
Interactive Genetic Algorithms for User Interface Layouts

Juan C. Quiroz, Sushil J. Louis, Anil Shankar, Sergiu M. Dascalu

Abstract— We attack the problem of user fatigue in using
an interactive genetic algorithm to evolve user interfacesin
the XUL interface definition language. The interactive genetic
algorithm combines computable user interface design metrics
with subjective user input to guide evolution. Individuals in our
population represent interface specifications and we compute
an individual’s fitness from a weighted combination of user
input and user-interface-design guidelines. Results fromour
preliminary study involving three users indicates that users are
able to effectively bias evolution towards user interface designs
that reflect both user preferences and computed guideline
metrics. Furthermore, we can reduce fatigue, defined by the
number of choices needing to be made by the human designer,
by doing two things. First, asking the user to pick just two (the
best and worst) user interfaces from among a subset of nine
shown. Second, asking the user to make the choice once every
t generations, instead of every single generation. Our goal is to
provide interface designers with an interactive tool that can be
used to explore innovation and creativity in the design space
of user interfaces and make it easier for end-users to further
customize their interface without programming knowledge.

I. I NTRODUCTION

User interface (UI) design is an expensive, complex, and
time consuming process usually driven by documented style
guidelines and design principles. However many of these
guidelines and design principles are difficult to translate
into code, and good UI design is driven in large part by
human aesthetics in their look and feel. Thus UI designers
tend to be guided both by objective measures gleaned from
UI style guidelines and design principles, and by subjective
measures such as the “look” and “feel” of an interface. Our
interactive genetic algorithm combines both measures in its
fitness function and allows the UI designer to simply and
efficiently explore the space of UI designs.

Interactive genetic algorithms (IGAs) differ from GAs in
that the objective fitness evaluation is replaced with user
evaluation. As such, they can incorporate intuition, emotion,
and domain knowledge from the user. However, GAs usually
rely on the use of large population sizes running for hun-
dreds of generations to achieve satisfactory results [9]. Such
computational dedication cannot be expected from the user
due to psychological and physical fatigue. Thus, although the
use of IGAs presents us with a powerful tool with which to
incorporate subjective evaluation into the GA process, how
best to incorporate user input remains a significant research
challenge [16].

Our work differs from previous IGA applications in that
we use both a computable fitness criterion and user evalua-
tion to compose a combined fitness [16]. We encode UIs as

The authors are with the Evolutionary Computing Systems Lab, Depart-
ment of Computer Science and Engineering, University of Nevada, Reno,
NV 89557, USA. Email:{quiroz, sushil, anilk, dascalus}@cse.unr.edu

individuals in an IGA, and run over a number of generations
to help explore the space of UI designs. Periodically, the
UI designer sees the phenotypes (the UIs) corresponding to
nine of the best individuals in the population and picks two -
the best and worst looking interfaces. Empirical observations
tell us that we should not display more than nine or ten
items to be judged by a user [12]. In addition, users will tire
and become erratic in their choices if we ask them to make
hundreds of decisions. In this paper we reduce user fatigue
by asking the user to pick two individuals from nine shown,
every t generations of the IGA. Preliminary user studies
show that users are still able to effectively bias evolution
towards designs that reflect their preferences as well as the
bias imparted by the computable interface design metrics.

Due to UI design being a complex process, we primarily
focus on the evolution of the layout and appearance of
widgets of a simple panel. TheMoveTo panel, shown in
Fig. 1, was evolved by the users participating in our IGA
sessions. The panel was taken from the Lagoon UI, a 3D
naval combat simulation game developed in our lab [3]. It
was chosen because it has a variety of widely used widgets,
yet it is simple enough for our initial experiments.

The rest of the paper is organized as follows. We discuss
IGA’s, the challenges of UI design, and related work in sec-
tion II. Section III presents the encoding used for individuals
in the population. Section IV discusses how we do subjective
and objective evaluations, while section V describes our
experimental setup. Section VI describes our results with
test subjects using our IGA to evolve a simple UI. Finally,
in section VII we present our conclusions and directions for
future work.

Fig. 1. Panel layout to be evolved.

II. BACKGROUND

In the following subsections, we describe IGAs, the inher-
ent challenges of UI design, work related to incorporating
user input into IGAs, and the use of evolutionary techniques
for UI design. We also explain our choice of XUL as the
target language for our UIs.

A. Interactive Genetic Algorithms (IGAs)

IGAs provide a mapping from a user’s psychological space
to a GA’s parameter space and thereby combine the power
of human subjective evaluation with evolutionary compu-
tation [16]. We can thus incorporate human preferences,
knowledge, emotion, and intuition into GAs. A GA computes
an individual’s fitness using a mathematical equation, some
computation, or a model [9]. However, we cannot model
users trivially; users preferences are relative and context-
dependent. In IGAs the user participates in fitness evaluation
- in many cases the useris the fitness function. Generally a
user assigns fitness to an individual in the following ways:
(1) assigning a number on a subjective grading scale, (2)
ranking the individual, or (3) choosing the best individual
from a displayed subset [9], [16]. See [16] for a survey of
IGAs.

Note that for an IGA-based user centric application, we do
not have the luxury of relying on large populations sizes and
hundreds of generations (like a canonical GA) because it is
unrealistic to request a user to make hundreds or thousands
of choices. If pressed for too much feedback, users are
likely to lose interest and get tired. Furthermore, because
of the subjective nature of human input, it can lead to users
changing their goals through the IGA run, leading to noisy
landscapes - which coupled with user fatigue can lead to
suboptimal solutions [9].

B. User Interface Design

User interface design is a complex process critical to the
success of a software system; designing interactive systems
that are easy to use, engaging, and accessible is a challenging
task. Consequently, the design of a user interface is a major
and costly part of any software project.

Graphical user interface development toolkits and libraries
help user interface designers to develop graphical user in-
terfaces (GUIs) faster by providing basic widget elements,
such as menus, buttons, and textboxes. Because GUI toolkits
and libraries facilitate the design activities at too low a
level, they may allow the designer to create a bad or poor
design quickly [8]. Therefore, UI designers use style guide-
lines and design principles to design usable and engaging
interfaces. Style guidelines and design principles also help
to evaluate a generated design. Guidelines define the look
and feel of a user interface in addition to addressing the
organization of widgets, the use of color, the use of font,
the use of spacing and margins, among other properties.
Some prominent style guidelines include Apple’s Human
Interface Guidelines, Microsoft’s User Interface Guidelines,
Sun’s Java Look and Feel Guidelines, and GNU’s GNOME
Human Interface Guidelines [1], [10], [15], [5].

The use of style guidelines and design principles leads to
a couple of issues. The first issue is that“interpreting the
guidelines unambiguously and applying generic principlesto
a particular design problem is itself a major challenge”[8].
Secondly, guidelines are either too specific or too vague,
so they do not always apply to the problem at hand. For

example, here is an excerpt from Apple’s Human Interface
Guidelines:“use color to enhance the visual impact of your
widgets” [1]. This guideline is incomplete and confusing in
that the guideline does not tell us which color to use for a
given widget and on which context this principle should be
applied. Such ambiguous guidelines force UI designers to
make subjective decisions and evaluations to fill in omitted
details.

C. Related Work

We address research challenges from two areas: incorpo-
rating user input into IGAs, and using evolutionary tech-
niques for UI design.

1) Evolution of UIs: Oliver et al. explored the evolution
of the websites appearance and layout [11]. The user evolves
either the style or the layout of a webpage; these two opti-
mizations are separated in order to simplify the evaluationof
individuals. The user guides evolution by picking the indi-
viduals the user likes, then the algorithms replaces the rest of
the individuals by mating and applying high mutation rates to
the user selected individuals. CSS parameters like font size,
font color, font family, link color, and text alignment were
evolved in their experiments. We expand on this work in
two ways. First, our research incorporates expert knowledge
(in the form of style guidelines) in addition to incorporating
the subjective evaluation by a user. Second, they used a
population size of 12 individuals in order to display and fit
all individuals on a screen. Instead we use large population
sizes and display a small subset of the best nine individuals,
allowing us to sample the space of UIs more effectively and
to present the user with potentially high fitness individuals.

2) User Fatigue in IGAs:Reducing human fatigue is a
major research problem in IGAs [16]. We address this issue
by first having the user evaluate a small subset of a large
population, instead of having the user evaluate the entire
population. Further, the users in our study guide a UI’s
evolution by only selecting the best and worst individuals
from the subset displayed every generation.

Llorá et al. make the user pick the best, equality relations
are also allowed, from a displayed small subset [9]. Their
displayed subset is a tournament during selection, so they
limit the population size to minimize the number of possible
tournaments. The partial ordering of solutions, from the
winners and losers of the tournaments, is used along with the
dominance concepts of multi objective optimization to induce
a complete ordering of solutions, which is subsequently used
to train an SVM to learn the user’s preferences [9]. In our
current work we do not attempt to do any user modeling
with machine learning techniques. Instead, we use a simple
interpolation based on the user selection to determine the
fitness of every other individual in the population.

Kamalian et al. make the user evaluate a subset of the
population everytth generation [7]. We adopt a similar
approach putting the user in a supervisory role and thus
reduce the amount of user feedback, but focusing on how the
frequency of user input affects IGA performance and fatigue.
In our previous work we explored the effect of various values

of t on the IGA performance with a simulated user, where
we found that as the value oft increases, noise is introduced
into the fitness landscape [14]. We keep a reference to the
user selected best and worst UIs, so that we can do our
interpolation technique in generations1 to t− 1. Section VI
addresses results obtained by varying the value oft with our
three subjects, instead of with a simulated user. Finally, in
Kamalian’s work, a user provides either a demote or promote
reaction to individuals displayed for user evaluation. The
algorithm uses a validity constraint to determine viable and
meaningful designs displayed to the user and numerous indi-
viduals can match this constraint. In a similar approach, we
incorporate an objective fitness component which evaluates
compliance with UI design guidelines.

D. XUL User Interfaces

We use the XML User-interface Language, a cross-
platform markup language for user interfaces, as the target
language for our evolved UIs [18]. We choose XUL because
of its flexibility and the ease with which widgets can be
manipulated. Using XUL syntax and structure, we can create
a wide range of applications, from a simple layout consisting
of two buttons, to a full fledged application consisting of a
menubar, toolbar, and other common widget elements.

III. U SER INTERFACE REPRESENTATION

We encode the UI representation in two chromosomes
(Fig. 2). One chromosome encodes widget layout organiza-
tion, and the second chromosome encodes widget character-
istics (currently being widget color). We organize the widgets
on a 10 rows by 2 columns grid. The grid, while allowing for
limited layout designs, is simple for our initial experiments.
In user interface design a sizer usually manages widgets, and
a grid sizer allows efficient widget organization in a layout.
The grid layout also enforces alignment of widget, which is a
style guideline in UI design. We avoided widget encoding as
a bit string since standard genetic operators such as crossover
or mutation could potentially destroy the representation by
introducing duplicate widgets. To avoid this problem, we
encode the widgets in an integer permutation string, of size
20 (10 rows by 2 columns), where each integer represents a
unique identifier for each widget and 0s represent empty cells
filled with spaces. The integer string maps to the 2D grid
representation in a row major fashion. We chose the 10x2
grid because this results in UIs able to fit in the available
space in our sample application: the Lagoon UI for the
MoveTopanel explained in more detail in Section V.

To preserve the integer representation of the layout chro-
mosome, we use PMX, partial mapped crossover [6]. PMX
prevents duplicate widget insertion during crossover. We
use swap mutation, where we randomly pick two genes in
the integer chromosome and swap their values. The integer
permutation representation used for the layout of the widgets
also saves us from having to compute whether widgets
overlap, a computational save ofl2 for each individual
(widget layout chromosome of lengthl) in the population (of
sizen), and a total save ofl2n computation every generation.

Hence we can explore widget layouts by permuting widget
identifiers.

Fig. 2. UI encoding consists of two chromosomes. The widget character-
istics chromosome encodes the color of each widget in a bit format. The
widget layout chromosome encodes the position of the widgets in the grid.
Widgets are identified by integer IDs greater than0 and empty cells in the
grid are identified with0s.

The second chromosome encodes widget characteristics
(widget color) for each individual. This chromosome is a
standard bit string and we use standard one point crossover
and bit flip mutation on this part of an individual.

A. Widget Layout

We layout our widgets on a grid construct provided by
XUL which allows us to organize our widgets in rows and
columns.

We have tried using other layout organizations, including
absolute positioning and positioning relative to other widgets.
In absolute positioning we encoded the cardinal coordinates
of our widgets, where the coordinates specified where in the
panel the widgets were placed. While this was simple to
implement, it resulted in widgets being placed on top of each
other. This added another level of complexity to be resolved
by the user by providing input into the system specifying
that the UIs the user liked the best were the UIs with widgets
not stacked on top of each other, instead of having the user
concentrate on more useful characteristics, such as the actual
widget organizations and the look and feel. We may return
to this representation in the future.

Next we tried using relative positioning, where we encoded
the relative positions of widgets with respect to the previous
widget in the chromosome. The four positions allowed were
left, right, up, and down. The first widget in the chromosome
was placed on the middle of the panel, with each subsequent
widget being placed relative to its predecessor in the chro-
mosome. Without any bounds or overlap checking, we got
cases where the widgets in the UI would almost line up in
a straight line, resulting on elongated UIs that wasted screen
space. Finally, the IGA still placed widgets on top of each
other, since a widget placed to the left of a widget with
a neighboring widget already on the left results in stacked
widgets.

Although for the two previous representations we expect
a GA to eventually untangle the layout, the permutation
representation seems to be a more effective and elegant
solution to the layout of the widgets.

B. Widget Color

We encode widget color on the widget characteristics
chromosome. For the color we use the RGB color model,
where each color is a combination of various degrees of
red, green, and blue. The RGB components vary from0 to
255 respectively. So red is(255, 0, 0), green is(0, 255, 0),
and blue is(0, 0, 255). Hence, we require8 bits for each of
the three main color components, with a total of24 bits to
represent the color of a single widget. This representation
allows us to explore the224 space of colors for each widget.

The RGB model was chosen because of its support in
CSS, which is how the characteristics of widgets are specified
in XUL, the target language for our UIs. We could have
used the HSV color model [4], but its gamut is the same as
RGB, and experiments have shown that there is no significant
efficiency difference in the RGB and HSV color models [2],
[17]. Therefore, we decided to stick to RGB, however we
treat RGB colors as vectors in a 3D color-space.

IV. F ITNESSEVALUATION

Our IGA’s fitness evaluation consists of two steps: (1)
user input evaluation, and (2) objective metric conformance
checking. In the first step we have the user make two
selections, the UI the user likes the best and the UI the user
likes the least. We use these two selected UIs to evaluate the
subjective fitness component of all other individuals in the
population through interpolation. In the second step the GA
looks through the UIs in the population and checks to see
how well they adhere to or violate coded guideline metrics.
We then add the subjective and objective fitness components
in a linear weighted sum. For this experiment we used equal
weights for the subjective and objective fitness components.

A. Subjective Evaluation

Our earlier work discusses our decision to choose a subset
consisting of best individuals in the population [13], [14].
We compute the similarity between two individuals in two
steps. In the first step, we calculate color similarity of the
two UIs, in terms of the widgets and the panel background.
To determine color similarity, we calculate the euclidean
distance between two colors. We reward a small distance
between the widget color in individuali and the user selected
best individualb. On the other hand, a large distance between
the widget color in individuali and the user selected worst
individual w is rewarded. Next, we compute widget layout
similarity. Here we compute the hamming distance between
the permutation layout chromosomes of the two individuals.
This fitness is inversely proportional to the hamming distance
between individuali and the user selected bestb and directly
proportional to hamming distance betweeni and the user
selected worst. Finally, we scale the subjective component
to make it comparable to the objective component.

We compute similarity between the best individualb

and individual i and between the worst individualw and

individual i in the population as follows:

bs =

m∑

k=1

M − dist(eb,k, ei,k)

M

+(MH − hamming(b, i))

ws =

n∑

k=1

dist(ew,k, ei,k)

M

+hamming(w, i)

The term within the summation computes color similarity
and the second line, the layout similarity.bs is the subjective
fitness component computed with reference to the user-
selected best individual whilews computes the subjective
fitness component with reference to the user-selected worst
individual. In the formulas above,M is the maximum
distance between any two colors,

√
2552 × 3 = 441.68

and dist(eb,k, ei,k) is the euclidean distance between the
kth widget of the best individuals and thekth widget of
individual i. MH is the maximum hamming distance (l =
20). We finally scale the subjective fitness to lie between0
and1000.

Lastly, we compute the subjective component as the sum
of the color and layout similarity of individuali compared
to both the best individualb and the worst individualw.

subjective = bs + ws

We were fortunate to have our interpolation technique
work well with the use of euclidean distance for the widget
characteristics chromosome and hamming distance for the
layout chromosome. A heuristic such as hamming distance
might not work well for problems in other domains and with
other representations. Each problem domain would require its
own interpolation technique, either in the phenotypic space or
in genotypic space with hamming distance, longest common
subsequence, among others.

B. Objective Evaluation

We compute the objective fitness component by checking
how well UI individuals in the population adhere to and
respect coded style guidelines. Our first coded color style
guideline checks whether a UI has a high contrast between
background panel color and widget foreground colors. Main-
taining a low contrast between widget colors is our second
coded color style guideline. We prefer the high contrast
between background and widget colors to ensure legibility.
The low contrast between widget colors ensures that widgets
have a similar shade of color, instead of having each widget
in a UI with an independent color. The use of the grid
positioning to layout widgets enforces their alignment, which
is a style guideline too.

We iterate through the widgets of each UI layout and
compute the euclidean distance from each widget color to
background panel color to check high contrast between the
background panel color and widget colors. We consider a

large distance between widgetj and the panel background
color as a high contrast value. We sum all the euclidean
distances, rewarding individuals that have a high euclidean
sum. Next, we compare each widgetj in a UI layout to every
other widget (anl2 computation) in the layout, taking their
euclidean distances and adding them up. Large euclidean
distance values between two widgets means that the widgets
do not have a similar shade of color. We do this to cluster the
colors in 3D space into a center of gravity which defines the
color shade that all these colors should share in common. A
large sum of the euclidean distances means that all widgets
have very different colors, and hence they are spread out
far from each other thereby violating our style guidelines.
We therefore assign a low reward to such an individual. A
small sum of the euclidean distances means that the widgets
are clustered together and share a similar shade of color.
This individual fulfills our style guideline and we therefore
assign a high reward. We sum the rewards from the high
contrast between widget colors and background color and
low contrast between widget colors. Finally, as with the
subjective fitness, we scale this objective value to also lie
between0 and1000.

We compute how similar the color of widgets in a panel
are as follows:

obj1 =

m−1∑

k=1

m∑

j=k+1

dist(ei,k, ei,j)

M

We compute the contrast of widgets to the background
color with the formula:

obj2 =

m∑

k=1

M − dist(ei,k, window bgi)

M

Finally, we add the two objective computable metric values
to obtain the objective metric:

objective = obj1 + obj2

After we compute the subjective and objective fitness
components, we take a linear weighted sum of the two to
determine the fitness of each individual:

fitness = w1 ∗ objective + w2 ∗ subjective

where w1 is the objective component weight,w2 is the
subjective component weight,objective is the fitness ob-
jective component andsubjective is the subjective fitness
component. The weightsw1 andw2 are complements of each
other, with values between 0 and 1. We used values of 0.5 and
0.5 forw1 andw2 respectively for the experiments discussed
in section V.

C. Parasitism

We are evolving and trying to optimize the layout and
the look of the widgets in a panel. Consequently, we have
multiple criteria that we are trying to optimize. This has led
to parasitic behavior on the evolution of UIs. The user picks
the UI the user likes the best and the UI the user likes the
least. However, the user does not specify these in terms of

what exactly the selection is being made on. When the user
picks a UI as the best, this leads to the GA attributing a high
fitness to both the look and the layout of the widgets. For
example, if the user picks a UI because of the vibrant blue
colors the widgets have, then a high fitness will be attributed
to whatever layout the widgets have.

In the current implementation we have not incorporated a
means with which to prevent the emergence of this parasitic
behavior. This could be suppressed by fixing either the layout
or the look of the widgets, and evolving the other non fixed
parameter. Alternatively, the user could be asked to select
the best UI based on widget layout and the best UI based on
widget look. However, this adds to the number of selections
that have to be made by the user, thus increasing user fatigue.

V. EXPERIMENTAL SETUP

For this paper, we collected data from3 users. Our IGA’s
parameter settings are as follows: (1) population size of100,
(2) we displayed9 individuals for user evaluation, and (3)
we used probabilistic tournament selection with a tournament
size of4, 90 percent probability of choosing the tournament
best individual (otherwise we choose a random individual
from the tournament losers).

Three users participated in five IGA sessions, each session
lasting30 generations. For these five sessions, we asked the
user to make a selection everyt generations, witht values of
1, 3, 5, 10, and15, allowing the user to bias the evolution of
the UIs30, 10, 6, 3, and2 times respectively. We instructed
the users to choose the UI they liked the best and the UI
they liked the least, based on whatever criteria they desired.
We keep a reference to the user selected best and worst UIs,
so that we can do our interpolation technique even when we
use values oft greater than 1.

Our experiment investigated the effects of delayed user
input. In our previous work we had a simulated user do the
IGA runs [13], [14]. The simulated user liked blue widgets
and greedily picked UIs with the most blue widgets as the
best UI and the UI with the least blue widgets as the worst
UI. Our simulated user results showed that asking for less
user input leads to increased noise in fitness evaluations. In
this paper, we explore how varyingt affects convergence
behavior and performance with real users.

VI. RESULTS

We plotted the fitness convergence for our three study
subjects:user1, user2, anduser3. Figure 3 shows user1’s
session fitness convergence of the best individuals in the
population fort = 1, 3, 5, 10, and15. We can see step like
increases fort = 1 andt = 3 as the user varies their selection
of the UI they like the best. Sharp increases in fitness reflect
the user choosing an individual that also conforms to the
objective metrics. Note that in our IGA, the population will
constantly evolve towards UIs that reflect the objective design
metrics, hence the fitness increases over time. Through the
generations the user sees individuals that increasingly reflect
conformance to the objective metrics, yet which resemble
individuals the user liked. The fitness increase shows the

 760

 780

 800

 820

 840

 860

 880

 900

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 1 - Max Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 3. Fitness performance of user 2. The plot shows the bestindividuals
in the population.

successful fusion of computable objective metrics and user
subjective input guiding the evolution of the UIs. Lastly,
notice that for a value oft = 3 user1 is able to achieve
a higher fitness than witht = 1. We did not expect this
behavior since our previous results with a simulated user
showed that giving the simulated user complete control over
the UI evolution by allowing them to participate in every
generation resulted in the highest fitness performance [14].
Also, we noticed that the maximum fitness for values of
t = 5, 10, and15 remain constant. We attribute this behavior
to user1 not changing their selection of the best UI during
the entire session. With low values oft a user has more
opportunities to change the selection of the best UIs, (30
chances witht = 1 and 10 chances witht = 3).

Figure 4 shows user2’s session fitness convergence of the
best individuals for the same values oft. We see that for

 760

 780

 800

 820

 840

 860

 880

 900

 920

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 2 - Max Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 4. Fitness performance of user 2. The plot shows the bestindividuals
in the population.

user2,t = 10 achieved the highest fitness, and fort = 15
user2 did not change their selection of the best UI during
the entire session. User2 was also able to successfully bias
the evolution of the UIs by fusing objective and subjective
criteria. Figure 5 shows the fitness plot for user3. User3
presents interesting results, since his/her varied selections of
the best UI helped in finding high fitness values for allt.
Notice that for all three users using a value oft = 1 did

 760

 780

 800

 820

 840

 860

 880

 900

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 3 - Max Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 5. Fitness performance of user 3. The plot shows the bestindividuals
in the population.

not result in the highest fitness convergence. Figures 6, 7,
and 8 show the fitness plot of the population average for the
three users. The steep drops in average fitness performance

 540

 560

 580

 600

 620

 640

 660

 680

 700

 720

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 1 - Avg Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 6. Fitness performance of user 1. The plot shows the average
individuals in the population.

correspond to the time steps where the user makes a selection
of the best and worst UIs. These average fitness performance
results are similar to our previous results with a simulated
user [14].

Why do we see a drop in average fitness performance
associated with the time steps on which the user provides
input? Initially we expected to see a drop in average per-
formance associated with the user changing the selection
of the best and worst UIs. However, we can see a drop in
performance even when the user does not change his/her
selection of the best UI through the entire session as was
seen with user1 (Figure 3) and user2 (Figure 4). Why do we
see a constant best individual with high values oft and not
with low values oft? We conducted an experiment to test two
hypothesis: (1) the drop in average performance associated
with user input is due to the user changing the selection of
the worst UI while the best UI remains constant, and (2) the
constant best individual results in a flat maximum fitness and
is common with high values oft because of the reduced user
intervention.

The drop in fitness performance associated with user input

 540

 560

 580

 600

 620

 640

 660

 680

 700

 720

 740

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 2 - Avg Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 7. Fitness performance of user 2. The plot shows the average
individuals in the population.

 540

 560

 580

 600

 620

 640

 660

 680

 700

 720

 740

 760

 0 5 10 15 20 25 30

F
it

n
e

s
s

Generations

User 3 - Avg Fitness

t=1
t=3
t=5

t=10
t=15

Fig. 8. Fitness performance of user 3. The plot shows the average
individuals in the population.

can be a result of a user changing the least-preferred UI while
not changing the best-preferred UI. We conducted another
session run with a user, where the user was instructed to
pick a UI as the best at the beginning of the session and to
continually pick that UI throughout the rest of the run. We
had the user do this on two sessions, where in one of the
sessions we turned off the comparison to the user selected
worst UI. Finally, we usedt = 3 - asking for user input every
3 generations, since none of the users picked the same UI as
the best fort = 1 and t = 3. Thus, we wanted to confirm
the conjecture that such behavior was less common with low
values oft since the user has more opportunities to change
his/her selection.

Figure 9 shows these results. The plot shows the fitness
convergence of the best and average individuals in the
population with and without comparison to the UI the user
liked the least. We can see that having the user pick the
same individual as the best UI at every time step results in
a constant maximum fitness as we saw in Figures 3 and 4
for user1 and user2. Notice that comparing individuals in the
population to the UI the user likes the least results in steep
drops in fitness performance associated with the time step
(every 3 generations) in which the user makes a selection.
We also see from the plot that removing the comparison
to the user selected worst individual results in a monotonic

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 5 10 15 20 25 30

F
it

n
e
s
s

Generations

Max: No Worst Comp
Avg: No Worst Comp

Max: Worst Comp
Avg: Worst Comp

Fig. 9. Fitness performance of population with comparison to user selected
worst turned off and comparison to the user selected best turned on.

increase in fitness performance. This supports our hypothesis
that the comparison to the UI the user likes the least accounts
for the sharp fitness drops, even when the user selected best
UI remains constant. It also supports the conjecture that with
low values oft the user has more opportunities to change
the selection of the best UI.

A. User Experience

Doing all 5 IGA runs (for values oft = 1, 3, 5, 10, and15)
took about30 minutes to complete, with the session using a
value of t = 1 (user input every generation for a maximum
of 30 generations), taking over half the time (20 minutes) to
complete. We found that using a value oft = 1 results in
slow changes from generation to generation, forcing the user
to pay more attention to detail and making the session more
strenuous. One of the users commented that using high values
of t usually converged to likable UI colors, without having
to spend a lot of time making a selection every generation.
Our impression from the users’ feedback and from their
behavior during the IGA runs leads to believe that color was
the primary decision factor for evaluating the UIs presented.
Even though30 generations is not a big number, having to
make a selection every generation still results in user fatigue.
Higher values oft seem to significantly reduce user fatigue
and lessen the time spent on each session.

B. UIs Generated

Figures 10 and 11 show a subset consisting of the9 best
individuals in the population at generations0 and30 respec-
tively for user3. The figures were taken during the session
using t = 15. In generation0, widgets start with random
positions and random colors. In generation30, we can see
the best UIs which reflect both the user3’s preferences and
which best follow coded guideline metrics.

VII. C ONCLUSION AND FUTURE WORK

We presented an IGA that combines both computable
metrics, taken from style guidelines, and human subjective
input to guide the evolution of UIs. Within this context, we
investigated three methods to reduce user fatigue in IGAs by
1) displaying a subset of the best nine individuals from the
population, 2) asking the user to select the best and worst

Fig. 10. The best nine individuals in the initial population.

Fig. 11. The best nine individuals at session end.

UIs from the subset displayed for user evaluation, and 3)
assessing the effects of limiting user input by having the
user pick everyt generations.

We had three users evolve UIs with our tool to explore
how often to ask for user input. High values oft can reduce
human fatigue and reduce the time spent by the user on a
session. Through our interpolation technique we were able
to reduce the number of selections to two every generation.

We believe that the work presented in this paper lays a
good foundation for future research and development. We
would like to conduct further experiments by varying the
value of t over the course of a single run, exploring how
asking for user input often early in an IGA session (when
there is a high degree of diversity in the population), and
asking for less user input in later generations (when the
population approaches convergence) affects performance.W
also wish to expand the widget encoding to support coupling
between widgets and high level spatial relationships with
other widgets and the parent panel, in order to approach
GUI design on a general level. Further user studies need
to be conducted, with a larger sample, to evaluate the
utility of the tool and the effectiveness with which users
can guide and bias the evolution of UIs. Improving on
the representation and limitations imposed on by the grid
construct can result in a greater diversity of layouts, hence
improving the exploration of creativity of layout designs.

The long-term goal of this evolutionary approach to UI
design is to streamline and help reduce the complexity
associated with the generation and the fine-tuning of UIs.
We believe that the research reported in this paper shows
the viability of an interactive evolutionary approach to UI
design.

VIII. A CKNOWLEDGMENTS

This material is based in part upon work supported by the
Office of Naval Research under contract number N00014-
03-1-0104 and the National Science Foundation under Grant
No. 0447416.

REFERENCES

[1] Apple. Apple human interface design guidelines: Introduction to apple
human interface guidelines, 2006.

[2] S. A. Douglas and A. E. Kirkpatrick. Model and representation: the
effect of visual feedback on human performance in a color picker
interface. ACM Trans. Graph., 18(2):96–127, 1999.

[3] ECSL. Lagoon, 2006.
[4] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.Computer

graphics: principles and practice (2nd ed.). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

[5] GNOME. Gnome human interface guidelines 2.0, 2004.
[6] D. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley, 1989.
[7] R. Kamalian, Y. Zhang, H. Takagi, and A. Agogino. Reduced

human fatigue interactive evolutionary computation for micromachine
design. In Proceedings of the 2005 International Conference on
Machine Learning and Cybernetics, volume 9, pages 5666–5671. IEEE
Computer Society, 2005.

[8] W. C. Kim and J. D. Foley. Providing high-level control and expert
assistance in the user interface presentation design. InCHI ’93:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 430–437, New York, NY, USA, 1993. ACM Press.

[9] X. Llorà, K. Sastry, D. E. Goldberg, A. Gupta, and L. Lakshmi.
Combating user fatigue in igas: partial ordering, support vector ma-
chines, and synthetic fitness. InGECCO ’05: Proceedings of the 2005
conference on Genetic and evolutionary computation, pages 1363–
1370, New York, NY, USA, 2005. ACM Press.

[10] Microsoft Corporation. Windows xp - guidelines for applications,
2006.

[11] A. Oliver, N. Monmarché, and G. Venturini. Interactive design of web
sites with a genetic algorithm. InProceedings of the IADIS Interna-
tional Conference WWW/Internet, pages 355–362, Lisbon, Portugal,
november 13-15 2002.

[12] J. Preece, Y. Rogers, and H. Sharp.Interaction Design: Beyond Human
Computer Interaction. Wiley, 2002.

[13] J. C. Quiroz, S. M. Dascalu, and S. J. Louis. Human guidedevolution
of xul user interfaces. InCHI ’07: CHI ’07 extended abstracts on
Human factors in computing systems, pages 2621–2626, New York,
NY, USA, 2007. ACM Press.

[14] J. C. Quiroz, S. J. Louis, and S. M. Dascalu. Interactiveevolution
of xul user interfaces. InGECCO ’07: Proceedings of the 2007
conference on Genetic and evolutionary computation, New York, NY,
USA, July 2007. ACM Press.

[15] Sun Microsystems. Java look and feel design guidelines, 2001.
[16] H. Takagi. Interactive evolutionary computation: Fusion of the capa-

bilities of EC optimization and human evaluation.Proceedings of the
IEEE, 89(9):1275–1296, Sept. 2001. Invited Paper.

[17] Y. Wu and M. Takatsuka. Three dimensional colour pickers. In APVis
’05: proceedings of the 2005 Asia-Pacific symposium on Information
visualisation, pages 107–114, Darlinghurst, Australia, Australia, 2005.
Australian Computer Society, Inc.

[18] XULPlanet. Xulplanet.com, 2006.

