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Abstract—This paper presents a recursive clustering scheme
that uses a genetic algorithm-based search in a dichotomous
partition space. The proposed algorithm makes no assumption
on the number of clusters present in the dataset; instead it
recursively uncovers subsets in the data until all isolated and
separated regions have been classified as clusters. A test of
spatial randomness serves as a termination criteria for the
recursive process. Within each recursive step, a genetic
algorithm searches the partition space for an optimal
dichotomy of the dataset. A simple binary representation is
used for the genetic algorithm, along with classical selection,
crossover and mutation operators. Results of clustering on test
cases, ranging from simple datasets in 2-D to large
multidimensional datasets compare favorably with state of the
art approaches in genetic algorithm-driven clustering.

I. INTRODUCTION

HE organization of data into groups is one of the most

fundamental modes of understanding and learning [1].
Cluster analysis is the formal study of mechanisms,
algorithms and methods for classifying entities. Unlike
discriminant analysis or pattern recognition, cluster analysis
does not use category labels; instead the objective is to
achieve a valid organization of the data.

In broad terms, cluster analysis is composed of three
tasks, viz. clustering tendency, clustering and cluster
validation. Clustering tendency refers to the problem of
deciding whether data exhibit a predisposition to cluster in
natural groups without actually identifying the groups. In the
absence of a structure, it is wasteful to seek clusters, more so
because clustering algorithms divide the data into clusters
even in the absence of natural groups. Clustering tendency
tests are usually performed before the actual process of
clustering itself. Clustering algorithms generate an efficient
representation of the data by classifying them into subsets
that have meaning in the context of a particular problem. A
proximity measure that objectifies the relationship between
pairs of entities in the data is essential for clustering. Based
on the way a structure is enforced on (or uncovered in) the
data, clustering algorithms can be hierarchical or partitional.
Both techniques produce a finite partition of the data into a
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desired (often fixed) number of clusters. Partitions are then
evaluated by one or more validation mechanisms that
provide objective information about the goodness of the
partition. Since the actual number or the nature of clusters in
a data set is hardly ever known a priori, clustering
algorithms are implemented on a range of values
corresponding to number of clusters, followed by cluster
validation studies on every partition. The validation
measures usually indicate if a particular partition is superior
to others.

In this paper, we present a methodology that seamlessly
puts the three disjoint stages of cluster analysis into one
workable framework with a genetic algorithm-driven search
in the partition space. We approach the problem of
clustering from a purely assignment point of view; the
problem definition is — assign » data points in d-dimensions
to k clusters, so that a certain underlying notion of
homogeneity within a cluster and heterogeneity across
clusters is maximized. The assignment of n points to k
clusters is purely a combinatorial one [2], given by

_1 : j k S\
S(n, k —ﬁ;(—l) ; (k=j)". (1)

This results in approximately 2.5 x 10'° possible solutions
for a simple problem of assigning n = 25 entities to k = 5
clusters. When the number of clusters for assignment is not
known a priori, there exists more than 4.6 x 10'® different
ways to assign 25 entities to clusters (ranging from a one-
cluster solution to all-singleton solutions). This problem is
NP-complete and attempting to find a global optimum is
usually not computationally viable even for moderately
sized datasets. Genetic algorithms (GA) are considered
effective for NP-complete search and optimization problems
and guarantee at least locally optimal solutions in reasonable
time [3].

The first reference to the use of evolutionary techniques
in clustering can be found in [4], where an adaptive strategy
evolves populations of non-overlapping classifications using
selection, inversion and mutation. A K-means clustering is
performed taking the membership degrees and prototype
locations as the parameters for the GA in [5]. (Prototype
locations in K-means and related methodologies are usually
cluster centers specified by a mean location in d-
dimensions.) In an extension [6], the prototype locations are
encoded as binary strings and genetic operators then operate
to optimize location instead of operating on the membership
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matrices. The prototype location is also encoded in [7] and
[8] as real-numbered ordered pairs of length k& X d, where k&
is the number of clusters and d is the dimensionality of the
dataset. An elitist model of the GA was used in [9] to create
decision boundaries (approximated by piecewise linear
segments) to classify data. These decision boundaries are
encoded as strings and the optimization is driven by a
function that minimizes misclassification. They later
developed the GA-classifier that used a variable length
string to automatically identify the minimum number of
classifying hyperplanes in the data [10]. Murthy and
Chowdhury [11] use an n-bit cluster label-based string,
where n is the number of data points to be clustered.
Consider a simple case where n = 8 data points are clustered
into k = 3 clusters such that data points x;, x3, xs form
cluster-1, x,, x4 form cluster-2 and xs, x;, xg form cluster-3.
The chromosome representing this case is 12123133 — the
alleles are cluster labels. It is however, not clear as to the
nature of the fitness function used to evaluate the
chromosomes in [11]. A similar representation is used in
[12] and [13]. A variance-ratio based goodness-of-fit
criterion is maximized in [12], which objectifies external
cluster isolation and internal cluster homogeneity. A variant
of the Average Silhouette Width [14] is used as a
maximization function in [13]. Additional constraints have
to be imposed on crossover and mutation operations in order
to produce meaningful and valid offspring when such a
cluster label-based representation is used. To work around
this problem of expensive genetic operators, a K-means type
gradient descent search operator replaces the crossover
operator and the classical mutation operator is replaced by a
biased mutation operator specific to clustering, called the
distance-based mutation operator [15]. A  binary
representation called the Boolean Matching Code (BMC)
was used in [16]. The same n = 8, k = 3 case presented
above is coded as [10100100, 01010000, 00001011], and a
specialized crossover operator called the Single Gene
Crossover (SGC) operator is proposed. More recently, a
genetically guided hierarchical cluster-merging operator was
introduced to merge randomly fragmented subsets of the
data into k-clusters [17]. An incremental hierarchical
clustering algorithm is combined with a standard GA in
[18]; however, the GA is used only to improve the quality of
the output of the hierarchical clustering scheme.
Evolutionary programming approaches to clustering have
been investigated in [19]. A major shortcoming of the K-
means clustering algorithm — its overt dependence on
initialization, is addressed using a genetically algorithm in
[20]. In [21], a GA was used to guide search for valid
prototype locations in a noisy dataset using the least median
of squares criteria for clustering.

Apart from the need for good initialization for gradient
descent search techniques such as K-means, and the
assumption that data is not corrupted with noise (and
outliers), almost all clustering routines assume that the
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number of clusters to be found is known a priori. They work
around this assumption by performing clustering over a
range of k-values and then choosing the best partition. Many
such studies assume fixed length binary coding, where the
length of the string depends on the number of clusters e.g.
[16], or parameterize the prototype locations instead of
assignments or cluster labels [7], [8]. On the other hand,
studies involving uncovering structure in the data without
the explicit assumption use complicated representations,
mainly the cluster label-based notation with specialized
crossover and mutation operators, with a series of checks
and bounds to prevent invalid offspring. In this paper, we
present a framework for cluster analysis using a GA with a
binary representation and classical reproductive operators.

II. CLUSTER ANALYSIS

The use of simple encoding systems causes problems of
redundant codification and context insensitivity [22]. This
has led researchers to devise complicated representations
and specialized operators (and in many cases radically
different GAs) for clustering problems. The cluster label-
based n-bit encoding is simple compared to parameterization
of prototype location or encoding linear decision
boundaries. Apart from being longer (n-bits as opposed to k
x d bits for encoding the prototype parameters), such a
representation also means that many genotype translate to a
unique phenotype; a simple example is shown below,

Genotypel: 11223344
Genotype2: 22113344
Genotype3: 11332244
Genotype4: 22334411

All the four genotypes above, represent the case where
{x1, X2}, {x3, X4}, {xs, X6} and {x7, xg} form four clusters. It is
irrelevant to the clustering algorithm if the cluster formed by
{x1, x} is called cluster-2 instead of cluster-3 or cluster-1. In
other words, the notion of cluster labels built into the
representation makes  little intuitive sense.  Such
representations have spawned off a set of pre-treatment
methodologies to make the representations suitable for
genetic operators, such as the consistent algorithm for
reassignment [23]. It is also argued that traditional GAs (e.g.
the canonical GA), when applied to clustering tasks, often
perform just a random search for the best solution [13]. That
however, is contingent on the objective function that
evaluates string fitness relative to each other. An objective
function that biases the search towards isolated packed
clusters within a structured data can ensure that the GA does
not search randomly.

The clustering problem is treated a simple assignment
problem of assigning » data points to & clusters. The value of
k is not known but the motivation is to uncover a partition
that best represents the underlying structure. We propose a
recursive scheme to uncover closely-packed isolated clusters
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one at a time until all the clusters have been identified,
resulting in a partition that closely represents the structure of
the data. The recursive scheme uses a clustering tendency
measure to terminate when all the clusters have been
identified. Within each recursive level, a GA is used to
dichotomize the dataset, until the divisions represent the
actual clusters. In this section, we first present the clustering
tendency technique used as the termination measure, the
objective function used by the GA to evaluate genotypes, a
brief description of the GA used followed by a description
of the clustering algorithm.

A. Clustering Tendency

The term clustering tendency refers to the problem of
deciding whether data exhibit a predisposition of cluster into
natural groups [1]. The test for tendency is also a test for
spatial randomness, and there exist testing methodologies
that test for structure in data (without actually identifying the
clusters themselves). Such clustering tendency tests include
scan tests, quadrat analysis, second moment structure tests
and sparse sampling tests [1]. Sparse sampling tests are
based on sampling origins randomly identified in a sampling
window. Several tests involving sampling origins have been
proposed in literature, based on a multitude of test statistics
such as the Hopkins statistic, the Holgate statistic, the T-
square statistic, the Eberhardt statistic and the Cox-Lewis
statistic [1]. These statistics have been compared but little is
known about any one of them outperforming the others. The
Hopkins statistic is easy to use and comprehend and has
been shown to be as good as the Holgate statistic [24] and
has been used as a measure in a test for cluster validity [25].
Given n data points in a d-dimensioned space, the sparse
sampling procedure randomly picks m datum (m << n) and
calculates distances to nearest datum for each of these
randomly picked datum — let w; be the set of nearest
neighbor distances for 1 <7 < m. Separately, the procedure
also randomly injects m sampling origins into the dataset,
and locates datum in the set which are closest to these
randomly injected sampling origins — let u; be the set of
sampling origin to nearest datum distances for 1 <i < m.

The Hopkins statistic is defined as,

H=—" )

m m
Wy wl
=1 i=1

1

When the dataset is random, implying a lack of
underlying structure, the value of H =~ 0.5, and for structured
datasets, the value of H is close to unity. In the proposed
methodology, this test is performed every time a dataset is
divided into two parts. Consider a simple three-cluster case
and let the clusters be labeled A, B and C. When the dataset
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is subject to the test of spatial randomness, we would expect
H = 1, because of the presence of three distinct aggregated
clusters. This data is then subject to division by an
assignment routine driven by a GA that searches for the best
dichotomy in the data. Let the first level of division create
two subsets x and y, where x is composed entirely of cluster
A and y is a combination of B and C. When x is tested for
spatial randomness, we would expect H =~ 0.5, while for y
we would expect H = 1. In other words, x is identified as a
self-contained isolated cluster and removed from our
consideration, and y is divided further until B and C are
discovered. In general the algorithm terminates when H ~ 1
on all truncated datasets.

B. Objective Function

The objective function evaluates the fitness of individual
strings (the encoding of the strings is explained later).
Almost all partition evaluation functions provide some kind
of measure of inter-cluster isolation and/or intra-cluster
homogeneity. For a good partition, there should be
appreciable inter-cluster isolation (or heterogeneity among
clusters) and intra-cluster homogeneity. The homogeneity
within a cluster is however, calculated by a minimizing
function — usually the sum of distances between all the pairs
of entities within a cluster. In fact, the popular K-means
algorithm minimizes the sum of root mean squared distances
of objects in a cluster from the cluster center. We use an
objective function based on the Average Silhouette Width
[14] and also used in [13]. The approach defines a silhouette
width for each entity in the dataset, an average silhouette
width for each cluster and overall average silhouette width
for the total dataset. The silhouette width of a cluster is a
measure of its tightness and separation. Similar measure of
compactness (tightness) and isolation (separation) have also
formed the basis of many cluster validation techniques e.g.
[26]. The individual silhouette associated with an entity x; in
the dataset is given by,

o bi—“i
S max(a;,b; )’

(3)

where q; is the average dissimilarity of x; to all other entities
in the same cluster and b; is the average dissimilarity of x; to
all entities in a cluster closest to its own. It also follows
that—1<5;<1. If §; = 1, it means that x; is assigned to a

very appropriate cluster. If silhouette value is about zero, it
means that that x; could be assigned to another cluster. This
implies that x; lies equally far away from the two clusters (its
own cluster as well as its closest neighboring cluster). If
silhouette value is close to —1, it means that x; is
misclassified and should be assigned to another cluster. The
overall average silhouette width for the entire dataset is
defined as,
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It can easily be seen that a high value of S (close to n)
implies a good partition. There is also a unique value of S
for every partition — of all the possible values of S the best
partition is associated with the highest value. For a given
partition, consider an entity x; that belongs to cluster 4. Let
cluster 4 consist of m entities out of the possible n, including
x;. The average dissimilarity of x; with all other entities of
its own cluster (cluster A) is given by,

D dy
_keA
© om-1

®)

aj

where d;; is the distance (or some measure of
dissimilarity) between x; and x;. Consider another cluster B
consisting of p entities. The average dissimilarity of x; with
all entities in B is given by,

D dy
keB

b g= , (©)
4

And the average dissimilarity of x; to all objects contained
in the cluster closest to 4 is then given by,

bj=min(b; p)B#A ™

When the entities in cluster 4 are similar, the value of q; is
small, implying homogeneity in 4. Similarly, the higher the
value of b;, the higher the heterogeneity among x; and
entities in its neighboring cluster. If x; belongs to a singleton
(a cluster with only one entity), it is assumed that S; = 0.
Since genetic selection techniques require strings to have
non-negative fitness values, we scale the range of S; from [-
1, 1] to [0, 2] by adding 1 to all S; values before selection as,

g __ bi-ai

= 1.0 8
! max(ui,bi)+ ®

C. The Genetic Algorithm

We have used the classical GA [27] with stochastic
tournament selection, simple one-point crossover and
mutation operators. This is in contrast to very specialized
GAs developed and used for clustering, including one that
evaluates a complex population of schemas and individuals
[28]. We also use the binary alphabet to encode for the
dichotomy in the partition space. It has been shown that the
binary alphabet provides the maximum number of schemata
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per bit of information of any coding technique [27]. The
recursive uncovering of structure also allows for easy
interpretation of the binary coding. At every truncation
level, a population of binary strings is created randomly.
Each individual string corresponds to a unique partition of
the dataset at that level. At different truncation levels, the
sizes of the datasets (truncated subsets) are different; hence
the length of the binary string differs from one truncation
level to the next. The strings are evaluated using (4) and (8),
and given a non-negative fitness value, S (0 < § < 2n).
Stochastic tournament selection, also called Wetzel ranking,
is used to create a pool of highly fit strings. In the stochastic
tournament selection, two strings are drawn from the
population using the roulette wheel selection technique,
evaluated against each other and the fitter string finds its
way into the mating pool. In a related work [29] it has been
shown that for cluster-assignment problems, stochastic
tournament consistently outperforms roulette wheel
selection and stochastic sampling methods of selection.
Strings are then drawn at random from this mating pool for
crossover and mutation. The newly created offspring
completely replace the parent population and the process of
selection, crossover, mutation and replacement is carried on
for a fixed number of generations, after which the string
with the maximum fitness is extracted from the population
as the solution.

D. The Clustering Algorithm

The clustering methodology proposed here is essentially a
search through the partition space. The search space is the
set of all possible partitions of the dataset at any particular
truncation level. A suitable threshold for the Hopkins
statistic is chosen (usually between 0.75 and 0.85) and the
parameters for the GA such as the population size,
maximum number of generations, probability of crossover
and mutation etc. are also fixed. The dataset is subject to the
test of spatial randomness and if required, is divided into
two by the clustering routine. The clustering is a simple
assignation process driven by the GA on the evaluation
function S. These truncated sets are then subject to the test
of randomness (referred to by Hopkins(.) in the algorithm
given below) individually. If the value of the Hopkins
statistic is less than the pre-fixed threshold for the truncated
datasets, they are further divided in two until the test of
randomness proves that all truncated sets are random within
themselves. The algorithm is given below,

Given dataset Xo= {x;; | <i<n,x;={x;; 1 <j<d}};
Fix threshold statistic, H"
Fix parameters for genetic algorithms, pop size = P, max gen = G;
Truncation level, 1= 0;
k=1,1=1;

t
X7 = Xo;
while (1> 0)

J=11=0;

Jfor (i=1to0))
[ —1+1;
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H = Hopkins ( xf );
if (H<H"):
N =size of ( Xf );
{Po} = Generate P random binary strings of N-bits;
for (gen=0to G)
Calculate Avg Silhouette Width for every string in {Pgen};
Mating pool {M} = {};
Select P strings from {Py.,} to form {M};
Pick strings from {M} at random;
Do crossover and mutation;
gen — gen + 1;
{Pgen} = P offspring;
end for (gen)
str = fittest string from {Pye, };

xl”1 - {x,t sstr(h) = 13

I—1+1;

t+1

Xl ={Xlt s str(h) =0}

else:
t
Yi=X;
k—k+1,1—-1-1
i—i+1
t—t+1
end for (i)
end while (I > 0)
print (total clusters identified = &k — 1);
for(i=1tok-1)
print cluster Y;
i—i+1
end for (i)

III. SIMULATIONS

The proposed algorithm is implemented on clustering
problems with three different datasets — the benchmark
Ruspini data, the Iris plant data and the E. coli dataset. Even
with the best of clustering algorithms, there is the possibility
of occasional misclassifications — in our case partition
misclassification by the GA-driven routine, might result in
inconsistencies in results of the test of spatial randomness.
The Hopkins statistic is fortunately found to be very robust
to occasional misclassifications. On an average, if a random
set of n entities is corrupted by a set of p entities (< n/10),
resulting in an overall dataset that is not random (such is the
result of a misclassification), the Hopkins statistic on such a
dataset will indicate randomness if sampling size, m < p. In
our experiments, we assume m = n/15 (rounded off to the
nearest integer for m > 1; for n < 15, we assume m = 1).
Note here that n is the size of the truncated dataset under
consideration. Simulations with random datasets with less
than 10% structured noise provides us with a threshold
value, H' = 0.75-0.85 to use in future experiments. We have
used Euclidean distance as the measure of dissimilarity
between entities x; and x;, as,

)
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A. Example 1 — Ruspini data

The Ruspini data is a benchmark dataset for
classification and cluster analysis techniques. The dataset
consists of 75 data points defined in 2-dimensions [14, p.
100] that divide into 4 clusters, as shown in fig 1. The best
results were obtained for a population size, P = 300, P. =
0.95, P, = 0.01 when convergence was attained in 35
generations (G = 100) at the first level. The truncated sets
identified are sets A-D and B-C. At the second level, the
procedure converged in 15 generations on an average for the
truncated set 4-D and in 20 generations for the set B-C. We
simulated 10 experiments with different random seeds to
generate the initial population and found a narrower range of
convergence (relative to generations) than reported in [13].
The convergence plot of the fitness function vs. generations
(for the above mentioned parameter set) is shown in fig 2.

160
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40
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0 20 40 60 80 100 120

Fig 1. Ruspini data

B. Example 2 - Iris plant data

The Iris data consists of 150 random samples of
flowers from the iris species setosa, versicolor, and
virginica; for each species there are 50 observations for
sepal length, sepal width, petal length, and petal width (n =
150, d = 4). This dataset was made famous by Fisher [30] in
his work on the linear discriminant function. The class
setosa is linearly separable from the others, but classes
versicolor and virginica are not (as shown in fig. 3). Our
recursive clustering procedure found two truncated sets after
approximately 35 generations with different random
initializations for P = 600, P. = 0.90, P,, = 0.01 and H™ =
0.85. One truncated set corresponded to instances in the
class sefosa while the other set contained instances from
versicolor and virginica. Although the test of spatial
randomness indicated presence of further clusters in the
latter (H = 0.80), the assignment routine driven by the GA
fails to further divide the second set satisfactorily. In the
best case, we obtain two clusters (corresponding to
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versicolor and virginica) with almost 15% misclassification.
Other researchers [13], [31], [32] have reported finding two
instead of three clusters in the iris dataset. It has been
inferred that many entities in the classes virginica and
versicolor are very similar [13]. Using a binary
representation, and simple reproductive operators, we have
been able to perform as well as the Clustering Genetic
Algorithm [13].

120

110 Initial dataset

100

90 -

80 1

S (max)

70 | Truncated set B-C

60 4
50 -

40

Truncated set A-D

o

10 20 30 40 50
Generations

Fig. 2. Convergence Plot — Maximum Fitness vs. Generations. The
first level of clustering was performed on the Initial dataset, resulting
in two sets 4-D and B-C. The second level of clustering on 4-D and
B-C uncovered the four clusters, 4, B, C and D.

C. Example 3 —E. coli data

This dataset is available at the UCI Machine Learning
Repository [33] and has been analyzed in [34]. The database
is a collection of 336 instances of protein sequences in the E.
coli bacteria defined by seven predictive attributes and a
class label. The class label is the localization site of the
protein in the E. coli. There are eight distinct localization
sites (e.g. cytoplasm, inner membrane etc.) identified for the
336 proteins in the database. The truncated sets produced
after the first level correspond to: (i) a class of proteins that
localize in the cytoplasm and the periplasm (called the cp-pp
subclass for clarity), and (if) proteins that localize on the
membrane (called the im-om subclass). The accuracy of
classification is more than 93% at this stage (315 out of 336
protein sequences are correctly classified), with P = 300, P.
= 095 P, = 001 and Hr = 0.85. Correcting for
misclassifications at this stage, we classify the cp-pp class
into two subsets — one corresponding to the 143 cytoplasm
(cp) localization sites and the other 52 periplasm (pp) sites.
The classification accuracy was almost 95% in this stage
(with 11 out of 195 sequences misclassified). On the other
im-om subclass, we identified a class corresponding to the
25 outer membrane localization sites (omT), and the other
116 sequences localizing at the inner membrane (im7), with
almost 95% classification accuracy again. Further division
of the imT subclass produced in the second level of
truncation revealed the presence of two classes — one
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corresponding to the larger class of im sequences produced
without signal sequence (referred simply by im [33]) and the
smaller class consisting of the other inner membrane
sequences (imS, imL and imU [33]). Subdivision of the omT
subclass produces two clusters corresponding to om and
omL [33]. The classification hierarchy is shown in fig. 4.
With more than 90% overall accuracy, we have been able to
identify six clusters in the E. coli data. This is in contrast to
a classification accuracy of 81% reported in [34] that used
an expert system classification algorithm with probabilistic
reasoning.
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Fig 3. The Iris data plotted separately for length and width

attributes for the 150 instances.

IV. CONCLUSIONS

We present a recursive clustering methodology driven by
a genetic algorithm. The use of genetic algorithms for
clustering goes back more than a decade; however, almost
all GA-based clustering methodologies proposed in the
literature attempt a single partition of the data, as opposed to
uncovering the organization hierarchically. This has led to
the development of highly specialized GAs and operators.
In this paper, we have used the canonical GA in a recursive
hierarchical methodology to uncover structure in data. We
have also used a binary representation to encode the
genotype — such a representation facilitates dichotomous
classification in steps. We have also proposed using a test of
spatial randomness as termination criteria and have
illustrated our methodology with a simple statistic. The
proposed methodology has also been compared with results
of state of the art GA-based clustering, and has shown to be
comparable. This given the fact that the methodology does
not depend on specialized representations and operators, is
very promising.

We are presently working on streamlining the proposed
methodology that will combine the termination criteria and
the fitness function into one evaluation function. We are also
investigating robust versions of the proposed methodology
that will allow recursive clustering of noisy datasets.
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