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Abstract—We attack the problem of user fatigue in using individuals in an IGA, and run over a number of generations
an interactive genetic algorithm to evolve user interfacesn  to help explore the space of Ul designs. Periodically, the
the XUL interface definition language. The interactive gengéc Ul designer sees the phenotypes (the Uls) corresponding to
algorithm combines computable user interface design metcis . o . . .
with subjective user input to guide evolution. Individualsin our nine of the best 'nd'v'du_alsl'n the pOpU|at'O.n.and picks two -
population represent interface specifications and we compga  the best and worst looking interfaces. Empirical obseovesti
an individual’s fitness from a weighted combination of user tell us that we should not display more than nine or ten
input and user-interface-design guidelines. Results fromour  jtems to be judged by a user [12]. In addition, users will tire
preliminary study involving three users indicates that uses are and become erratic in their choices if we ask them to make

able to effectively bias evolution towards user interface ésigns hundreds of decisi In thi d fati
that reflect both user preferences and computed guideline undreds ot decisions. In this paper we reduce user fatigue

metrics. Furthermore, we can reduce fatigue, defined by the DYy asking the user to pick two individuals from nine shown,
number of choices needing to be made by the human designer, every ¢t generations of the IGA. Preliminary user studies
by doing two things. First, asking the user to pick just two (he  show that users are still able to effectively bias evolution
best and worst) user interfaces from among a subset of nine 44145 designs that reflect their preferences as well as the

shown. Second, asking the user to make the choice once EVery i o | ted bv th table interf desi tri
t generations, instead of every single generation. Our goa$ ito las Imparted by the computable interface aesign metrics.

provide interface designers with an interactive tool that @n be Due to Ul design being a complex process, we primarily
used to explore innovation and creativity in the design spae focus on the evolution of the layout and appearance of

of user interfaces and make it easier for end-users to furthe  \jidgets of a simple panel. Th®loveTo panel, shown in
customize their interface without programming knowledge. Fig. 1, was evolved by the users participating in our IGA
sessions. The panel was taken from the Lagoon Ul, a 3D
. o . naval combat simulation game developed in our lab [3]. It
~ User interface (Ul) design is an expensive, complex, anglas chosen because it has a variety of widely used widgets,
time consuming process usually driven by documented Styﬁt it is simple enough for our initial experiments.
guidelines and design principles. However many of these 1o yaqt of the paper is organized as follows. We discuss
guidelines and design princ?ples_ are diﬁif:u't to tranSIat1‘)GA’S, the challenges of Ul design, and related work in sec-
into code, a”d_9°9d UlldeS|gn is driven in large pgrt b3|.{ion [I. Section Il presents the encoding used for indidtiu
human aesthgtlcs in their Ioo_k and feel. Thus Ul des'gnerﬁ the population. Section 1V discusses how we do subjective
tend to be guided both by objective measures gleaned frofy opiective evaluations, while section V describes our
Ul style guidelines and design principles, and by subjective, orimental setup. Section VI describes our results with

measures such as the *look” and “feel” of an interface. OYpg; gybjects using our IGA to evolve a simple UL. Finally,
interactive genetic algorithm combines both measuressin 'h section VIl we present our conclusions and directions for
fitness function and allows the Ul designer to simply anqjuture work

efficiently explore the space of Ul designs.

I. INTRODUCTION

Interactive genetic algorithms (IGAs) differ from GAs in MOVETO
that the objective fitness evaluation is replaced with user ove Coord
evaluation. As such, they can incorporate intuition, eorgti Start
and domain knowledge from the user. However, GAs usually Maintain Speed |
rely on the use of large population sizes running for hun- e =
dreds of generations to achieve satisfactory results [@hS ’;;T
computational dedication cannot be expected from the user ETmm
due to psychological and physical fatigue. Thus, althoigh t
use of IGAs presents us with a powerful tool with which to Fig. 1. Panel layout to be evolved.

incorporate subjective evaluation into the GA process, how
best to incorporate user input remains a significant rekearc
challenge [16].

Our work differs from previous IGA applications in that
we use both a computable fitness criterion and user evaluain the following subsections, we describe IGAs, the inher-
tion to compose a combined fitness [16]. We encode Uls @t challenges of Ul design, work related to incorporating

. . _ user input into IGAs, and the use of evolutionary techniques

The authors are with the Evolutionary Computing Systems, Depart- for Ul desi Wi | lai hoi f XUL h
ment of Computer Science and Engineering, University ofaday Reno, or esign. vve also explain our choice o as the
NV 89557, USA. Email:{quiroz, sushil, anilk, dascaly@cse.unr.edu target language for our Uls.
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A. Interactive Genetic Algorithms (IGAS) example, here is an excerpt from Apple’s Human Interface

IGAs provide a mapping from a user’s psychological Spacgyidelines:“use_colo_r to.enharllce the visual impact of your
to a GA's parameter space and thereby combine the povx)@ldgets” [1]_' Th's guideline is '”Comp"?te and confusing in
of human subjective evaluation with evolutionary compughat the_gwdehne does _not tell us Wh_'Ch (_:olc_)r to use for a
tation [16]. We can thus incorporate human preferenceg',verl widget and on which cqnte_xt this principle should be
knowledge, emotion, and intuition into GAs. A GA compute@PPliéd. Such ambiguous guidelines force Ul designers to
an individual's fitness using a mathematical equation sorﬂ@ake subjective decisions and evaluations to fill in omitted
computation, or a model [9]. However, we cannot modeq’eta'ls'
users trivially; users preferences are relative and céntexC. Related Work

dgpendent. In IGAs the.user pgrticipates in fitness evainati  \ye aqdress research challenges from two areas: incorpo-
- In many cases the uses th.e f!tpess f_unctlon. Geqerally a rating user input into IGAs, and using evolutionary tech-
user assigns fitness to an individual in the following Wayshiques for Ul design.

(1) assigning a number on a subjective grading scale, (2) 1y gyolution of Uls: Oliver et al. explored the evolution

ranking the individual, or (3) choosing the best individualyt ihe websites appearance and layout [11]. The user evolves
from a displayed subset [9], [16]. See [16] for a survey Ofjier the style or the layout of a webpage; these two opti-
IGASs. i o mizations are separated in order to simplify the evaluation

Note that for an IGA-based user centric application, we d@gjyiduals. The user guides evolution by picking the indi-
not have the luxury of relying on large populations sizes andy, 5is the user likes, then the algorithms replaces theofes
hundrgd; of generations (like a canonical GA) because it j§e individuals by mating and applying high mutation rates t
unrealistic to request a user to make hundreds or thousangs ser selected individuals. CSS parameters like foet siz
of choices. If pressed for too much feedback, users aggn¢ color, font family, link color, and text alignment were
likely to Iqse _mterest and get tlre_d. Fur_thermore, becausgoived in their experiments. We expand on this work in
of the subjective nature of human input, it can lead to usefg ways. First, our research incorporates expert knovéedg
changing their goals through the IGA run, leading to noisyiy the form of style guidelines) in addition to incorporai
landscapes - which coupled with user fatigue can lead {e supjective evaluation by a user. Second, they used a
suboptimal solutions [9]. population size of 12 individuals in order to display and fit
all individuals on a screen. Instead we use large population
sizes and display a small subset of the best nine individuals

User interface design is a complex process critical to thgllowing us to sample the space of Uls more effectively and
success of a software system; designing interactive sgstepd present the user with potentially high fitness indivigual
that are easy to use, engaging, and accessible is a challengi 2) User Fatigue in IGAs:Reducing human fatigue is a
task. Consequently, the design of a user interface is a maj@ajor research problem in IGAs [16]. We address this issue
and costly part of any software project. by first having the user evaluate a small subset of a large

Graphical user interface development toolkits and lilesri population, instead of having the user evaluate the entire
help user interface designers to develop graphical user ipepulation. Further, the users in our study guide a Ul's
terfaces (GUIs) faster by providing basic widget elementgvolution by only selecting the best and worst individuals
such as menus, buttons, and textboxes. Because GUI toolKitsm the subset displayed every generation.
and libraries facilitate the design activities at too low a Llora et al. make the user pick the best, equality relations
level, they may allow the designer to create a bad or poare also allowed, from a displayed small subset [9]. Their
design quickly [8]. Therefore, Ul designers use style guidadisplayed subset is a tournament during selection, so they
lines and design principles to design usable and engagitigit the population size to minimize the number of possible
interfaces. Style guidelines and design principles aldp hetournaments. The partial ordering of solutions, from the
to evaluate a generated design. Guidelines define the lowknners and losers of the tournaments, is used along with the
and feel of a user interface in addition to addressing thgominance concepts of multi objective optimization to ioelu
organization of widgets, the use of color, the use of fonta complete ordering of solutions, which is subsequentlguse
the use of spacing and margins, among other propertigs.train an SVM to learn the user's preferences [9]. In our
Some prominent style guidelines include Apple’s Humawurrent work we do not attempt to do any user modeling
Interface Guidelines, Microsoft’s User Interface GuideB, with machine learning technigues. Instead, we use a simple
Sun’s Java Look and Feel Guidelines, and GNU's GNOMterpolation based on the user selection to determine the
Human Interface Guidelines [1], [10], [15], [5]. fitness of every other individual in the population.

The use of style guidelines and design principles leads to Kamalian et al. make the user evaluate a subset of the
a couple of issues. The first issue is tHatterpreting the population everyt’* generation [7]. We adopt a similar
guidelines unambiguously and applying generic principtes approach putting the user in a supervisory role and thus
a particular design problem is itself a major challengg8]. reduce the amount of user feedback, but focusing on how the
Secondly, guidelines are either too specific or too vagu&equency of user input affects IGA performance and fatigue
so they do not always apply to the problem at hand. Fdn our previous work we explored the effect of various values

B. User Interface Design



of ¢ on the IGA performance with a simulated user, wherélence we can explore widget layouts by permuting widget
we found that as the value ofincreases, noise is introducedidentifiers.
into the fitness landscape [14]. We keep a reference to the

user selected best and worst Uls, so that we can do oWidget characteristic chromosome ' knots
interpolation technique in generatiohgo ¢ — 1. Section VI Thdget 1 WidgetN limzl
addresses results obtained by varying the valuevaith our il
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three §ub11ects, instead of Wl.th a ;lmulated user. Finatly, i T T
Kamalian's work, a user provides either a demote or promo

reaction to individuals displayed for user evaluation. Th1W. doiat lavoit ok —) [ Vartain speed «][25200
algorithm uses a validity constraint to determine viable an ;ges ayoul chromosome

meaningful designs displayed to the user and numerous in{ 0 | 1 | 8 | 7 | 3 | 0 || 2 | 0 |

viduals can match this constraint. In a similar approach, w C—Il

incorporate an objective fithess component which evaluates

compliance with Ul design guidelines. Fig. 2. Ul encoding consists of two chromosomes. The widberacter-
istics chromosome encodes the color of each widget in a hihdd The
D. XUL User Interfaces widget layout chromosome encodes the position of the widgethe grid.

. Widgets are identified by integer IDs greater thtaand empty cells in the
We use the XML User-interface Language, a crossg—ridgare identified Witmg 9 9 Py

platform markup language for user interfaces, as the target

language for our evolved Uls [18]. We choose XUL because The second chromosome encodes widget characteristics
of its flexibility and the ease with which widgets can bgwidget color) for each individual. This chromosome is a
manipulated. Using XUL syntax and structure, we can creat@andard bit string and we use standard one point crossover

a wide range of applications, from a simple layout consistingng bit flip mutation on this part of an individual.
of two buttons, to a full fledged application consisting of a

menubar, toolbar, and other common widget elements. A Widget Layout
We layout our widgets on a grid construct provided by
1. U SERINTERFACEREPRESENTATION XUL which allows us to organize our widgets in rows and
We encode the Ul representation in two chromosomeaslumns.
(Fig. 2). One chromosome encodes widget layout organiza-We have tried using other layout organizations, including
tion, and the second chromosome encodes widget charactysolute positioning and positioning relative to othergeits.
istics (currently being widget color). We organize the wathy In absolute positioning we encoded the cardinal coordinate
on a 10 rows by 2 columns grid. The grid, while allowing forof our widgets, where the coordinates specified where in the
limited layout designs, is simple for our initial experinten panel the widgets were placed. While this was simple to
In user interface design a sizer usually manages widgedls, aimplement, it resulted in widgets being placed on top of each
a grid sizer allows efficient widget organization in a layoutother. This added another level of complexity to be resolved
The grid layout also enforces alignment of widget, which is &y the user by providing input into the system specifying
style guideline in Ul design. We avoided widget encoding athat the Uls the user liked the best were the Uls with widgets
a bit string since standard genetic operators such as eerssonot stacked on top of each other, instead of having the user
or mutation could potentially destroy the representatign bconcentrate on more useful characteristics, such as thalact
introducing duplicate widgets. To avoid this problem, wewidget organizations and the look and feel. We may return
encode the widgets in an integer permutation string, of size this representation in the future.
20 (10 rows by 2 columns), where each integer represents aNext we tried using relative positioning, where we encoded
unique identifier for each widget and 0s represent emptg celhe relative positions of widgets with respect to the prasio
filled with spaces. The integer string maps to the 2D grisvidget in the chromosome. The four positions allowed were
representation in a row major fashion. We chose the 10A&ft, right, up, and down. The first widget in the chromosome
grid because this results in Uls able to fit in the availablevas placed on the middle of the panel, with each subsequent
space in our sample application: the Lagoon Ul for thevidget being placed relative to its predecessor in the chro-
MoveTopanel explained in more detail in Section V. mosome. Without any bounds or overlap checking, we got
To preserve the integer representation of the layout chroases where the widgets in the Ul would almost line up in
mosome, we use PMX, partial mapped crossover [6]. PMX straight line, resulting on elongated Uls that wastedestre
prevents duplicate widget insertion during crossover. Wgpace. Finally, the IGA still placed widgets on top of each
use swap mutation, where we randomly pick two genes iother, since a widget placed to the left of a widget with
the integer chromosome and swap their values. The integemeighboring widget already on the left results in stacked
permutation representation used for the layout of the wilgewidgets.
also saves us from having to compute whether widgets Although for the two previous representations we expect
overlap, a computational save @t for each individual a GA to eventually untangle the layout, the permutation
(widget layout chromosome of lengthin the population (of representation seems to be a more effective and elegant
sizen), and a total save dfn computation every generation. solution to the layout of the widgets.



B. Widget Color individual 7 in the population as follows:

m

We encode widget color on the widget characteristics M — dist(ep i, €ik)
chromosome. For the color we use the RGB color model, bs = Z M
where each color is a combination of various degrees of =1 ) ,
red, green, and blue. The RGB components vary ffbto +(MH — hamming(b, i)
255 respectively. So red i$255,0,0), green is(0, 255, 0),
and blue is(0, 0, 255). Hence, we requir8 bits for each of 0
the three main color components, with a total2df bits to = Z dist(€wk, €ik)
represent the color of a single widget. This representation 1 M
allows us to explore the?* space of colors for each widget.

The RGB model was chosen because of its support in
CSS, which is how the characteristics of widgets are speicifie The term within the summation computes color similarity
in XUL, the target language for our Uls. We could haveand the second line, the layout similariby.is the subjective
used the HSV color model [4], but its gamut is the same d§ness component computed with reference to the user-
RGB, and experiments have shown that there is no significa#tlected best individual while); computes the subjective
efficiency difference in the RGB and HSV color models [2]fithess component with reference to the user-selected worst
[17]. Therefore, we decided to stick to RGB, however wéndividual. In the formulas above) is the maximum
treat RGB colors as vectors in a 3D color-space. distance between any two colorg/255% x 3 = 441.68
and dist(ey 1, €i,1) 1S the euclidean distance between the
k" widget of the best individuals and thé" widget of
individual <. M H is the maximum hamming distancé £

Our IGAs fitness evaluation consists of two steps: (1fV)- We finally scale the subjective fitness to lie betwéen
user input evaluation, and (2) objective metric conforngancnd1000.
checking. In the first step we have the user make two Lastly, we compute the subjective component as the sum
selections, the Ul the user likes the best and the Ul the usek the color and layout similarity of individual compared
likes the least. We use these two selected Uls to evaluate fifePoth the best individual and the worst individual.
subjective fitness component of all other individuals in the
population through interpolation. In the second step the GA
looks through the Uls in the population and checks to see We were fortunate to have our interpolation technique
how well they adhere to or violate coded guideline metricavork well with the use of euclidean distance for the widget
We then add the subjective and objective fithess componemtsaracteristics chromosome and hamming distance for the
in a linear weighted sum. For this experiment we used equialyout chromosome. A heuristic such as hamming distance
weights for the subjective and objective fitness componentsight not work well for problems in other domains and with
other representations. Each problem domain would require i
own interpolation technique, either in the phenotypic spac

in genotypic space with hamming distance, longest common
Our earlier work discusses our decision to choose a subsgibsequence, among others.

consisting of best individuals in the population [13], [14]
We compute the similarity between two individuals in twoB- Objective Evaluation
steps. In the first step, we calculate color similarity of the We compute the objective fithness component by checking
two Uls, in terms of the widgets and the panel backgrounthow well Ul individuals in the population adhere to and
To determine color similarity, we calculate the euclideamespect coded style guidelines. Our first coded color style
distance between two colors. We reward a small distanggiideline checks whether a Ul has a high contrast between
between the widget color in individuaknd the user selected background panel color and widget foreground colors. Main-
best individuab. On the other hand, a large distance betweesaining a low contrast between widget colors is our second
the widget color in individuat and the user selected worstcoded color style guideline. We prefer the high contrast
individual w is rewarded. Next, we compute widget layoutoetween background and widget colors to ensure legibility.
similarity. Here we compute the hamming distance betweeThe low contrast between widget colors ensures that widgets
the permutation layout chromosomes of the two individualshave a similar shade of color, instead of having each widget
This fitness is inversely proportional to the hamming diséan in a Ul with an independent color. The use of the grid
between individual and the user selected bésand directly positioning to layout widgets enforces their alignmentjakih
proportional to hamming distance betweerand the user is a style guideline too.
selected worst. Finally, we scale the subjective componentwe iterate through the widgets of each Ul layout and
to make it comparable to the objective component. compute the euclidean distance from each widget color to
We compute similarity between the best individual background panel color to check high contrast between the
and individual: and between the worst individuat and background panel color and widget colors. We consider a

+hamming(w, i)

IV. FITNESSEVALUATION

subjective = bg + w;

A. Subjective Evaluation



large distance between widgg¢tand the panel background what exactly the selection is being made on. When the user
color as a high contrast value. We sum all the euclidegricks a Ul as the best, this leads to the GA attributing a high
distances, rewarding individuals that have a high eucfideditness to both the look and the layout of the widgets. For
sum. Next, we compare each widgdh a Ul layout to every example, if the user picks a Ul because of the vibrant blue
other widget (an? computation) in the layout, taking their colors the widgets have, then a high fitness will be attrithute
euclidean distances and adding them up. Large euclideanwhatever layout the widgets have.

distance values between two widgets means that the widgetdn the current implementation we have not incorporated a
do not have a similar shade of color. We do this to cluster thmeans with which to prevent the emergence of this parasitic
colors in 3D space into a center of gravity which defines thieehavior. This could be suppressed by fixing either the layou
color shade that all these colors should share in common. @k the look of the widgets, and evolving the other non fixed
large sum of the euclidean distances means that all widgqtarameter. Alternatively, the user could be asked to select
have very different colors, and hence they are spread aie best Ul based on widget layout and the best Ul based on
far from each other thereby violating our style guidelineswidget look. However, this adds to the number of selections
We therefore assign a low reward to such an individual. Ahat have to be made by the user, thus increasing user fatigue
small sum of the euclidean distances means that the widgets
are clustered together and share a similar shade of color.
This individual fulfills our style guideline and we theregor ~ For this paper, we collected data frahusers. Our IGAs
assign a high reward. We sum the rewards from the higparameter settings are as follows: (1) population siz&00f
contrast between widget colors and background color afd) We displayed individuals for user evaluation, and (3)
low contrast between widget colors. Finally, as with théve used probabilistic tournament selection with a tourm@me
subjective fitness, we scale this objective value to also ligize of4, 90 percent probability of choosing the tournament

V. EXPERIMENTAL SETUP

betweend and 1000. best individual (otherwise we choose a random individual
We compute how similar the color of widgets in a panefrom the tournament losers).
are as follows: Three users participated in five IGA sessions, each session
me1l m _ lasting 30 generations. For these five sessions, we asked the
obj, = Z Z M user to make a selection evergenerations, witht values of
M

1, 3, 5, 10, and15, allowing the user to bias the evolution of
. the Uls30, 10, 6, 3, and2 times respectively. We instructed
We compute the cgntrast of widgets to the backgrounlg]e users to choose the Ul they liked the best and the Ul
color with the formula: they liked the least, based on whatever criteria they deésire
b — "\ M — dist(e; y, window_bg;) We keep a reference to the user selected best and worst Uls,
002 = Z M so that we can do our interpolation technique even when we
use values of greater than 1.

Finally, we add the two objective computable metric values oyr experiment investigated the effects of delayed user
to obtain the objective metric: input. In our previous work we had a simulated user do the
IGA runs [13], [14]. The simulated user liked blue widgets
and greedily picked Uls with the most blue widgets as the

After we compute the subjective and objective fitnespest Ul and the Ul with the least blue widgets as the worst
components, we take a linear weighted sum of the two tgl. Our simulated user results showed that asking for less
determine the fitness of each individual: user input leads to increased noise in fitness evaluations. |
this paper, we explore how varying affects convergence
behavior and performance with real users.

k=1 j=k+1

k=1

objective = obj1 + objs

fitness = w1 * objective + wy * subjective

where w; is the objective component weighty, is the
subjective component weighbbjective is the fithess ob- VI. RESULTS

jective component andubjective is the subjective fitness We plotted the fitness convergence for our three study
component. The Weighml andw, are Comp|ements of each SubjeCtS:userl, user2, anduser3. Figure 3 shows userl’s
other, with values between 0 and 1. We used values of 0.5 af@ssion fitness convergence of the best individuals in the
0.5 forw; andw, respectively for the experiments discussedopulation fort = 1,3,5,10, and15. We can see step like

in section V. increases fot = 1 andt = 3 as the user varies their selection
N of the Ul they like the best. Sharp increases in fitness reflect
C. Parasitism the user choosing an individual that also conforms to the

We are evolving and trying to optimize the layout andbjective metrics. Note that in our IGA, the population will
the look of the widgets in a panel. Consequently, we haweonstantly evolve towards Uls that reflect the objectivegtes
multiple criteria that we are trying to optimize. This had le metrics, hence the fitness increases over time. Through the
to parasitic behavior on the evolution of Uls. The user pickgenerations the user sees individuals that increasinficte
the Ul the user likes the best and the Ul the user likes theonformance to the objective metrics, yet which resemble
least. However, the user does not specify these in terms ioflividuals the user liked. The fithess increase shows the
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Fig. 3. Fitness performance of user 2. The plot shows theibdsiduals  Fig. 5. Fitness performance of user 3. The plot shows theib@siduals
in the population. in the population.

successful fusion of computable objective metrics and usabot result in the highest fithess convergence. Figures 6, 7,
subjective input guiding the evolution of the Uls. Lastly,and 8 show the fitness plot of the population average for the
notice that for a value ot = 3 userl is able to achieve three users. The steep drops in average fitness performance
a higher fitness than withh = 1. We did not expect this

behavior since our previous results with a simulated user User 1 - Avg Fitness
showed that giving the simulated user complete control over 720
the Ul evolution by allowing them to participate in every 700 | ::% —
generation resulted in the highest fithess performance [14] 680 | t:g """""""
Also, we noticed that the maximum fitness for values of 660 | t=15
t = 5,10, and15 remain constant. We attribute this behavior 8 g0
to userl not changing their selection of the best Ul during £ 620
the entire session. With low values ofa user has more * 600
opportunities to change the selection of the best Uls, (30 580
chances witht = 1 and 10 chances with= 3). 560
Figure 4 shows user2’s session fitness convergence of the 540 ‘ ‘ ‘ ‘ ‘
best individuals for the same values ©fWe see that for 0 5 10 15 20 25 30

Generations

Fig. 6. Fitness performance of user 1. The plot shows theageer

User 2 - Max Fitness L9 . .
individuals in the population.

920 o
e S = correspond to the time steps where the user makes a selection
880 ¢ of the best and worst Uls. These average fitness performance

» 860 results are similar to our previous results with a simulated

& g0 user [14].

i 820 | Why do we see a drop in average fithess performance

800 | associated with the time steps on which the user provides

280 | input? Initially we expegted to see a drop_m average per-
formance associated with the user changing the selection

0 T 10 15 20 25 30 of the best and worst Uls. However, we can see a drop in
Generations performance even when the user does not change his/her

Fig. 4. Fitness performance of user 2. The plot shows theibésiduals selection of the best Ul through the entire session as was
in the population. seen with userl (Figure 3) and user2 (Figure 4). Why do we

see a constant best individual with high valueg @ind not

user2,t = 10 achieved the highest fitness, and foe= 15  with low values oft? We conducted an experiment to test two
user2 did not change their selection of the best Ul duringypothesis: (1) the drop in average performance associated
the entire session. User2 was also able to successfully biagh user input is due to the user changing the selection of
the evolution of the Uls by fusing objective and subjectivéhe worst Ul while the best Ul remains constant, and (2) the
criteria. Figure 5 shows the fitness plot for user3. User8onstant best individual results in a flat maximum fitness and
presents interesting results, since his/her varied selecbf is common with high values dfbecause of the reduced user
the best Ul helped in finding high fithess values for zall intervention.

Notice that for all three users using a valuetof 1 did The drop in fitness performance associated with user input
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Fig. 7. Fitness performance of user 2. The plot shows theageer worst turned off and comparison to the user selected beseduon.
individuals in the population.

User 3 - Avg Fitness increase in fithess performance. This supports our hypisthes
760 that the comparison to the Ul the user likes the least acsount

740 | I for the sharp fitness drops, even when the user selected best
L e N - Ul remains constant. It also supports the conjecture thidt wi
Zgg I low values oft the user has more opportunities to change
8 60| the selection of the best UI.
f=
£ ggg [ A. User Experience
600 Doing all 5 IGA runs (for values of = 1, 3, 5,10, and15)
580 - #\7 took about30 minutes to complete, with the session using a
:gg R | value oft = 1 (user input every generation for a maximum
0 5 10 15 20 25 30 of 30 generations), taking over half the timg0(minutes) to
Generations complete. We found that using a value tof= 1 results in
Fig. 8. Fitness performance of user 3. The plot shows theageer Slow changes from generation to generation, forcing the use
individuals in the population. to pay more attention to detail and making the session more

strenuous. One of the users commented that using high values
f t usually converged to likable Ul colors, without having

can be a result of a user changing the least-preferred Uewh 5 spend a lot of ime making a selection every generation.

had the user do this on two sessions, where in one of tpﬁ

. ¢ d off th . o th | ke a selection every generation still results in usegdati
sessions we turned off the comparison 1o the user se emﬁ%her values oft seem to significantly reduce user fatigue
worst Ul. Finally, we used = 3 - asking for user input every a

. ! . nd lessen the time spent on each session.
3 generations, since none of the users picked the same Ul as

the best fort = 1 andt¢ = 3. Thus, we wanted to confirm B. Uls Generated

the conjecture that such behavior was less common with low Figures 10 and 11 show a subset consisting ofotiest

values oft since the user has more opportunities to changgdividuals in the population at generatiohsnd30 respec-

his/her selection. tively for user3. The figures were taken during the session
Figure 9 shows these results. The plot shows the fitnegging + = 15. In generation0, widgets start with random

convergence of the best and average individuals in tl’Fﬁ)sitions and random colors. In generatmn we can see

population with and without comparison to the Ul the usethe best Uls which reflect both the user3's preferences and

liked the least. We can see that having the user pick thgnich best follow coded guideline metrics.

same individual as the best Ul at every time step results in

a constant maximum fitness as we saw in Figures 3 and 4 VII. CONCLUSION AND FUTURE WORK

for userl and user2. Notice that comparing individuals & th We presented an IGA that combines both computable

population to the Ul the user likes the least results in steapetrics, taken from style guidelines, and human subjective

drops in fitness performance associated with the time stapput to guide the evolution of Uls. Within this context, we

(every 3 generations) in which the user makes a selectiomvestigated three methods to reduce user fatigue in IGAs by

We also see from the plot that removing the comparisoh) displaying a subset of the best nine individuals from the

to the user selected worst individual results in a monotonjgopulation, 2) asking the user to select the best and worst



| e— T omma— The long-term goal of this evolutionary approach to Ul
|

e e design is to streamline and help reduce the complexity
R — : associated with the generation and the fine-tuning of Uls.
— o We believe that the research reported in this paper shows
— the viability of an interactive evolutionary approach to Ul
[zzoo  MeVECSSEN| prosor— ——
(T 5200 | [ design_
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