
Interactive Evolution of XUL User Interfaces

ABSTRACT
We attack the problem of user fatigue in using an interactive
genetic algorithm to evolve user interfaces in the XUL in-
terface definition language. The genetic algorithm combines
a set of computable user interface design metrics with sub-
jective user input to guide the evolution of interfaces. Our
goal is to provide UI designers with a tool that can be used
to explore innovation and creativity in the design space of
user interfaces and make it easier for end-users to further
customize their UI without programming knowledge. User
interface specifications are encoded as individuals in a ge-
netic algorithm’s population and their fitness is computed
from a weighted combination of user interface design guide-
lines and user input. This paper shows that we can reduce
human fatigue in interactive genetic algorithms (the number
of choices needing to be made by the designer), by 1) only
asking the user to pick two UIs from among ten shown on
the display and 2) by asking the user to make the choice
once every t generations, where t depends on the selection
algorithm used.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Theory and methods; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Design, Human Factors

Keywords
Interactive Genetic Algorithm, User Interfaces

1. INTRODUCTION
User interface (UI) design is an expensive, complex, and
time consuming process usually driven by documented style
guidelines and design principles. However many of these
guidelines and design principles are difficult to translate into
code and good UI design is driven in large part by human

aesthetics in their look and feel. Furthermore, “very little
knowledge in design generalizes beyond specific case stud-
ies” [13]. Thus UI designers tend to be guided both by objec-
tive measures gleaned from UI style guidelines and design
principles, and by subjective measures such as the “look”
and “feel” of an interface. Our interactive genetic algorithm
combines both measures in its fitness function and allows
the UI designer to simply and efficiently explore the space
of UI designs.

Interactive genetic algorithms (IGAs) differ from GAs in
that objective fitness evaluation is replaced with user evalu-
ation. As such, they can incorporate intuition, emotion, and
domain knowledge from the user. However, GAs usually rely
on the use of large population sizes running for hundreds of
generations to achieve satisfactory results [8]. Such compu-
tational dedication cannot be expected from the user due
to psychological and physical fatigue. Thus, although the
use of IGAs presents us with a powerful tool with which
to incorporate subjective evaluation into the GA process,
how best and effectively to incorporate user input remains
a significant research challenge [12].

Our work differs in that we use both a computable fitness
criterion and user evaluation to compose a combined fitness.
We encode user interfaces as individuals in an IGA, and run
over a number of generations to help explore the space of UI
designs. Periodically, the UI designer sees the phenotypes
(the UIs) corresponding to a small subset of the population
and picks two - the best and worst looking interfaces. Em-
pirical observations tell us that we should not display more
than ten items to be judged by a user [11] but the composi-
tion of the subset displayed for user evaluation creates rich
dynamics that affect the convergence behavior of the popu-
lation in the genetic algorithm. We address two issues that
affect convergence behavior. First, should we show the user
the top ten individuals in the population, a mixture of the
ten best and worst individuals in the population, or display
a random set of ten individuals in the population? Second,
how often do we need to ask the user for feedback? Results
show that displaying the top ten individuals results in faster
convergence and better interfaces. In addition, we show that
we can use genetic algorithm theory to choose the correct
value for “t,” the number of generations between display-
ing the chosen individuals to the user and asking for their
evaluation.

The remainder of this paper is organized as follows: Sec-

tion 2 discusses background information in IGAs, the chal-
lenges of UI design, and related work. Section 3 presents
the encoding and representation used for the UI individuals
in the population while the next two sections discuss how
we do subjective and objective evaluations and our experi-
mental setup. The last two sections explain and discuss our
results and present our conclusions and directions for future
work.

2. BACKGROUND
In the following subsections we explore IGAs, the inherent
challenges of UI design, and related work on the topic of
UI design. We also explain our choice of XUL as the target
language for our UIs.

2.1 Interactive Genetic Algorithms
Interactive genetic algorithms fuse the power of evolutionary
computation and human subjective evaluation by providing
a mapping from psychological space to parameter space [12].
By doing so, IGAs incorporate human knowledge, emotion,
intuition, and preference into GAs. Usually we can com-
pute the fitness of individuals in a GA based on a math
equation, some computation, or a model [8]. However, a
user cannot be trivially modeled; user preferences are rel-
ative and subject to change with time and context. IGAs
incorporate user subjective evaluation by replacing the fit-
ness evaluation with the user, where the user provides the
fitness to individuals in the population by assigning a num-
ber on a subjective scale, ranking individuals, or choosing
the best individual from a displayed subset [8, 12]. Because
of the nature of IGAs, they have been used for a variety
of applications which incorporate creative human input, in-
cluding editorial design, industrial design, image processing,
database retrieval, graphic art and CG animation, control
and robotics, among others [12].

Effective IGAs have to overcome several issues. GAs usually
rely on large population sizes running for many generations,
but asking a user to make hundred or thousands of choices
may be just a little unrealistic. A user would rapidly fatigue
and/or lose interest. Furthermore, because of the subjective
nature of human input, it can lead to users changing their
goals through the IGA run, leading to noisy landscapes -
which coupled with user fatigue can lead to suboptimal so-
lutions [8].

UI design, discussed more in detail in the next subsection,
is a process which combines objective and subjective heuris-
tics. As such, an IGA is a suitable tool which uses evolu-
tionary techniques, coupled with human input to help guide
the evolution of the population.

2.2 User Interface Design
User interface design is a complex process critical to the
success of a software system; designing interactive systems
that are easy to use, engaging, and accessible is a challenging
task. Consequently, the design of a user interface is a costly
part of any software project.

Graphical user interface development toolkits and libraries
help user interface designers to develop graphical user in-
terfaces (GUIs) faster by providing basic widget elements,

such as menus, buttons, and textboxes. Because GUI toolk-
its and libraries facilitate the design activities at too low a
level, they may allow the designer to create a bad or poor de-
sign quickly [7]. UI designers therefore also use style guide-
lines and design principles to guide their designs and this
hopefully leads to more usable interfaces. In addition, such
guidelines and design principles provide a means with which
to evaluate a generated design. Style guidelines not only
define the look and feel of a user interface, but they also ad-
dress the organization of widgets, the use of color, the use
of font, the use of spacing and margins, among other prop-
erties. Some prominent style guidelines are Apple’s Human
Interface Guidelines [1], Microsoft’s User Interface Guide-
lines [3], Sun’s Java Look and Feel Guidelines [9], and the
GNOME Human Interface Guidelines [5]. The problem lies
in that “interpreting the guidelines unambiguously and ap-
plying generic principles to a particular design problem is
itself a major challenge” [7]. There is also the problem that
guidelines are either too specific or too vague, so they do
not always apply to the problem at hand. For example, an
excerpt from Apple Human Interface Guidelines specifies:
“use color to enhance the visual impact of your widgets,”
but no detail is given as to which color to use for a given
widget and context [1]. Therefore, user interface designers
are forced into making subjective decisions and evaluations
to fill in the details that guidelines omit.

2.3 Related Work
Our work addresses research challenges from two fields: the
incorporation of user input into IGAs, and the use of evolu-
tionary techniques for UI design.

2.3.1 Evolution of UIs
The evolution of the appearance of websites was explored
in [10]. The tool described allows the user to choose among
the website styles he/she likes the best, and this guides the
evolution of the population. It is assumed that the content
of the page is fixed, and what is evolved is the cascading
style sheet (CSS) for the website. Parameters evolved in-
clude font size, font color, font family, link color, text align-
ment, and other properties that can be configured through
CSS. We seek to expand on the evolution of website appear-
ances discussed in [10] by incorporating expert knowledge,
in the form of style guidelines, into the evaluation function,
instead of having a purely subjective evaluation by the user.
Furthermore, we will not only be evolving style, but also
widget layouts.

2.3.2 User Fatigue in IGAs
Interactive genetic algorithms are a suitable tool for prob-
lems where “there is no clear measure to give the evaluation
of fitness other than the one in the human mind” [2]. This
applies to the evolution of UIs because users will be evolv-
ing UIs based on a mental model. Takagi identifies reducing
human fatigue in the use of IGAs as the major remaining
problem [12]. We address this issue by first showing the re-
lationship between individuals displayed and the population
size of the GA. Specifically, we show that users can guide the
evolution of user interfaces, and are able to evolve interfaces
to their liking by only selecting the best and worst individ-
uals from a small subset of the entire population, instead of
having to evaluate or rank all individuals in the population.

In [8] the user picks the best from a small subset displayed
to the user, but what is displayed to the user is a tourna-
ment during selection, where the user picks the best of the
solutions displayed. Then, the user selected best input gets
a copy in the mating pool; user picking is also used to infer
an ordering of individuals based on winners and losers. In
contrast, we use a simple interpolation based on the user
selection of the best and worst to determine the fitness of
every other individual in the population, thus reducing the
user input to two decisions every generation. Furthermore,
as in [6] we have the user evaluate a subset of the popula-
tion every tth generation, putting the user in a supervisory
role and thus reducing the amount of feedback needed from
the user. In [6] the user gives either a promote or demote
reaction to individuals displayed for user evaluation. A va-
lidity constraint is used to determine viable and meaningful
designs to be displayed to the user. Individuals matching
the validity constraint can be numerous; instead we explore
the effects of displaying a small subset of the population for
user evaluation and how the individuals selected as part of
the subset affect the GA’s performance. How to choose a
good value for t is addressed in our methodology section.

2.4 XUL UIs
The target language used for the UIs being evolved is XUL,
the XML User-interface Language, a cross-platform markup
language for user interfaces [14]. XUL is a powerful and
extensive language allowing the defining of widget appear-
ance through CSS style sheets and the use of JavaScript to
implement widget behaviors [14]. XUL was chosen as the
target language because of its flexibility and the ease with
which widgets can be manipulated. XUL is also suitable
for the manipulation necessary to evolve the structure of UI
layouts. The syntax and structure of XUL allow us to create
a wide range of applications, from a simple layout consist-
ing of two buttons, to a full fledged application consisting
of a menubar, toolbar, and other common widget elements.
Lastly, as a subset of XML, we can use XML parsers and
libraries to handle the manipulation of our XUL UIs.

3. UI REPRESENTATION
Widgets are laid out on a grid, with a layout being a per-
mutation of widget identification numbers. Because we also
encode aesthetic properties of widgets (such as widget color)
which do not use a permutation encoding, we use two chro-
mosomes to specify the UI. We assign integer identification
numbers, ranging from 1 up to the maximum number of
widgets in the layout, to every widget. Zero denotes blank
spaces on the grid. A sample layout and its encoding is
shown in Fig. 1. In order to preserve this permutation
representation, we use PMX, partial mapped crossover, as
the crossover operator for this chromosome. PMX keeps
crossover from creating individuals with duplicate genes,
which would violate the permutation property. We also use
swap mutation, which randomly picks two individuals in the
chromosome and swaps them. The permutation representa-
tion is effective in that the positions of the widgets in the
layout are reduced to a shuffling of the permutation of wid-
get identification numbers. The second chromosome encodes
the characteristics of each widget in a layout; currently this
consists of the color of each widget. The encoding for this
chromosome is a bit string - 0s and 1s. We use single point
crossover and bit flip mutation on this chromosome.

3.1 Widget Layout
We organize the layout of our widgets using a grid based
system. The grid construct is provided by XUL and it allows
us to organize our widgets in rows and columns.

Previously we tried using other layout organizations, includ-
ing absolute positioning and positioning relative to other
widgets. In absolute positioning we encoded the cardinal
coordinates of our widgets, where the coordinates specified
where in the panel the widgets were placed. While this was
simple to implement, it resulted in widgets being placed on
top of each other. This added another level of complexity to
be resolved by the user by providing input into the system
specifying that the UIs the user liked the best were the UIs
with widgets not stacked on top of each other, instead of
having the user concentrate on more useful characteristics,
such as the actual widget organizations and the look and
feel. We may return to this representation in the future.

Next we tried using relative positioning, where with each
widget we encoded its position relative to the previous wid-
get on the chromosome. The four positions allowed were left,
right, up, and down. The first widget in the chromosome
was placed on the middle of the panel, with each subsequent
widget being placed relative to its predecessor in the chro-
mosome. Without any bounds or overlap checking, we got
cases where the widgets in the UI would almost line up on a
straight line, resulting on elongated UIs that wasted screen
space. We also encountered the problem that with relative
positioning we still obtained widgets placed on top of each
other, since a widget placed to the left of a widget with a
neighboring widget already on the left results on stacked
widgets.

Although for the two previous representations we expect a
GA to eventually untangle the layout, the permutation rep-
resentation seems to be a more effective and elegant solu-
tion to the layout of the widgets. By laying out widgets in
columns and rows we are able to avoid the overlapping of
widgets without the n2 computation involved to check the
overlap of widgets. Most importantly, we restrict the lay-
out of widgets to the dimensions of the grid and because of
the nature of the grid layout, widgets are aligned with each
other, which implicitly enforces a guideline of style.

For the experiments conducted and discussed in this paper
we have fixed the grid size to 10x2, 10 rows and 2 columns.
We chose this grid size because it is similar in dimension
to the available space on the Lagoon UI [4] discussed in
Section 5.1. Widgets are placed on the layout in a row-major
fashion, with remaining empty cells filled with blank spaces.
Hence, the layout of widgets boils down to a permutation of
widgets and blank spaces, and by shuffling the permutation
we are able to explore different widget layouts.

3.2 Widget Color
We encode the color of widgets on a regular bit string. For
the color we use the HTML hexadecimal color representa-
tion, where each color consists of three components: red
(FF0000), green (00FF00), and blue (0000FF). The RGB
components vary from 0 to 255 respectively, with 0 repre-
senting black and 255 representing white. Hence, we require
8 bits for each of the three main color components, with a

Figure 1: Encoding of the layout of widgets. Wid-
gets are identified by integer IDs greater than 0 and
empty cells in the grid are identified with 0s.

total of 24 bits to represent the color of a single widget. This
representation allows us to explore the 224 space of colors
for the widgets.

4. FITNESS EVALUATION
The fitness evaluation of the individuals in the IGA is a
two step process. The user is first asked to provide input,
which constitutes the subjective component of the fitness
evaluation. After recording this user input, we check con-
formance to a set of objective heuristics taken from our style
guidelines. Fitness is then computed as the weighted sum
of objective and subjective components. The correspond-
ing weights can be adjusted by the user and can cause GA
behavior to range from pure objective evaluation to pure
subjective evaluation. For the experiments and results dis-
cussed in this paper we used equal weights for the objective
and subjective components.

4.1 Objective Evaluation
The objective fitness is obtained by checking the validity of
style guidelines in the user interface layout represented by an
individual. The two main guidelines currently incorporated
on the objective evaluation are the use of a high contrast
between the background and foreground color, and the use
of a similar shade of color for widgets. The grid position-
ing of the widgets in the layout implicitly enforces a widget
alignment guideline.

We enforce a high contrast between the widgets’ color and
the panel color by taking the difference between the panel
color and the color of each widget in the panel. Colors are
treated as vectors, so taking the difference consists of find-
ing the distance between two color vectors. We add the
differences of color found, with a high difference attributed
a high fitness and a low difference attributed a low fitness.
Similarly, to enforce a low contrast between widget colors
we compare the color of each widget with every other wid-
get, summing up the difference of the colors. A low differ-
ence is attributed a high fitness, whereas a high difference
is attributed a low fitness. The objective computation is
therefore:

objectiveFitness = HCD + LCD

where HCD is the high contrast difference between each wid-
get color and the panel background color, and LCD is the
low contrast difference between widgets. The objective com-
ponent value is then scaled between 0 and 1000 with the
following formula:

scaledObjectiveFitness = OF/SOF ∗ 1000

where OF is the objective fitness component value obtained
through metric validation and SOF is the maximum possible
objective fitness component value.

4.2 Subjective Evaluation
The subjective evaluation consists of taking the user choice
of best and worst individuals displayed, and using this to
assign a “fitness” to each individual in the population. We
allow the user to choose only the best and worst in order to
address user fatigue in evaluation. The user chosen worst
individual, w, gets a subjective fitness of 0. The user se-
lected best individual, b, gets the maximum subjective fit-
ness which is relative to the length of its two chromosomes.
Next, we interpolate the subjective fitness of every other
individual, i, by 1) decoding the colors of individual i, 2)
finding the distance between the colors used by i and b, 3)
summing up the color distance values, 4) scaling the color
distance values, giving a high value to small color distance
values and a low value to high color distance values, and
5) compute hamming distance between widget layout per-
mutation chromosomes. These steps are then repeated by
comparing individual i with w, the user selected worst UI.
The subjective component value is then scaled similarly to
the objective fitness component, between 0 and 1000, with
the following formula:

scaledSubjectiveFitness = SF/SFM ∗ 1000

where SF is the subjective component value obtained through
interpolation and SFM is the maximum possible subjective
component value.

4.2.1 Parasitism
We are evolving and trying to optimize the layout and the
look of the widgets in a panel. Consequently, we have mul-
tiple criteria that we are trying to optimize. This has led to
parasitic behavior on the evolution of UIs. The user picks
the UI the user likes the best and the UI the user likes the
least. However, the user does not specify these in terms of
what exactly the selection is being made on. When the user
picks a UI as the best, this leads to the GA attributing a
high fitness to both the look and the layout of the widgets.
For example, if the user picks a UI because of the vibrant
blue colors the widgets have, then a high fitness will be at-
tributed to whatever layout the widgets have. Thus, on our
simulated user picking, it is assumed that the user picks the
best and worst based on color alone, ignoring the layout of
the widgets. Widgets associated with the most blue UIs,
regardless of orderliness, will be given a high fitness as well.

In the current implementation we have not incorporated a
means with which to prevent the emergence of this parasitic
behavior. This could be suppressed by fixing either the lay-
out or the look of the widgets, and evolving the other non
fixed parameter. Alternatively, the user could be asked to
select the best UI based on widget layout and the best UI

based on widget look. However, this adds to the number of
selections that have to be made by the user, thus increasing
user fatigue.

5. EXPERIMENTAL SETUP
For the experiments conducted we used a population size
of 100 and we displayed 10 individuals for user evaluation.
We compare two selection methods, roulette wheel selection
and probabilistic tournament selection. For tournament se-
lection we used a tournament size of 4, with 90% probability
of choosing the best individual in the tournament. Four in-
dividuals from the population are randomly sampled to form
a tournament for parent selection. The IGA was run over
30 independent runs.

5.1 The Lagoon UI
We used Lagoon, a real-time 3D naval combat simulation
game developed at the Evolutionary Computing Systems
Lab (ECSL) at UNR as a platform for AI research [4]. We
tested our approach on one of the interaction panels from the
complex Lagoon UI, the “MoveTo” panel that controls com-
bat ships in the game. The widgets in the MoveTo panel, five
text labels, a button, a drop-down menu, a slider, and two
textboxes, were written in XUL and loaded into the IGA.
The MoveTo panel was chosen because it has a variety of
widgets, yet it is simple enough for our initial experiments.
We conducted two experiments; the first to investigate which
individuals to display and the second to investigate how of-
ten we need to pick. All results reported below are averages
from 30 independent runs.

Instead of using real people we used a simulated human with
a preference for the color blue. Given a set of UIs displayed
for user evaluation, we used a greedy approach to simulate
user picking, and the UI with the most blue widgets was
chosen as the best, and the UI with the least blue widgets
was chosen as the worst layout.

We chose to test three methods for selecting our n = 10
individuals in the population for user evaluation. The first
method displayed the best n individuals in the population.
The second method displayed both the best n/2 and the
worst n/2 individuals in the population. The last method
randomly selected n individuals in the population to be dis-
played for user evaluation.

6. RESULTS
As expected, we found that using tournament selection with
a tournament size of 4 outperformed roulette wheel selection
(see Fig. 2). The figure shows the best individuals in the
population. Tournament selection’s stronger selection pres-
sure leads to much quicker convergence to better values.

6.1 Subset Display Method
We compared three methods of selecting individuals to be
displayed to the user. The three methods are displaying the
best n individuals, displaying n random individuals, and
displaying the best n/2 and the worst n/2 individuals in
the population. Displaying the best individuals in the pop-
ulation gives the user the opportunity to view individuals
that show the greatest potential by both meeting the objec-
tive and subjective heuristics most effectively. Displaying

 780

 800

 820

 840

 860

 880

 900

 920

 940

 0 50 100 150 200

F
itn

es
s

Generations

Tournament
Roulette

Figure 2: Tournament selection versus roulette
wheel selection. The plot shows the best individ-
uals in the population.

random individuals gives the user an unbiased insight into
the current state of the population; it can allow the user to
see the degree to which the population is converging (by the
number of individuals that are similar) but it suffers because
it can present bad UI designs to the user. Lastly, displaying
both best and worst individuals from the population allows
the user to see what the population is converging to and
where it is coming from.

We ran the IGA with each of the three display methods using
tournament selection and plotted the fitness of the best in-
dividuals in the population as shown in Fig. 3. We can see
that displaying the best individuals in the population for
user evaluation results in the best IGA performance when
compared to displaying random individuals and displaying
both the best and the worst individuals in the population.
Fig. 4 also shows that our (simulated) user is able to bias
IGA performance effectively by displaying the best individ-
uals in the population for subjective evaluation. Remember,
blue widgets was the user’s assumed preference. Displaying
the best and worst individuals in the population results in
individuals with blue widgets, but which violate the style
guideline metrics that we are trying to enforce through the
objective evaluation.

6.2 The Power of t
We varied the value of t to explore the effects of user input
every tth generation on IGA performance. That is, the user
was only asked to make a choice once every t generations and
we used that choice for the next t generations to interpolate
individuals’ fitness. Figure 5 compares convergence behavior
for t = 1, 5, 10, and 20, where we have plotted the average
fitness over 30 runs of the best individuals in the population.
We were encouraged to see that varying t, for small values of
t, has little effect on the IGA’s convergence behavior. Next,
to look at the effect of changing t on the subjective fitness,
we plotted the convergence to blue widgets in Fig. 6 (again
this is average of the best individuals). Note that even a
small change in t results in a drop in convergence to blue
UIs as shown in the figure. With less frequent user input we
get increasingly noisy subjective fitness evaluation.

 780

 800

 820

 840

 860

 880

 900

 920

 940

 0 50 100 150 200

F
itn

es
s

Generations

Best
Random

Best and Worst

Figure 3: Subset display method comparison.

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

B
lu

en
es

s

Generations

Best
Random

Best and Worst

Figure 4: Subset display method comparison on con-
vergence to blue widgets.

 780

 800

 820

 840

 860

 880

 900

 920

 940

 960

 0 50 100 150 200

F
itn

es
s

Generations

t=1
t=5

t=10
t=20

Figure 5: Effect of varying t on IGA performance.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200

B
lu

en
es

s

Generations

t=1
t=5

t=10
t=20

Figure 6: Effect of varying t on convergence to blue
UIs.

 780

 800

 820

 840

 860

 880

 900

 920

 940

 0 50 100 150 200

F
itn

es
s

Generations

t=1
t=10
t=20
t=40
t=80

Figure 7: Degradation on the IGA performance
(maximum) for high t values.

We increased the value of t to 20, 40, and 80 generations
to assess the effect on IGA performance. Figure 7 shows
the fitness plot of the best individuals in the population.
We can see the step-like increase of fitness corresponding to
the generation when our user makes a selection. Figure 8
shows the fitness plot of the average individuals in the pop-
ulation. The sharp decrease in fitness in early generations
corresponds to the generation in which the user makes the
second picking, since the first user picking is done upon pop-
ulation initialization. We then see a slow increase in fitness.

We also plotted the convergence to blue UIs, which was the
user assumed preference. Figure 9 shows the “blueness”
of the best individuals in the population. From the figure
we see that increasing values of t leads to decreasingly blue
UIs. Thus, as expected, less user input results in a less
effective subjective bias on the population. Finally, Fig. 10
shows the average blueness of individuals in the population
indicating that the average performance correlates well with
best performance.

6.3 UIs Generated

 550

 600

 650

 700

 750

 800

 0 50 100 150 200

F
itn

es
s

Generations

t=1
t=10
t=20
t=40
t=80

Figure 8: Degradation on the IGA performance (av-
erage) when using high t values.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200

B
lu

en
es

s

Generations

t=1
t=10
t=20
t=40
t=80

Figure 9: Degradation in the convergence (maxi-
mum) to blue UIs when using high t values.

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200

B
lu

en
es

s

Generations

t=1
t=10
t=20
t=40
t=80

Figure 10: Degradation in the convergence (aver-
age) to blue UIs when using high t values.

Figure 11: Displaying the best 10 individuals for
user evaluation at generation 0.

Figures 11 and 12 show a subset consisting of the 10 best
individuals in the population at generations 0 and 200, re-
spectively. In generation 0, widgets start with random posi-
tions and random colors. In generation 200, the UIs shown
all have blue widgets, which was the user assumed prefer-
ence. The UIs at generation 200 both respect the metrics
enforced on the objective evaluation: 1) Widgets should all
have a similar shade of color, and 2) There should be a high
contrast between foreground and background colors.

7. CONCLUSION AND FUTURE WORK
We have presented an IGA that combines both computable
metrics, taken from guidelines of style, as objective heuris-
tics and human subjective input to guide the evolution of
UIs. Guidelines of style and a human sense of aesthetics
are part of the UI design process, making our approach a
suitable and promising application. We have also explored
methods by which to reduce user fatigue in IGAs by 1) dis-
playing a subset from the population that yields the best
IGA performance, 2) asking the user to select the best and
worst UIs from the subset displayed for user evaluation, and
3) assessing the effects of limiting user input by having the
user pick every t generations.

We first compared selection methods in order to find the one
that yielded the best IGA performance. We found tourna-
ment selection’s high selective pressure to yield better and
more robust IGA results. Next we compared three subset
display methods, where each method resulted in a different
composition of the subset displayed for user evaluation. Our
results indicate that displaying the best individuals for user
evaluation results in better and faster convergence of the
population, when compared to displaying a random subset
and a subset consisting of the best and the worst individuals
in the population. We also found that we can get reasonable
convergence to well laid out blue (our preferred color) inter-
faces for small values of t. High values of t can reduce human
fatigue considerably, but at the cost of increased noise in the
subjective fitness landscape.

Clearly much work remains to be done. For example, we are

Figure 12: Displaying the best 10 individuals for
user evaluation at generation 200.

considering changing the value of t over the course of evolu-
tion. One idea is to let the user to pick more often in early
generations than in later generations. We may also want
to give users more control. However, we believe that the
work presented in this paper lays a good foundation for fu-
ture research and development. First, widget encoding can
be expanded to support coupling between widgets and high
level spatial relationships with other widgets and the parent
panel. We also plan to incorporate more heuristics from the
various style guidelines into the objective evaluation compo-
nent. Furthermore, we would like to conduct user studies to
assess the type of UIs that can be evolved, and to evaluate
how well a human user can guide and bias the evolution of
UIs. Last, we plan to further explore representations and
genetic operators that can yield higher fitness individuals in
less generations and with higher confidence intervals.

The long-term goal of this evolutionary approach to UI de-
sign is to streamline and help reduce the complexity asso-
ciated with the generation and the fine-tuning of UIs. We
believe that the research reported in this paper shows the
viability of an interactive evolutionary approach to UI de-
sign.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the Office
of Naval Research under contract number N00014-03-1-0104
and upon work supported by the National Science Founda-
tion under Grant No. 0447416.

9. REFERENCES
[1] Apple. Apple human interface design guidelines:

Introduction to apple human interface guidelines,
2006.

[2] S.-B. Cho. Towards creative evolutionary systems with
interactive genetic algorithm. Applied Intelligence,
16(2):129–138, 2002.

[3] M. Corporation. Windows xp - guidelines for
applications, 2006.

[4] ECSL. Lagoon, 2006.

[5] GNOME. Gnome human interface guidelines 2.0, 2004.

[6] R. Kamalian, Y. Zhang, H. Takagi, and A. Agogino.
Reduced human fatigue interactive evolutionary
computation for micromachine design. In Proceedings

of the 2005 International Conference on Machine

Learning and Cybernetics, volume 9, pages 5666–5671.
IEEE Computer Society, 2005.

[7] W. C. Kim and J. D. Foley. Providing high-level
control and expert assistance in the user interface
presentation design. In CHI ’93: Proceedings of the

SIGCHI conference on Human factors in computing

systems, pages 430–437, New York, NY, USA, 1993.
ACM Press.

[8] X. Llora, K. Sastry, D. E. Goldberg, A. Gupta, and
L. Lakshmi. Combating user fatigue in igas: partial
ordering, support vector machines, and synthetic
fitness. In GECCO ’05: Proceedings of the 2005

conference on Genetic and evolutionary computation,
pages 1363–1370, New York, NY, USA, 2005. ACM
Press.

[9] S. Microsystems. Java look and feel design guidelines,
2001.

[10] N. Monmarche, G. Nocent, M. Slimane, G. Venturini,
and P. Santini. Imagine: a tool for generating html
style sheets with an interactive genetic algorithm
based on genes frequencies. In Proceedings of the

International Conference on Systems, Man, and

Cybernetics, pages 640–645. IEEE Computer Society,
1999.

[11] J. Preece, Y. Rogers, and H. Sharp. Interaction

Design: Beyond Human Computer Interaction. Wiley,
2002.

[12] H. Takagi. Interactive evolutionary computation:
Fusion of the capabilities of EC optimization and
human evaluation. Proceedings of the IEEE,
89(9):1275–1296, Sept. 2001. Invited Paper.

[13] H. Thimbleby. User interface design with matrix
algebra. ACM Trans. Comput.-Hum. Interact.,
11(2):181–236, 2004.

[14] XULPlanet. Xulplanet.com, 2006.

