever method that is most sensible for the
task at hand. We share this view, although we also believe that the Bayesian approach has
been under used, especially in light of its advantages mentioned in the introduction (points
three and four). Consequently, in this paper, we concentrate on the Bayesian approach.

3. Bayesian networks

So far, we have considered only simple problems with one or a few variables. In real data-
mining problems, however, we are typically interested in looking for relationships among
a large number of variables. The Bayesian network is a representation suited to this task.
It is a graphical model that efficiently encodes the joint probability distribution (physical
or Bayesian) for a large set of variables. In this section, we define a Bayesian network and
show how one can be constructed from prior knowledge.

A Bayesian network for a set of variablesX = {X1, . . . , Xn} consists of (1) a network
structureS that encodes a set of conditional independence assertions about variables inX,
and (2) a setP of local probability distributions associated with each variable. Together,
these components define the joint probability distribution forX. The network structureS
is a directed acyclic graph. The nodes inS are in one-to-one correspondence with the
variablesX. We useXi to denote both the variable and its corresponding node, andPai to
denote the parents of nodeXi in Sas well as the variables corresponding to those parents.
The lack of possible arcs inS encode conditional independencies. In particular, given
structureS, the joint probability distribution forX is given by

p(x) =
n∏

i=1

p(xi | pai ) (16)

The local probability distributionsP are the distributions corresponding to the terms in the
product of Eq. (16). Consequently, the pair(S, P) encodes the joint distributionp(x).

The probabilities encoded by a Bayesian network may be Bayesian or physical. When
building Bayesian networks from prior knowledge alone, the probabilities will be Bayesian.
When learning these networks from data, the probabilities will be physical (and their values
may be uncertain). In subsequent sections, we describe how we can learn the structure
and probabilities of a Bayesian network from data. In the remainder of this section, we
explore the construction of Bayesian networks from prior knowledge. As we shall see in
Section 10, this procedure can be useful in learning Bayesian networks as well.

To illustrate the process of building a Bayesian network, consider the problem of detecting
credit-card fraud. We begin by determining the variables to model. One possible choice
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Figure 3. A Bayesian-network for detecting credit-card fraud. Arcs are drawn from cause to effect. The local
probability distribution(s) associated with a node are shown adjacent to the node. An asterisk is a shorthand for
“any state”.

of variables for our problem isFraud (F), Gas (G), Jewelry(J), Age (A), andSex(S),
representing whether or not the current purchase is fraudulent, whether or not there was a
gas purchase in the last 24 hours, whether or not there was a jewelry purchase in the last 24
hours, and the age and sex of the card holder, respectively. The states of these variables are
shown in figure 3. Of course, in a realistic problem, we would include many more variables.
Also, we could model the states of one or more of these variables at a finer level of detail.
For example, we could letAgebe a continuous variable.

This initial task is not always straightforward. As part of this task we must (1) correctly
identify the goals of modeling (e.g., prediction versus explanation versus exploration),
(2) identify many possible observations that may be relevant to the problem, (3) determine
what subset of those observations is worthwhile to model, and (4) organize the observations
into variables having mutually exclusive and collectively exhaustive states. Difficulties here
are not unique to modeling with Bayesian networks, but rather are common to most ap-
proaches. Although there are no clean solutions, some guidance is offered by decision
analysts (e.g., Howard and Matheson, 1983) and (when data are available) statisticians
(e.g., Tukey, 1977).

In the next phase of Bayesian-network construction, we build a directed acyclic graph
that encodes assertions of conditional independence. One approach for doing so is based
on the following observations. From the chain rule of probability, we have

p(x) =
n∏

i=1

p(xi | x1, . . . , xi−1) (17)



             
P1: RPS/ASH P2: RPS/ASH QC: RPS

Data Mining and Knowledge Discovery KL411-04-Heckerman February 26, 1997 18:6

90 HECKERMAN

Now, for every Xi , there will be some subset5i ⊆ {X1, . . . , Xi−1} such thatXi and
{X1, . . . , Xi−1}\5i are conditionally independent given5i . That is, for anyX,

p(xi | x1, . . . , xi−1) = p(xi | πi ) (18)

Combining Eqs. (17) and (18), we obtain

p(x) =
n∏

i=1

p(xi |πi ) (19)

Comparing Eqs. (16) and (19), we see that the variables sets(51, . . . ,5n) correspond to
the Bayesian-network parents(Pa1, . . . ,Pan), which in turn fully specify the arcs in the
network structureS.

Consequently, to determine the structure of a Bayesian network we (1) order the variables
somehow, and (2) determine the variables sets that satisfy Eq. (18) fori = 1, . . . ,n. In our
example, using the ordering(F, A, S,G, J), we have the conditional independencies

p(a | f ) = p(a)

p(s | f,a) = p(s)

p(g | f,a, s) = p(g | f )

p( j | f,a, s, g) = p( j | f,a, s) (20)

Thus, we obtain the structure shown in figure 3.
This approach has a serious drawback. If we choose the variable order carelessly, the

resulting network structure may fail to reveal many conditional independencies among the
variables. For example, if we construct a Bayesian network for the fraud problem using
the ordering(J,G, S, A, F), we obtain a fully connected network structure. Thus, in the
worst case, we have to exploren! variable orderings to find the best one. Fortunately,
there is another technique for constructing Bayesian networks that does not require an
ordering. The approach is based on two observations: (1) people can often readily assert
causal relationships among variables, and (2) causal relationships typically correspond to
assertions of conditional dependence. In particular, to construct a Bayesian network for a
given set of variables, we simply draw arcs from cause variables to their immediate effects.
In almost all cases, doing so results in a network structure that satisfies the definition Eq. (16).
For example, given the assertions thatFraud is a direct cause ofGas, andFraud, Age, and
Sexare direct causes ofJewelry, we obtain the network structure in figure 3. The causal
semantics of Bayesian networks are in large part responsible for the success of Bayesian
networks as a representation for expert systems (Heckerman et al., 1995a). In Section 13,
we will see how to learn causal relationships from data using these causal semantics.

In the final step of constructing a Bayesian network, we assess the local probability
distribution(s)p(xi | pai ). In our fraud example, where all variables are discrete, we assess
one distribution forXi for every configuration ofPai . Example distributions are shown in
figure 3.
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Note that, although we have described these construction steps as a simple sequence, they
are often intermingled in practice. For example, judgments of conditional independence
and/or cause and effect can influence problem formulation. Also, assessments of probability
can lead to changes in the network structure. Exercises that help one gain familiarity with
the practice of building Bayesian networks can be found in Jensen (1996).

4. Inference in a Bayesian network

Once we have constructed a Bayesian network (from prior knowledge, data, or a combina-
tion), we usually need to determine various probabilities of interest from the model. For
example, in our problem concerning fraud detection, we want to know the probability of
fraud given observations of the other variables. This probability is not stored directly in
the model, and hence needs to be computed. In general, the computation of a probability
of interest given a model is known asprobabilistic inference. In this section we describe
probabilistic inference in Bayesian networks.

Because a Bayesian network forX determines a joint probability distribution forX, we
can—in principle—use the Bayesian network to compute any probability of interest. For
example, from the Bayesian network in figure 3, the probability of fraud given observations
of the other variables can be computed as follows:

p( f |a, s, g, j ) = p( f,a, s, g, j )

p(a, s, g, j )
= p( f,a, s, g, j )∑

f ′ p( f ′,a, s, g, j )
(21)

For problems with many variables, however, this direct approach is not practical. Fortu-
nately, at least when all variables are discrete, we can exploit the conditional independencies
encoded in a Bayesian network to make this computation more efficient. In our example,
given the conditional independencies in Eq. (20), Eq. (21) becomes

p( f |a, s, g, j ) = p( f )p(a)p(s)p(g | f )p( j | f,a, s)∑
f ′ p( f ′)p(a)p(s)p(g | f ′)p( j | f ′,a, s)

= p( f )p(g | f )p( j | f,a, s)∑
f ′ p( f ′)p(g | f ′)p( j | f ′,a, s)

(22)

Several researchers have developed probabilistic inference algorithms for Bayesian net-
works with discrete variables that exploit conditional independence roughly as we have
described, although with different twists. For example, Howard and Matheson (1981),
Olmsted (1983), and Shachter (1988) developed an algorithm that reverses arcs in the net-
work structure until the answer to the given probabilistic query can be read directly from the
graph. In this algorithm, each arc reversal corresponds to an application of Bayes’ theorem.
Pearl (1986) developed a message-passing scheme that updates the probability distributions
for each node in a Bayesian network in response to observations of one or more variables.
Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), and Dawid (1992) created an
algorithm that first transforms the Bayesian network into a tree where each node in the tree



              
P1: RPS/ASH P2: RPS/ASH QC: RPS

Data Mining and Knowledge Discovery KL411-04-Heckerman February 26, 1997 18:6

92 HECKERMAN

corresponds to a subset of variables inX. The algorithm then exploits several mathemati-
cal properties of this tree to perform probabilistic inference. Most recently, D’Ambrosio
(1991) developed an inference algorithm that simplifies sums and products symbolically,
as in the transformation from Eq. (21) to (22). The most commonly used algorithm for
discrete variables is that of Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), and
Dawid (1992).

Methods for exact inference in Bayesian networks that encode multivariate-Gaussian or
Gaussian-mixture distributions have been developed by Shachter and Kenley (1989) and
Lauritzen (1992), respectively. These methods also use assertions of conditional indepen-
dence to simplify inference. Approximate methods for inference in Bayesian networks
with other distributions, such as the generalized linear-regression model, have also been
developed (Saul et al., 1996; Jaakkola and Jordan, 1996).

Although we use conditional independence to simplify probabilistic inference, exact in-
ference in an arbitrary Bayesian network for discrete variables is NP-hard (Cooper, 1990).
Even approximate inference (for example, Monte-Carlo methods) is NP-hard (Dagum and
Luby, 1994). The source of the difficulty lies in undirected cycles in the Bayesian-network
structure—cycles in the structure where we ignore the directionality of the arcs. (If we add
an arc fromAge to Gas in the network structure of figure 3, then we obtain a structure
with one undirected cycle:F-G-A-J-F .) When a Bayesian-network structure contains
many undirected cycles, inference is intractable. For many applications, however, struc-
tures are simple enough (or can be simplified sufficiently without sacrificing much ac-
curacy) so that inference is efficient. For those applications where generic inference
methods are impractical, researchers are developing techniques that are custom tailored
to particular network topologies (Heckerman 1989; Suermondt and Cooper, 1991; Saul
et al., 1996; Jaakkola and Jordan, 1996) or to particular inference queries (Ramamurthi and
Agogino, 1988; Shachter et al., 1990; Jensen and Andersen, 1990; Darwiche and Provan,
1995).

5. Learning probabilities in a Bayesian network

In the next several sections, we show how to refine the structure and local probability
distributions of a Bayesian network given data. The result is set of techniques for data
mining that combines prior knowledge with data to produce improved knowledge. In
this section, we consider the simplest version of this problem: using data to update the
probabilities of a given Bayesian network structure.

Recall that, in the thumbtack problem, we do not learn the probability of heads. Instead,
we update our posterior distribution for the variable that represents the physical probability
of heads. We follow the same approach for probabilities in a Bayesian network. In particular,
we assume—perhaps from causal knowledge about the problem—that the physical joint
probability distribution forX can be encoded in some network structureS. We write

p(x |θs, Sh) =
n∏

i=1

p(xi | pai ,θi , Sh) (23)
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whereθi is the vector of parameters for the distributionp(xi | pai ,θi , Sh), θs is the vector
of parameters(θ1, . . . ,θn), andSh denotes the event (or “hypothesis” in statistics nomen-
clature) that the physical joint probability distribution can be factored according toS.8 In
addition, we assume that we have a random sampleD = {x1, . . . , xN} from the physical
joint probability distribution ofX. We refer to an elementxl of D as acase. As in Section 2,
we encode our uncertainty about the parametersθs by defining a (vector-valued) variable
2s, and assessing a prior probability density functionp(θs | Sh). The problem of learning
probabilities in a Bayesian network can now be stated simply: Given a random sampleD,
compute the posterior distributionp(θs | D, Sh).

We refer to the distributionp(xi | pai ,θi , Sh), viewed as a function ofθi , as alocal
distribution function. Readers familiar with methods for supervised learning will recog-
nize that a local distribution function is nothing more than a probabilistic classification or
regression function. Thus, a Bayesian network can be viewed as a collection of probabilis-
tic classification/regression models, organized by conditional-independence relationships.
Examples of classification/regression models that produce probabilistic outputs include lin-
ear regression, generalized linear regression, probabilistic neural networks (e.g., MacKay,
1992a, 1992b), probabilistic decision trees (e.g., Buntine, 1993), kernel density estimation
methods (Book, 1994), and dictionary methods (Friedman, 1995). In principle, any of these
forms can be used to learn probabilities in a Bayesian network; and, in most cases, Bayesian
techniques for learning are available. Nonetheless, the most studied models include the un-
restricted multinomial distribution (e.g., Cooper and Herskovits, 1992), linear regression
with Gaussian noise (e.g., Buntine, 1994; Heckerman and Geiger, 1996), and generalized
linear regression (e.g., MacKay, 1992a, 1992b; Neal, 1993; and Saul et al., 1996).

In this tutorial, we illustrate the basic ideas for learning probabilities (and structure) using
the unrestricted multinomial distribution. In this case, each variableXi ∈ X is discrete,
having ri possible valuesx1

i , . . . , x
ri
i , and each local distribution function is collection

of multinomial distributions, one distribution for each configuration ofPai . Namely, we
assume

p
(
xk

i

∣∣ pa j
i ,θi , Sh

) = θi jk > 0 (24)

where pa1
i , . . . ,paqi

i (qi =
∏

Xi∈Pai
r i ) denote the configurations ofPai , and θi =

((θi jk )
ri
k=2)

qi

j=1 are the parameters. (The parameterθi j 1 is given by 1−∑ri
k=2 θi jk .) For

convenience, we define the vector of parameters

θi j = (θi j 2, . . . , θi jr i )

for all i and j . We use the term “unrestricted” to contrast this distribution with multinomial
distributions that are low-dimensional functions ofPai —for example, the generalized linear-
regression model.

Given this class of local distribution functions, we can compute the posterior distribution
p(θs | D, Sh) efficiently and in closed form under two assumptions. The first assumption
is that there are no missing data in the random sampleD. We say that the random sample
D is complete. The second assumption is that the parameter vectorsθi j are mutually
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independent9. That is,

p(θs | Sh) =
n∏

i=1

qi∏
j=1

p(θi j | Sh)

We refer to this assumption, which was introduced by Spiegelhalter and Lauritzen (1990),
asparameter independence.

Under the assumptions of complete data and parameter independence, the parameters
remain independent given a random sample:

p(θs | D, Sh) =
n∏

i=1

qi∏
j=1

p(θi j | D, Sh) (25)

Thus, we can update each vector of parametersθi j independently, just as in the one-variable
case. Assuming each vectorθi j has the prior distribution Dir(θi j |αi j 1, . . . , αi jr i ), we obtain
the posterior distribution

p(θi j |, D, Sh) = Dir
(
θi j | αi j 1+ Ni j 1, . . . , αi jr i + Ni jr i

)
(26)

whereNi jk is the number of cases inD in which Xi = xk
i andPai = pa j

i .
As in the thumbtack example, we can average over the possible configurations ofθs to

obtain predictions of interest. For example, let us computep(xN+1 | D, Sh), wherexN+1

is the next case to be seen afterD. Suppose that, in casexN+1, Xi = xk
i andPai = pa j

i ,
wherek and j depend oni . Thus,

p(xN+1 | D, Sh) = Ep(θs | D,Sh)

(
ri∏

i=1

θi jk

)

To compute this expectation, we first use the fact that the parameters remain independent
given D:

p(xN+1 | D, Sh) =
∫ n∏

i=1

θi jk p(θs | D, Sh) dθs =
n∏

i=1

∫
θi jk p(θi j | D, Sh) dθi j

Then, we use Eq. (12) to obtain

p(xN+1 | D, Sh) =
n∏

i=1

αi jk + Ni jk

αi j + Ni j
(27)

whereαi j =
∑ri

k=1 αi jk andNi j =
∑ri

k=1 Ni jk .
These computations are simple because the unrestricted multinomial distributions are in

the exponential family. Computations for linear regression with Gaussian noise are equally
straightforward (Buntine, 1994; Heckerman and Geiger, 1996).
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6. Methods for incomplete data

Let us now discuss methods for learning about parameters when the random sample is
incomplete (i.e., some variables in some cases are not observed). An important distinction
concerning missing data is whether the absence of an observation is dependent on the actual
states of the variables. For example, a missing datum in a drug study may indicate that
a patient became too sick—perhaps due to the side effects of the drug—to continue in
the study. In contrast, if a variable is hidden (i.e., never observed in any case), then the
absence of this data is independent of state. Although Bayesian methods and graphical
models are suited to the analysis of both situations, methods for handling missing data
where absence is independent of state are simpler than those where absence and state are
dependent. In this tutorial, we concentrate on the simpler situation only. Readers interested
in the more complicated case should see Rubin (1978), Rubins (1986), and Pearl (1995).

Continuing with our example using unrestricted multinomial distributions, suppose we
observe a single incomplete case. LetY ⊂ X andZ ⊂ X denote the observed and unob-
served variables in the case, respectively. Under the assumption of parameter independence,
we can compute the posterior distribution ofθi j for network structureSas follows:

p(θi j | y, Sh) =
∑

z

p(z | y, Sh) p(θi j | y, z, Sh)

= (
1− p

(
pa j

i | y, Sh
)){p(θi j | Sh)}

+
ri∑

k=1

p
(
xk

i , pa j
i | y, Sh

){
p
(
θi j | xk

i , pa j
i , Sh

)}
(28)

(See Spiegelhalter and Lauritzen, 1990, for a derivation.) Each term in curly brackets in
Eq. (28) is a Dirichlet distribution. Thus, unless bothXi and all the variables inPai are
observed in casey, the posterior distribution ofθi j will be a linear combination of Dirichlet
distributions—that is, a Dirichlet mixture with mixing coefficients(1− p(pa j

i | y, Sh)) and
p(xk

i , pa j
i | y, Sh), k = 1, . . . , ri .

When we observe a second incomplete case, some or all of the Dirichlet components in
Eq. (28) will again split into Dirichlet mixtures. As we continue to observe incomplete
cases, each missing value forZ, the posterior distribution forθi j will contain a number of
components that is exponential in the number of cases. In general, for any interesting set of
local distribution functions and priors, the exact computation of the posterior distribution
for θs will be intractable. Thus, we require an approximation for incomplete data.

6.1. Monte-Carlo methods

One class of approximations is based on Monte-Carlo or sampling methods. These approx-
imations can be extremely accurate, provided one is willing to wait long enough for the
computations to converge.

In this section, we discuss one of many Monte-Carlo methods known asGibbs sampling,
introduced by Geman and Geman (1984). Given variablesX = {X1, . . . , Xn} with some
joint distribution p(x), we can use a Gibbs sampler to approximate the expectation of
a function f (x) with respect top(x) as follows. First, we choose an initial state for
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each of the variables inX somehow (e.g., at random). Next, we pick some variableXi ,
unassign its current state, and compute its probability distribution given the states of the
othern−1 variables. Then, we sample a state forXi based on this probability distribution,
and computef (x). Finally, we iterate the previous two steps, keeping track of the average
value of f (x). In the limit, as the number of cases approach infinity, this average is equal to
Ep(x)( f (x)) provided two conditions are met. First, the Gibbs sampler must beirreducible:
The probability distributionp(x)must be such that we can eventually sample any possible
configuration ofX given any possible initial configuration ofX. For example, ifp(x)
contains no zero probabilities, then the Gibbs sampler will be irreducible. Second, each
Xi must be chosen infinitely often. In practice, an algorithm for deterministically rotating
through the variables is typically used. Introductions to Gibbs sampling and other Monte-
Carlo methods—including methods for initialization and a discussion of convergence—are
given by Neal (1993) and Madigan and York (1995).

To illustrate Gibbs sampling, let us approximate the probability densityp(θs | D, Sh) for
some particular configuration ofθs, given an incomplete data setD = {y1, . . . , yN} and a
Bayesian network for discrete variables with independent Dirichlet priors. To approximate
p(θs | D, Sh), we first initialize the states of the unobserved variables in each case somehow.
As a result, we have a complete random sampleDc. Second, we choose some variableXil

(variableXi in casel ) that is not observed in the original random sampleD, and reassign
its state according to the probability distribution

p(x′i l | Dc\xil , Sh) = p(x′i l , Dc\xil | Sh)∑
x′′i l

p(x′′i l , Dc\xil | Sh)

whereDc\xil denotes the data setDc with observationxil removed, and the sum in the
denominator runs over all states of variableXil . As we shall see in Section 7, the terms
in the numerator and denominator can be computed efficiently (see Eq. (35)). Third, we
repeat this reassignment for all unobserved variables inD, producing a new complete
random sampleD′c. Fourth, we compute the posterior densityp(θs | D′c, Sh) as described
in Eqs. (25) and (26). Finally, we iterate the previous three steps, and use the average of
p(θs | D′c, Sh) as our approximation.

6.2. The Gaussian approximation

Monte-Carlo methods yield accurate results, but they are often intractable—for example,
when the sample size is large. Another approximation that is more efficient than Monte-
Carlo methods and often accurate for relatively large samples is theGaussian approximation
(e.g., Kass et al., 1988; Kass and Raftery, 1995).

The idea behind this approximation is that, for large amounts of data,p(θs | D, Sh) ∝
p(D |θs, Sh)· p(θs | Sh) can often be approximated as a multivariate-Gaussian distribution.
In particular, let

g(θs) ≡ log(p(D |θs, Sh) · p(θs | Sh)) (29)

Also, defineθ̃s to be the configuration ofθs that maximizesg(θs). This configuration also
maximizesp(θs | D, Sh), and is known as themaximum a posteriori(MAP) configuration
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of θs. Expandingg(θs) about theθ̃s, we obtain

g(θs) ≈ g(θ̃s)+−1

2
(θs − θ̃s)A(θs − θ̃s)

t (30)

where(θs− θ̃s)
t is the transpose of row vector(θs− θ̃s), andA is the negative Hessian of

g(θs) evaluated at̃θs. Raisingg(θs) to the power ofe and using Eq. (29), we obtain

p(θs | D, Sh) ∝ p(D |θs, Sh) p(θs | Sh)

≈ p(D | θ̃s, Sh) p(θ̃s | Sh) exp

{
−1

2
(θs − θ̃s)A(θs − θ̃s)

t

}
(31)

Hence, this approximation forp(θs | D, Sh) is approximately Gaussian.
To compute the Gaussian approximation, we must computeθ̃s as well as the negative

Hessian ofg(θs) evaluated at̃θs. In the following section, we discuss methods for finding
θ̃s. Meng and Rubin (1991) describe a numerical technique for computing the second
derivatives. Raftery (1995) shows how to approximate the Hessian using likelihood-ratio
tests that are available in many statistical packages. Thiesson (1995) demonstrates that,
for unrestricted multinomial distributions, the second derivatives can be computed using
Bayesian-network inference.

6.3. The MAP and ML approximations and the EM algorithm

As the sample size of the data increases, the Gaussian peak will become sharper, tending to a
delta function at the MAP configuratioñθs. In this limit, we do not need to compute averages
or expectations. Instead, we simply make predictions based on the MAP configuration.

A further approximation is based on the observation that, as the sample size increases,
the effect of the priorp(θs | Sh) diminishes. Thus, we can approximateθ̃s by the maximum
maximum likelihood(ML) configuration ofθs:

θ̂s = arg max
θs

{p(D |θs, Sh)}

One class of techniques for finding a ML or MAP is gradient-based optimization. For
example, we can use gradient ascent, where we follow the derivatives ofg(θs) or the like-
lihood p(D |θs, Sh) to a local maximum. Russell et al. (1995) and Thiesson (1995) show
how to compute the derivatives of the likelihood for a Bayesian network with unrestricted
multinomial distributions. Buntine (1994) discusses the more general case where the likeli-
hood function comes from the exponential family. Of course, these gradient-based methods
find only local maxima.

Another technique for finding a local ML or MAP is the expectation-maximization (EM)
algorithm (Dempster et al., 1977). To find a local MAP or ML, we begin by assigning
a configuration toθs somehow (e.g., at random). Next, we compute theexpectedsuffi-
cient statistics for a complete data set, where expectation is taken with respect to the joint
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distribution forX conditioned on the assigned configuration ofθs and the known dataD.
In our discrete example, we compute

Ep(x | D,θs,Sh)(Ni jk ) =
N∑

l=1

p
(
xk

i , pa j
i | yl ,θs, Sh

)
(32)

whereyl is the possibly incompletel th case inD. WhenXi and all the variables inPai are
observed in casexl , the term for this case requires a trivial computation: it is either zero
or one. Otherwise, we can use any Bayesian network inference algorithm to evaluate the
term. This computation is called theexpectation stepof the EM algorithm.

Next, we use the expected sufficient statistics as if they were actual sufficient statistics
from a complete random sampleDc. If we are doing an ML calculation, then we determine
the configuration ofθs that maximizesp(Dc |θs, Sh). In our discrete example, we have

θi jk = Ep(x | D,θs,Sh)(Ni jk )∑ri
k=1 Ep(x | D,θs,Sh)(Ni jk )

If we are doing a MAP calculation, then we determine the configuration ofθs that maximizes
p(θs | Dc, Sh). In our discrete example, we have10

θi jk = αi jk + Ep(x | D,θs,Sh)(Ni jk )∑ri
k=1(αi jk + Ep(x | D,θs,Sh)(Ni jk ))

This assignment is called themaximization stepof the EM algorithm. Dempster et al.
(1977) showed that, under certain regularity conditions, iteration of the expectation and
maximization steps will converge to a local maximum. The EM algorithm is typically
applied when sufficient statistics exist (i.e., when local distribution functions are in the ex-
ponential family), although generalizations of the EM have been used for more complicated
local distributions (see, e.g., Saul et al. 1996).

7. Learning parameters and structure

Now we consider the problem of learning about both the structure and probabilities of a
Bayesian network given data.

Assuming we think structure can be improved, we must be uncertain about the net-
work structure that encodes the physical joint probability distribution forX. Following the
Bayesian approach, we encode this uncertainty by defining a (discrete) variable whose states
correspond to the possible network-structure hypothesesSh, and assessing the probabilities
p(Sh). Then, given a random sampleD from the physical probability distribution forX, we
compute the posterior distributionp(Sh | D) and the posterior distributionsp(θs | D, Sh),
and use these distributions in turn to compute expectations of interest. For example, to
predict the next case after seeingD, we compute

p(xN+1 | D) =
∑
Sh

p(Sh | D)
∫

p(xN+1 |θs, Sh) p(θs | D, Sh) dθs (33)
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In performing the sum, we assume that the network-structure hypotheses are mutually
exclusive. We return to this point in Section 9.

The computation ofp(θs | D, Sh) is as we have described in the previous two sections.
The computation ofp(Sh | D) is also straightforward, at least in principle. From Bayes’
theorem, we have

p(Sh | D) = p(Sh) p(D | Sh)/p(D) (34)

where p(D) is a normalization constant that does not depend upon structure. Thus, to
determine the posterior distribution for network structures, we need to compute the marginal
likelihood of the data (p(D | Sh)) for each possible structure.

We discuss the computation of marginal likelihoods in detail in Section 9. As an in-
troduction, consider our example with unrestricted multinomial distributions, parameter
independence, Dirichlet priors, and complete data. As we have discussed, when there are
no missing data, each parameter vectorθi j is updated independently. In effect, we have
a separate multi-sided thumbtack problem for everyi and j . Consequently, the marginal
likelihood of the data is the just the product of the marginal likelihoods for eachi − j pair
(given by Eq. (13)):

p(D | Sh) =
n∏

i=1

qi∏
j=1

0(αi j )

0(αi j + Ni j )
·

ri∏
k=1

0(αi jk + Ni jk )

0(αi jk )
(35)

This formula was first derived by Cooper and Herskovits (1992).
Unfortunately, the full Bayesian approach that we have described is often impractical.

One important computation bottleneck is produced by the average over models in Eq. (33).
Given a problem described byn variables, the number of possible structure hypotheses is
more than exponential inn. Consequently, in situations where the user can not exclude
almost all of these hypotheses, the approach is intractable.

Statisticians, who have been confronted by this problem for decades in the context of
other types of models, use two approaches to address this problem:model selectionand
selective model averaging. The former approach is to select a “good” model (i.e., structure
hypothesis) from among all possible models, and use it as if it were the correct model. The
latter approach is to select a manageable number of good models from among all possible
models and pretend that these models are exhaustive. These related approaches raise several
important questions. In particular, do these approaches yield accurate results when applied
to Bayesian-network structures? If so, how do we search for good models? And how do
we decide whether or not a model is “good”?

The questions of accuracy and search are difficult to answer in theory. Nonetheless,
several researchers have shown experimentally that the selection of a single good hypoth-
esis using greedy search often yields accurate predictions (Cooper and Herskovits, 1992;
Aliferis and Cooper, 1994; Heckerman et al., 1995b; Spirtes and Meek, 1995; Chickering,
1996), and that model averaging using Monte-Carlo methods can sometimes be efficient and
yield even better predictions (Madigan et al., 1996). These results are somewhat surprising,
and are largely responsible for the great deal of recent interest in learning with Bayesian
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networks. In Sections 8 through 10, we consider different definitions of what is means for
a model to be “good”, and discuss the computations entailed by some of these definitions.

We note that model averaging and model selection lead to models that generalize well to
newdata. That is, these techniques help us to avoid the overfitting of data. As is suggested
by Eq. (33), Bayesian methods for model averaging and model selection are efficient in the
sense that all cases inD can be used to both smooth and train the model. As we shall see in
the following two sections, this advantage holds true for the Bayesian approach in general.

8. Criteria for model selection

Most of the literature on learning with Bayesian networks is concerned with model selection.
In these approaches, somecriterion is used to measure the degree to which a network
structure (equivalence class) fits the prior knowledge and data. A search algorithm is then
used to find an equivalence class that receives a high score by this criterion. Selective
model averaging is more complex, because it is often advantageous to identify network
structures that are significantly different. In many cases, a single criterion is unlikely to
identify such complementary network structures. In this section, we discuss criteria for the
simpler problem of model selection. For a discussion of selective model averaging (see
Madigan and Raferty (1994)).

8.1. Relative posterior probability

A criterion that is often used for model selection is the log of the relative posterior probability
log p(D, Sh) = log p(Sh) + log p(D | Sh).11 The logarithm is used for numerical conve-
nience. This criterion has two components: the log prior and the log marginal likelihood.
In Section 9, we examine the computation of the log marginal likelihood. In Section 10.2,
we discuss the assessment of network-structure priors. Note that our comments about these
terms are also relevant to the full Bayesian approach.

The log marginal likelihood has the following interesting interpretation described by
Dawid (1984). From the chain rule of probability, we have

log p(D | Sh) =
N∑

l=1

log p(xl | x1, . . . , xl−1, Sh) (36)

The termp(xl | x1, . . . , xl−1, Sh) is the prediction forxl made by modelSh after averaging
over its parameters. The log of this term can be thought of as the utility or reward for this
prediction under the utility function logp(x).12 Thus, a model with the highest log marginal
likelihood (or the highest posterior probability, assuming equal priors on structure) is also
a model that is the best sequential predictor of the dataD under the log utility function.

Dawid (1984) also notes the relationship between this criterion and cross validation.
When using one form of cross validation, known asleave-one-outcross validation, we first
train a model on all but one of the cases in the random sample—say,Vl = {x1, . . . , xl−1,

xl+1, . . . , xN}. Then, we predict the omitted case, and reward this prediction under some
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utility function. Finally, we repeat this procedure for every case in the random sample,
and sum the rewards for each prediction. If the prediction is probabilistic and the utility
function is logp(x), we obtain the cross-validation criterion

CV(Sh, D) =
N∑

l=1

log p(xl |Vl , Sh) (37)

which is similar to Eq. (36). One problem with this criterion is that training and test cases
are interchanged. For example, when we computep(x1 |V1, Sh) in Eq. (37), we usex2 for
training andx1 for testing. Whereas, when we computep(x2 |V2, Sh), we usex1 for training
andx2 for testing. Such interchanges can lead to the selection of a model that over fits the
data (Dawid, 1984). Various approaches for attenuating this problem have been described,
but we see from Eq. (36) that the log-marginal-likelihood criterion avoids the problem
altogether. Namely, when using this criterion, we never interchange training and test cases.

8.2. Local criteria

Consider the problem of diagnosing an ailment given the observation of a set of findings.
Suppose that the set of ailments under consideration are mutually exclusive and collectively
exhaustive, so that we may represent these ailments using a single variableA. A possible
Bayesian network for this classification problem is shown in figure 4.

The posterior-probability criterion isglobal in the sense that it is equally sensitive to all
possible dependencies. In the diagnosis problem, the posterior-probability criterion is just
as sensitive to dependencies among the finding variables as it is to dependencies between
ailment and findings. Assuming that we observe all (or perhaps all but a few) of the findings
in D, a more reasonable criterion would belocal in the sense that it ignores dependencies
among findings and is sensitive only to the dependencies among the ailment and findings.
This observation applies to all classification and regression problems with complete data.

One such local criterion, suggested by Spiegelhalter et al. (1993), is a variation on the
sequential log-marginal-likelihood criterion:

LC(Sh, D) =
N∑

l=1

log p(al |Fl , Dl , Sh) (38)

Figure 4. A Bayesian-network structure for medical diagnosis.
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whereal andFl denote the observation of the ailmentA and findingsF in the l th case,
respectively. In other words, to compute thel th term in the product, we train our model
S with the firstl − 1 cases, and then determine how well it predicts the ailment given the
findings in thel th case. We can view this criterion, like the log-marginal-likelihood, as a
form of cross validation where training and test cases are never interchanged.

The log utility function has interesting theoretical properties, but it is sometimes inac-
curate for real-world problems. In general, an appropriate reward or utility function will
depend on the decision-making problem or problems to which the probabilistic models are
applied. Howard and Matheson (1983) have collected a series of articles describing how
to construct utility models for specific decision problems. Once we construct such utility
models, we can use suitably modified forms of Eq. (38) for model selection.

9. Computation of the marginal likelihood

As mentioned, an often-used criterion for model selection is the log relative posterior
probability logp(D, Sh) = log p(Sh) + log p(D | Sh). In this section, we discuss the
computation of the second component of this criterion: the log marginal likelihood.

Given (1) local distribution functions in the exponential family, (2) mutual independence
of the parametersθi , (3) conjugate priors for these parameters, and (4) complete data, the
log marginal likelihood can be computed efficiently and in closed form. Equation (35)
is an example for unrestricted multinomial distributions. Buntine (1994) and Heckerman
and Geiger (1996) discuss the computation for other local distribution functions. Here, we
concentrate on approximations for incomplete data.

The Monte-Carlo and Gaussian approximations for learning about parameters that we
discussed in Section 6 are also useful for computing the marginal likelihood given incom-
plete data. One Monte-Carlo approach, described by Chib (1995) and Raftery (1996), uses
Bayes’ theorem:

p(D | Sh) = p(θs | Sh) p(D |θs, Sh)

p(θs | D, Sh)
(39)

For any configuration ofθs, the prior term in the numerator can be evaluated directly. In
addition, the likelihood term in the numerator can be computed using Bayesian-network
inference. Finally, the posterior term in the denominator can be computed using Gibbs
sampling, as we described in Section 6.1. Other, more sophisticated Monte-Carlo methods
are described by DiCiccio et al. (1995).

As we have discussed, Monte-Carlo methods are accurate but computationally inefficient,
especially for large databases. In contrast, methods based on the Gaussian approximation
are more efficient, and can be as accurate as Monte-Carlo methods on large data sets.

Recall that, for large amounts of data,p(D |θs, Sh)·p(θs | Sh) can often be approximated
as a multivariate-Gaussian distribution. Consequently,

p(D | Sh) =
∫

p(D |θs, Sh) p(θs | Sh) dθs (40)
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can be evaluated in closed form. In particular, substituting Eq. (31) into Eq. (40), integrating,
and taking the logarithm of the result, we obtain the approximation:

log p(D | Sh) ≈ log p(D | θ̃s, Sh) + log p(θ̃s | Sh) + d

2
log(2π)− 1

2
log |A| (41)

whered is the dimension ofg(θs). For a Bayesian network with unrestricted multinomial
distributions, this dimension is typically given by

∏n
i=1 qi (ri − 1). Sometimes, when there

are hidden variables, this dimension is lower. See Geiger et al. (1996) for a discussion of
this point.

This approximation technique for integration is known asLaplace’s method, and we refer
to Eq. (41) as theLaplace approximation. Kass et al. (1988) have shown that, under certain
regularity conditions, the relative error of this approximation isO(1/N), whereN is the
number of cases inD. Thus, the Laplace approximation can be extremely accurate. For
more detailed discussions of this approximation, see—for example—Kass et al. (1988) and
Kass and Raftery (1995).

Although Laplace’s approximation is efficient relative to Monte-Carlo approaches, the
computation of|A| is nevertheless intensive for large-dimension models. One simplifica-
tion is to approximate|A| using only the diagonal elements of the HessianA. Although in
so doing, we incorrectly impose independencies among the parameters, researchers have
shown that the approximation can be accurate in some circumstances (see, e.g., Becker
and Le Cun, 1989, and Chickering and Heckerman, 1996). Another efficient variant of
Laplace’s approximation is described by Cheeseman and Stutz (1995), who use the approx-
imation in the AutoClass program for data clustering (see also Chickering and Heckerman,
1996.)

We obtain a very efficient (but less accurate) approximation by retaining only those terms
in Eq. (41) that increase withN: log p(D | θ̃s, Sh), which increases linearly withN, and
log |A|, which increases asd log N. Also, for largeN, θ̃s can be approximated by the ML
configuration ofθs. Thus, we obtain

log p(D | Sh) ≈ log p(D | θ̂s, Sh) − d

2
log N (42)

This approximation is called theBayesian information criterion(BIC), and was first derived
by Schwarz (1978).

The BIC approximation is interesting in several respects. First, it does not depend on the
prior. Consequently, we can use the approximation without assessing a prior13. Second, the
approximation is quite intuitive. Namely, it contains a term measuring how well the param-
eterized model predicts the data (logp(D | θ̂s, Sh)) and a term that punishes the complexity
of the model (d/2 logN). Third, the BIC approximation is exactly minus the Minimum
Description Length (MDL) criterion described by Rissanen (1987). Thus, recalling the
discussion in Section 9, we see that the marginal likelihood provides a connection between
cross validation and MDL.
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10. Priors

To compute the relative posterior probability of a network structure, we must assess the
structure priorp(Sh) and the parameter priorsp(θs | Sh) (unless we are using large-sample
approximations such as BIC/MDL). The parameter priorsp(θs | Sh) are also required for
the alternative scoring functions discussed in Section 8. Unfortunately, when many network
structures are possible, these assessments will be intractable. Nonetheless, under certain
assumptions, we can derive the structure and parameter priors for many network structures
from a manageable number of direct assessments. Several authors have discussed such
assumptions and corresponding methods for deriving priors (Cooper and Herskovits, 1991,
1992; Buntine, 1991; Spiegelhalter et al., 1993; Heckerman et al., 1995b; Heckerman and
Geiger, 1996). In this section, we examine some of these approaches.

10.1. Priors on network parameters

First, let us consider the assessment of priors for the parameters of network structures.
We consider the approach of Heckerman et al. (1995b) who address the case where the
local distribution functions are unrestricted multinomial distributions and the assumption
of parameter independence holds.

Their approach is based on two key concepts: independence equivalence and distribution
equivalence. We say that two Bayesian-network structures forX areindependence equiva-
lent if they represent the same set of conditional-independence assertions forX (Verma and
Pearl, 1990). For example, givenX = {X,Y, Z}, the network structuresX → Y → Z,
X← Y→ Z, andX← Y← Z represent only the independence assertion thatX andZ are
conditionally independent givenY. Consequently, these network structures are equivalent.
As another example, acomplete network structureis one that has no missing edge—that is,
it encodes no assertion of conditional independence. WhenX containsn variables, there are
n! possible complete network structures: one network structure for each possible ordering
of the variables. All complete network structures forp(x) are independence equivalent. In
general, two network structures are independence equivalent if and only if they have the
same structure ignoring arc directions and the same v-structures (Verma and Pearl, 1990).
A v-structureis an ordered tuple(X,Y, Z) such that there is an arc fromX to Y and from
Z to Y, but no arc betweenX andZ.

The concept of distribution equivalence is closely related to that of independence equiva-
lence. Suppose that all Bayesian networks forX under consideration have local distribution
functions in the familyF . This is not a restriction, per se, becauseF can be a large family.
We say that two Bayesian-network structuresS1 andS2 for X aredistribution equivalent
with respect to(wrt)F if they represent the same joint probability distributions forX—that
is, if, for everyθs1, there exists aθs2 such thatp(x |θs1, Sh

1) = p(x |θs2, Sh
2), and vice

versa.
Distribution equivalence wrt someF implies independence equivalence, but the converse

does not hold. For example, whenF is the family of generalized linear-regression models,
the complete network structures forn ≥ 3 variables do not represent the same sets of
distributions. Nonetheless, there are familiesF—for example, unrestricted multinomial



              
P1: RPS/ASH P2: RPS/ASH QC: RPS

Data Mining and Knowledge Discovery KL411-04-Heckerman February 26, 1997 18:6

BAYESIAN NETWORKS FOR DATA MINING 105

distributions and linear-regression models with Gaussian noise—where independence equi-
valence implies distribution equivalence wrtF (Heckerman and Geiger, 1996).

The notion of distribution equivalence is important, because if two network structures
S1 andS2 are distribution equivalent wrt to a givenF , then the hypotheses associated with
these two structures are identical—that is,Sh

1 = Sh
2 . Thus, for example, ifS1 andS2 are

distribution equivalent, then their probabilities must be equal in any state of information.
Heckerman et al. (1995b) call this propertyhypothesis equivalence.

In light of this property, we should associate each hypothesis with an equivalence class
of structures rather than a single network structure, and our methods for learning network
structure should actually be interpreted as methods for learning equivalence classes of
network structures (although, for the sake of brevity, we often blur this distinction). Thus,
for example, the sum over network-structure hypotheses in Eq. (33) should be replaced
with a sum over equivalence-class hypotheses. An efficient algorithm for identifying the
equivalence class of a given network structure can be found in Chickering (1995).

We note that hypothesis equivalence holds provided we interpret Bayesian-network struc-
ture simply as a representation of conditional independence. Nonetheless, stronger defini-
tions of Bayesian networks exist where arcs have a causal interpretation (see Section 13).
Heckerman et al. (1995b) and Heckerman (1995) argue that, although it is unreasonable
to assume hypothesis equivalence when working with causal Bayesian networks, it is often
reasonable to adopt a weaker assumption oflikelihood equivalence,which says that the
observations in a database can not help to discriminate two equivalent network structures.

Now let us return to the main issue of this section: the derivation of priors from a man-
ageable number of assessments. Geiger and Heckerman (1995) show that the assumptions
of parameter independence and likelihood equivalence imply that the parameters for any
completenetwork structureSc must have a Dirichlet distribution with constraints on the
hyperparameters given by

αi jk = α p
(
xk

i , pa j
i

∣∣ Sh
c

)
(43)

whereα is the user’s equivalent sample size14, and p(xk
i , pa j

i | Sh
c ) is computed from the

user’s joint probability distributionp(x | Sh
c ). This result is rather remarkable, as the two

assumptions leading to the constrained Dirichlet solution are qualitative.
To determine the priors for parameters ofincompletenetwork structures, Heckerman

et al. (1995b) use the assumption ofparameter modularity, which says that ifXi has the
same parents in network structuresS1 andS2, then

p
(
θi j

∣∣ Sh
1

) = p
(
θi j

∣∣ Sh
2

)
for j = 1, . . . ,qi . They call this property parameter modularity, because it says that the
distributions for parametersθi j depend only on the structure of the network that is local to
variableXi —namely,Xi and its parents.

Given the assumptions of parameter modularity and parameter independence, it is a
simple matter to construct priors for the parameters of an arbitrary network structure given
the priors on complete network structures. In particular, given parameter independence, we
construct the priors for the parameters of each node separately. Furthermore, if nodeXi has
parentsPai in the given network structure, we identify a complete network structure where



          
P1: RPS/ASH P2: RPS/ASH QC: RPS

Data Mining and Knowledge Discovery KL411-04-Heckerman February 26, 1997 18:6

106 HECKERMAN

Xi has these parents, and use Eq. (43) and parameter modularity to determine the priors
for this node. The result is that all termsαi jk for all network structures are determined
by Eq. (43). Thus, from the assessmentsα and p(x | Sh

c ), we can derive the parameter
priors for all possible network structures. Combining Eq. (43) with Eq. (35), we obtain a
model-selection criterion that assigns equal marginal likelihoods to independence equivalent
network structures.

We can assessp(x | Sh
c ) by constructing a Bayesian network, called aprior network, that

encodes this joint distribution. Heckerman et al. (1995b) discuss the construction of this
network.

10.2. Priors on structures

Now, let us consider the assessment of priors on network-structure hypotheses. Note that the
alternative criteria described in Section 8 can incorporate prior biases on network-structure
hypotheses. Methods similar to those discussed in this section can be used to assess such
biases.

The simplest approach for assigning priors to network-structure hypotheses is to assume
that every hypothesis is equally likely. Of course, this assumption is typically inaccurate
and used only for the sake of convenience. A simple refinement of this approach is to ask
the user to exclude various hypotheses (perhaps based on judgments of of cause and effect),
and then impose a uniform prior on the remaining hypotheses. We illustrate this approach
in Section 10.3.

Buntine (1991) describes a set of assumptions that leads to a richer yet efficient approach
for assigning priors. The first assumption is that the variables can be ordered (e.g., through
a knowledge of time precedence). The second assumption is that the presence or absence of
possible arcs are mutually independent. Given these assumptions,n(n− 1)/2 probability
assessments (one for each possible arc in an ordering) determines the prior probability of
every possible network-structure hypothesis. One extension to this approach is to allow for
multiple possible orderings. One simplification is to assume that the probability that an arc
is absent or present is independent of the specific arc in question. In this case, only one
probability assessment is required.

An alternative approach, described by Heckerman et al. (1995b) uses a prior network.
The basic idea is to penalize the prior probability of any structure according to some mea-
sure of deviation between that structure and the prior network. Heckerman et al. (1995b)
suggest one reasonable measure of deviation.

Madigan et al. (1995) give yet another approach that makes use of imaginary data from a
domain expert. In their approach, a computer program helps the user create a hypothetical
set of complete data. Then, using techniques such as those in Section 7, they compute
the posterior probabilities of network-structure hypotheses given this data, assuming the
prior probabilities of hypotheses are uniform. Finally, they use these posterior probabilities
as priors for the analysis of the real data.

10.3. A simple example

Before we move on to other issues, let us step back and look at our overall approach. In
a nutshell, we can construct both structure and parameter priors by constructing a prior
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Table 1. An imagined database for the fraud problem.

Case Fraud Gas Jewelry Age Sex

1 No No No 30–50 Female

2 No No No 30–50 Male

3 Yes Yes Yes >50 Male

4 No No No 30–50 Male

5 No Yes No <30 Female

6 No No No <30 Female

7 No No No >50 Male

8 No No Yes 30–50 Female

9 No Yes No <30 Male

10 No No No <30 Female

network along with additional assessments such as an equivalent sample size and causal
constraints. We then use either Bayesian model selection, selective model averaging, or
full model averaging to obtain one or more networks for prediction and/or explanation. In
effect, we have a procedure for using data to improve the structure and probabilities of an
initial Bayesian network.

Here, we present a simple artificial example to illustrate this process. Consider again the
problem of fraud detection from Section 3. Suppose we given the databaseD in Table 1, and
we want to predict the next case—that is, computep(xN+1 | D). Let us assert that only two
network-structure hypotheses have appreciable probability: the hypothesis corresponding
to the network structure in figure 3 (S1), and the hypothesis corresponding to the same
structure with an arc added fromAgeto Gas(S2). Furthermore, let us assert that these two
hypotheses are equally likely—that is,p(Sh

1) = p(Sh
2) = 0.5. In addition, let us use the

parameter priors given by Eq. (43), whereα = 10 andp(x | Sh
c ) is given by the prior network

in figure 3. Using Eqs. (34) and (35), we obtainp(Sh
1 | D) = 0.26 andp(Sh

2 | D) = 0.74.
Because we have only two models to consider, we can model average according to Eq. (33):

p(xN+1 | D) = 0.26 p
(
xN+1 | D, Sh

1

)+ 0.74 p
(
xN+1 | D, Sh

2

)
wherep(xN+1 | D, Sh) is given by Eq. (27). (We don’t display these probability distributions
for lack of space.) If we had to choose one model, we would chooseS2, assuming the
posterior-probability criterion is appropriate. Note that the data favors the presence of the
arc fromAgeto Gasby a factor of three. This is not surprising, because in the two cases
in the database where fraud is absent and gas was purchased recently, the card holder was
less than 30 years old.

11. Bayesian networks for supervised learning

As we discussed in Section 5, the local distribution functionsp(xi | pai ,θi , Sh) are essen-
tially classification/regression models. Therefore, if we are doing supervised learning where
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the explanatory (input) variables cause the outcome (target) variable and data is complete,
then the Bayesian-network and classification/regression approaches are identical.

When data is complete but input/target variables do not have a simple cause/effect rela-
tionship, tradeoffs emerge between the Bayesian-network approach and other methods. For
example, consider the classification problem in figure 4. Here, the Bayesian network en-
codes dependencies between findings and ailments as well as among the findings, whereas
another classification model such as a decision tree encodes only the relationships between
findings and ailment. Thus, the decision tree may produce more accurate classifications,
because it can encode the necessary relationships with fewer parameters. Nonetheless, the
use of local criteria for Bayesian-network model selection mitigates this advantage. Fur-
thermore, the Bayesian network provides a more natural representation in which to encode
prior knowledge, thus giving this model a possible advantage for sufficiently small sample
sizes. Another argument, based on bias-variance analysis, suggests that neither approach
will dramatically outperform the other (Friedman, 1996).

Singh and Provan (1995) compare the classification accuracy of Bayesian networks and
decision trees using complete data sets from the University of California, Irvine Repository
of Machine Learning databases. Specifically, they compare C4.5 with an algorithm that
learns the structure and probabilities of a Bayesian network using a variation of the Bayesian
methods we have described. The latter algorithm includes a model-selection phase that dis-
cards some input variables. They show that, overall, Bayesian networks and decisions trees
have about the same classification error. These results support the argument of Friedman
(1996).

When the input variables cause the target variable and data is incomplete, the depen-
dencies between input variables becomes important, as we discussed in the introduction.
Bayesian networks provide a natural framework for learning about and encoding these de-
pendencies. Unfortunately, no studies have been done comparing these approaches with
other methods for handling missing data.

12. Bayesian networks for unsupervised learning

The techniques described in this paper can be used for unsupervised learning. A simple
example is the AutoClass program of Cheeseman and Stutz (1995), which performs data
clustering. The idea behind AutoClass is that there is a single hidden (i.e., never observed)
variable that causes the observations. This hidden variable is discrete, and its possible states
correspond to the underlying classes in the data. Thus, AutoClass can be described by a
Bayesian network such as the one in figure 5. For reasons of computational efficiency,
Cheeseman and Stutz (1995) assume that the discrete variables (e.g.,D1, D2, D3 in the
figure) and user-defined sets of continuous variables (e.g.,{C1,C2,C3} and{C4,C5}) are
mutually independent givenH . Given a data setD, AutoClass searches over variants of this
model (including the number of states of the hidden variable) and selects a variant whose
(approximate) posterior probability is a local maximum.

AutoClass is an example where the user presupposes the existence of a hidden variable.
In other situations, we may be unsure about the presence of a hidden variable. In such
cases, we can score models with and without hidden variables to reduce our uncertainty.
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Figure 5. A Bayesian-network structure for AutoClass. The variableH is hidden. Its possible states correspond
to the underlying classes in the data.

We illustrate this approach on a real-world case study in Section 14. Alternatively, we may
have little idea about what hidden variables to model. Martin and VanLehn (1995) suggest
an approach for identifying possible hidden variables in such situations.

Their approach is based on the observation that if a set of variables are mutually depen-
dent, then a simple explanation is that these variables have a single hidden common cause
rendering them mutually independent. Thus, to identify possible hidden variables, we first
apply some learning technique to select a model containing no hidden variables. Then, we
look for sets of mutually dependent variables in this learned model. For each such set of
variables (and combinations thereof), we create a new model containing a hidden variable
that renders that set of variables conditionally independent. We then score the new models,
possibly finding one better than the original. For example, the model in figure 6(a) has two
sets of mutually dependent variables. Figure 6(b) shows another model containing hidden
variables suggested by this model.

13. Learning causal relationships

As we have mentioned, the causal semantics of a Bayesian network provide a means by
which we can learn causal relationships. In this section, we examine these semantics, and
provide a basic discussion on how causal relationships can be learned. We note that these
methods are new and controversial. For critical discussions on both sides of the issue, see
Spirtes et al. (1993), Pearl (1995), and Humphreys and Freedman (1995).

For purposes of illustration, suppose we are marketing analysts who want to know whether
or not we should increase, decrease, or leave alone the exposure of a particular advertisement
in order to maximize our profit from the sales of a product. Let variablesAd(A) andBuy(B)
represent whether or not an individual has seen the advertisement and has purchased the
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(a) (b)

Figure 6. (a) A Bayesian-network structure for observed variables. (b) A Bayesian-network structure with hidden
variables (shaded) suggested by the network structure in (a).

product, respectively. In one component of our analysis, we would like to learn the physical
probability thatB = truegiven that weforce Ato be true, and the physical probability that
B = true given that we forceA to be false15. We denote these probabilitiesp(b | â) and
p(b | ˆ̄a), respectively. One method that we can use to learn these probabilities is to perform a
randomized experiment: select two similar populations at random, forceA to be true in one
population and false in the other, and observeB. This method is conceptually simple, but it
may be difficult or expensive to find two similar populations that are suitable for the study.

An alternative method follows from causal knowledge. In particular, supposeAcausesB.
Then, whether we forceA to be true or simply observe thatA is true in the current population,
the advertisement should have the same causal influence on the individual’s purchase.
Consequently,p(b | â) = p(b |a), wherep(b |a) is the physical probability thatB = true
given that we observeA = true in the current population. Similarly,p(b | ˆ̄a) = p(b | ā).
In contrast, ifB causesA, forcing A to some state should not influenceB at all. Therefore,
we havep(b | â) = p(b | ˆ̄a) = p(b). In general, knowledge thatX causesY allows us
to equatep(y | x) with p(y | x̂), wherex̂ denotes the intervention that forcesX to bex.
For purposes of discussion, we use this rule as an operational definition for cause. Pearl
(1995) and Heckerman and Shachter (1995) discuss versions of this definition that are more
complete and more precise.

In our example, knowledge thatA causesB allows us to learnp(b | â) andp(b | ˆ̄a) from
observations alone—no randomized experiment is needed. But how are we to determine
whether or notA causesB? The answer lies in an assumption about the connection between
causal and probabilistic dependence known as thecausal Markov condition, described by
Spirtes et al. (1993). We say that an directed acyclic graphC is acausal graph for variables
X if the nodes inC are in a one-to-one correspondence withX, and there is an arc from
nodeX to nodeY in C if and only if X is a direct cause ofY. The causal Markov condition
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(a) (b)

Figure 7. (a) Causal graphs showing for explanations for an observed dependence betweenAd andBuy. The
nodeH corresponds to a hidden common cause ofAd andBuy. The shaded nodeS indicates that the case has
been included in the database. (b) A Bayesian network for whichA causesB is the only causal explanation, given
the causal Markov condition.

says that ifC is a causal graph forX, thenC is also a Bayesian-network structure for the
joint physical probability distribution ofX. In Section 3, we described a method based
on this condition for constructing Bayesian-network structure from causal assertions. Sev-
eral researchers (e.g., Spirtes et al., 1993) have found that this condition holds in many
applications.

Given the causal Markov condition, we can infer causal relationships from conditional-
independence and conditional-dependence relationships that we learn from the data16. Let
us illustrate this process for the marketing example. Suppose we have learned (with high
Bayesian probability) that the physical probabilitiesp(b |a) and p(b | ā) are not equal.
Given the causal Markov condition, there are four simple causal explanations for this
dependence: (1)A is a cause forB, (2) B is a cause forA, (3) there is a hidden common
cause ofA andB (e.g., the person’s income), and (4)A andB are causes for data selection.
This last explanation is known asselection bias. Selection bias would occur, for example,
if our database failed to include instances whereA and B are false. These four causal
explanations for the presence of the arcs are illustrated in figure 7(a). Of course, more
complicated explanations—such as the presence of a hidden common cause and selection
bias—are possible.

So far, the causal Markov condition has not told us whether or notA causesB. Sup-
pose, however, that we observe two additional variables:Income(I ) andLocation (L),
which represent the income and geographic location of the possible purchaser, respec-
tively. Furthermore, suppose we learn (with high probability) the Bayesian network
shown in figure 7(b). Given the causal Markov condition, theonly causal explanation
for the conditional-independence and conditional-dependence relationships encoded in this
Bayesian network is thatAd is a cause forBuy. That is, none of the other explanations
described in the previous paragraph, or combinations thereof, produce the probabilistic
relationships encoded in figure 7(b). Based on this observation, Pearl and Verma (1991)
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and Spirtes et al. (1993) have created algorithms for inferring causal relationships from
dependence relationships for more complicated situations.

14. A case study: College plans

Real-world applications of techniques that we have discussed can be found in Madigan
and Raftery (1994), Lauritzen et al. (1994), Singh and Provan (1995), and Friedman and
Goldszmidt (1996). Here, we consider an application that comes from a study by Sewell and
Shah (1968), who investigated factors that influence the intention of high school students
to attend college. The data have been analyzed by several groups of statisticians, including
Wittaker (1990) and Spirtes et al. (1993), all of whom have used non-Bayesian techniques.

Sewell and Shah (1968) measured the following variables for 10,318 Wisconsin high
school seniors:Sex(SEX): male, female;Socioeconomic Status(SES): low, lower middle,
upper middle, high;Intelligence Quotient(IQ): low, lower middle, upper middle, high;
Parental Encouragement(PE): low, high; andCollege Plans(CP): yes, no. Our goal here
is to understand the (possibly causal) relationships among these variables.

The data are described by the sufficient statistics in Table 2. Each entry denotes the
number of cases in which the five variables take on some particular configuration. The first
entry corresponds to the configuration SEX=male, SES= low, IQ= low, PE= low, and
C P= yes. The remaining entries correspond to configurations obtained by cycling through
the states of each variable such that the last variable (CP) varies most quickly. Thus, for
example, the upper (lower) half of the table corresponds to male (female) students.

As a first pass, we analyzed the data assuming no hidden variables. To generate priors
for network parameters, we used the method described in Section 10.1 with an equivalent
sample size of 5 and a prior network wherep(x | Sh

c ) is uniform. (The results were not
sensitive to the choice of parameter priors. For example, none of the results reported in
this section changed qualitatively for equivalent sample sizes ranging from 3 to 40.) For
structure priors, we assumed that all network structures were equally likely, except we
excluded structures whereSEXand/orSEShad parents, and/orCP had children. Because
the data set was complete, we used Eqs. (34) and (35) to compute the posterior probabilities
of network structures. The two most likely network structures that we found after an

Table 2. Sufficient statistics for the Sewall and Shah (1968) study.

4 349 13 64 9 207 33 72 12 126 38 54 10 67 49 43

2 232 27 84 7 201 64 95 12 115 93 92 17 79 119 59

8 166 47 91 6 120 74 110 17 92 148 100 6 42 198 73

4 48 39 57 5 47 123 90 9 41 224 65 8 17 414 54

5 454 9 44 5 312 14 47 8 216 20 35 13 96 28 24

11 285 29 61 19 236 47 88 12 164 62 85 15 113 72 50

7 163 36 72 13 193 75 90 12 174 91 100 20 81 142 77

6 50 36 58 5 70 110 76 12 48 230 81 13 49 360 98

Reproduced by permission from the University of Chicago Press.c© 1968 by The University of Chicago.
All rights reserved.
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Figure 8. The a posteriori most likely network structures without hidden variables.

exhaustive search over all structures are shown in figure 8. Note that the most likely graph
has a posterior probability that is extremely close to one.

If we adopt the causal Markov assumption and also assume that there are no hidden
variables, then the arcs in both graphs can be interpreted causally. Some results are not
surprising—for example the causal influence of socioeconomic status and IQ on college
plans. Other results are more interesting. For example, from either graph we conclude that
sex influences college plans only indirectly through parental influence. Also, the two graphs
differ only by the orientation of the arc between PE and IQ. Either causal relationship is
plausible. We note that the second most likely graph was selected by Spirtes et al. (1993),
who used a non-Bayesian approach with essentially identical assumptions.

The most suspicious result is the suggestion that socioeconomic status has a direct
influence on IQ. To question this result, we considered new models obtained from the
models in figure 8 by replacing this direct influence with a hidden variable pointing to
both SESand IQ. We also considered models where the hidden variable pointed toSES,
IQ, andPE, and none, one, or both of the connectionsSES—PE andPE—IQ were re-
moved. For each structure, we varied the number of states of the hidden variable from two
to six.

We computed the posterior probability of these models using the Cheeseman-Stutz (1995)
variant of the Laplace approximation. To find the MAP̃θs, we used the EM algorithm,
taking the largest local maximum from among 100 runs with different random initializations
of θs. Among the models we considered, the one with the highest posterior probability is
shown in figure 9. This model is 2· 1010 times more likely that the best model containing
no hidden variable. The next most likely model containing a hidden variable, which has
one additional arc from the hidden variable to PE, is 5· 10−9 times less likely than the best
model. Thus, if we again adopt the causal Markov assumption and also assume that we
have not omitted a reasonable model from consideration, then we have strong evidence that
a hidden variable is influencing both socioeconomic status and IQ in this population—a
sensible result. An examination of the probabilities in figure 9 suggests that the hidden
variable corresponds to some measure of “parent quality”.
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Figure 9. The a posteriori most likely network structure with a hidden variable. Probabilities shown are MAP
values. Some probabilities are omitted for lack of space.

15. Pointers to literature and software

Like all tutorials, this one is incomplete. For those readers interested in learning more
about graphical models and methods for learning them, we offer the following additional
references and pointers to software. Buntine (1996) provides another guide to the lite-
rature.

Spirtes et al. (1993) and Pearl (1995) use methods based on large-sample approximations
to learn Bayesian networks. In addition, as we have discussed, they describe methods for
learning causal relationships from observational data.

In addition to directed models, researchers have explored network structures containing
undirected edges as a knowledge representation. These representations are discussed, e.g.,
in Lauritzen (1982), Verma and Pearl (1990), Frydenberg (1990), and Wittaker (1990).
Bayesian methods for learning such models from data are described by Dawid and Lauritzen
(1993) and Buntine (1994).

Finally, several research groups have developed software systems for learning graphical
models. For example, Scheines et al. (1994) have developed a software program called
TETRAD II for learning about cause and effect. Badsberg (1992) and Højsgaard et al.
(1994) have built systems that can learn with mixed graphical models using a variety of
criteria for model selection. Thomas et al. (1992) have created a system called BUGS that
takes a learning problem specified as a Bayesian network and compiles this problem into a
Gibbs-sampler computer program.
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Notes

1. This example is taken from Howard (1970).
2. Strictly speaking, a probability belongs to a single person, not a collection of people. Nonetheless, in parts

of this discussion, we refer to “our” probability to avoid awkward English.
3. Bayesians typically refer to2 as anuncertain variable, because the value of2 is uncertain. In contrast,

classical statisticians often refer to2 as a random variable. In this text, we refer to2 and all uncertain/random
variables simply as variables.

4. Technically, the hyperparameters of this prior should be small positive numbers so thatp(θ | ξ) can be
normalized.

5. Recent advances in Monte-Carlo methods have made it possible to work efficiently with many distributions
outside the exponential family. See, for example, Gilks et al. (1995).

6. In fact, except for a few, well-characterized exceptions, the exponential family is the only class of distributions
that have sufficient statistics of fixed dimension (Koopman, 1936; Pitman, 1936).

7. Low bias and variance are not the only desirable properties of an estimator. Other desirable properties include
consistency and robustness.

8. As defined here, network-structure hypotheses overlap. For example, givenX = {X1, X2}, any joint dis-
tribution for X that can be factored according the network structure containing no arc, can also be factored
according to the network structureX1→ X2. Such overlap presents problems for model averaging, described
in Section 7. Therefore, we should add conditions to the definition to insure no overlap. Heckerman and
Geiger (1996) describe one such set of conditions.

9. The computation is also straightforward if two or more parameters are equal. For details, see Thiesson (1995).
10. The MAP configuratioñθs depends on the coordinate system in which the parameter variables are expressed.

The expression for the MAP configuration given here is obtained by the following procedure. First, we trans-
form each variable setθi j = (θi j 2, . . . , θi jr i ) to the new coordinate systemφi j = (φi j 2, . . . , φi jr i ), where
φi jk = log(θi jk /θi j 1), k = 2, . . . , ri . This coordinate system, which we denote byφs, is sometimes referred
to as thecanonicalcoordinate system for the multinomial distribution (see, e.g., Bernardo and Smith, 1994,
pp. 199–202). Next, we determine the configuration ofφs that maximizesp(φs | Dc, Sh). Finally, we trans-
form this MAP configuration to the original coordinate system. Using the MAP configuration corresponding
to the coordinate systemφs has several advantages, which are discussed in Thiesson (1995b) and MacKay
(1996).

11. An equivalent criterion that is often used is log(p(Sh | D)/p(Sh
0 | D)) = log(p(Sh)/p(Sh

0 ))+ log(p(D | Sh)/

p(D | Sh
0 )). The ratiop(D | Sh)/p(D | Sh

0 ) is known as aBayes’ factor.
12. This utility function is known as aproper scoring rule, because its use encourages people to assess their true

probabilities. For a characterization of proper scoring rules and this rule in particular, see Bernardo (1979).
13. One of the technical assumptions used to derive this approximation is that the prior is non-zero aroundθ̂s.
14. Recall the method of equivalent samples for assessing beta and Dirichlet distributions discussed in Section 2.
15. It is important that these interventions do not interfere with the normal effect ofA on B. See Heckerman and

Shachter (1995) for a discussion of this point.
16. Spirtes et al. (1993) also require the an assumption known asfaithfulness. We do not need to make this

assumption explicit, because it follows from our assumption thatp(θs | Sh) is a probability density function.
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