
Using Coevolution to Understand and Validate Game
Balance in Continuous Games

Ryan Leigh
University of Nevada, Reno

Reno, Nevada, United States
leigh@cse.unr.edu

Justin Schonfeld
University of Nevada, Reno

Reno, Nevada, United States
schonfju@cse.unr.edu

Sushil J. Louis
University of Nevada, Reno

Reno, Nevada, United States
sushil@cse.unr.edu

ABSTRACT
We attack the problem of game balancing by using a coevo-
lutionary algorithm to explore the space of possible game
strategies and counter strategies. We define balanced games
as games which have no single dominating strategy. Bal-
anced games are more fun and provide a more interesting
strategy space for players to explore. However, proving
that a game is balanced mathematically may not be pos-
sible and industry commonly uses extensive and expensive
human testing to balance games. We show how a coevo-
lutionary algorithm can be used to test game balance and
use the publicly available continuous state, capture-the-flag
CaST game as our testbed. Our results show that we can
use coevolution to highlight game imbalances in CaST and
provide intuition towards balancing this game. This aids
in eliminating dominating strategies, thus making the game
more interesting as players must constantly adapt to oppo-
nent strategies.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems —Games

General Terms
Design

Keywords
Games, Game Balance, Coevolution, Artificial Intelligence

1. INTRODUCTION
Game balance plays a crucial role in game design and

development. A balanced game is one in which there are
many paths to victory; there is no single dominating strat-
egy. Balanced games provide many benefits. Players have
an array of options to choose from, and as a result the game
is more interesting and fun. In multi-player games, balance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

is especially important. The ability for all players to com-
pete on a fair playing field is one of the factors which con-
tributes to making such games enjoyable. Balanced games
provide a challenging domain for studying artificially intel-
ligent agents. These domains have no domaining strategy,
so players can find counter strategies that beat agents that
use non-adaptive strategies.

Unfortunately, determining whether or not a game is bal-
anced requires completely exploring the game’s strategy space.
For a simple game like Tic-Tac-Toe, this is a relatively straight-
forward computational task, but for more complex games
such as Chess and Go it is nearly impossible to investigate
all possible strategies. As a result balancing a game is often
a challenging and difficult process requiring a great deal of
time and money. This paper demonstrates the effectiveness
of coevolution as a tool for understanding and testing game
balance.

1.1 Game Balancing
Balanced games are more fun to play. If there is a sin-

gle dominating strategy, games become a race to implement
the dominant strategy first and every match becomes pre-
dictable. Worse yet, players may constantly lose against
such a strategy with no chance of winning. A balanced
game that provides counter strategies means that players
are always able to adapt to their opponents and a chance at
victory is always possible. If each game is dynamic and the
game feels “fair”, then they will tend to play the game more
than if the game fails to exhibit these qualities [15].

Balanced games also serve as interesting platforms for AI
research. Developing an effective artificial agent for such
games is challenging because players will often find a counter
strategy to static, non-adaptive agent. Even if the agent’s
programmer encodes many strategies, players will inevitably
locate holes in the agent’s AI to exploit.

Determining if a game is balanced can be difficult. Some-
times a game is simple enough to make the determination
straightforward. For example, Tic-Tac-Toe can be easily an-
alyzed to determine that it is in fact unbalanced. The first
player can always win or force a tie. As a game gets more
complex, the challenge in determining whether or not the
game is balanced also increases.

Discrete games can have large search spaces to find a series
of moves that leads to a winning condition. Chess needed
a computer like Deep Blue to compete with grandmasters.
Analyzing these search spaces for game inbalances is compli-
cated due to their size. If we move from discrete to continu-
ous state games, building a search tree becomes impractical.
Searching for the correct sequence of moves in a continu-

ous space requires that the space be discretized resulting in
a loss of fidelity. Mathematically proving continuous state
games are balanced is often difficult due to the complicated
non-linear interactions between their rules.

Currently, games are balanced by hand tuning, but this
approach presents several problems. Humans players are ex-
pensive in both time and resources, and even human players
cannot explore all strategies. It takes time to play games
and a human can only explore a relatively small facet of a
game each time they play. Commercial games undergo ex-
tensive player testing before they are released partly due to
game balance issues. In this paper, we explore game bal-
ancing with respect to a simple game environment, looking
towards making the game a useful platform for designing
adaptive agents in the future.

Adaptive Agents
Balanced games provide a platform for researching adap-
tive agents. We define an adaptive agent to be agent that
observes an opponent’s play, analyzes it, and responds ac-
cordingly. An adaptive agent has four stages: First, the
agent “observers” the opponent. Second, the agent builds a
model of the opponent. Third, the agent trains against the
model in a separate simulation. Fourth, in the next match,
the agent uses its new strategy or strategies against the op-
ponent.

Things to note about this procedure: “Observing” can ei-
ther be done egocentrically or globally, either with limited
information or full information. The opponent does not have
to be human, but could be another agent. Lastly, the sep-
arate training simulation can either be run offline or online
while the main game is progressing.

Adaptive agents have many uses. For players who do not
or cannot play games multiplayer, the adaptive agent can
provide a challenging opponent. This can even apply to sin-
gle player games. As the player progresses in the game and
learns the agent’s tricks, the agent also learns the player’s
tricks. This can lead to entirely new behavior from the agent
during the next game. Additionally, an adaptive agent can
meet the needs of players of different skill levels by choosing
strategies the player will do better against [3, 4].

We are developing our adaptive agents for real-time con-
tinuous state games for three reasons. First, many high-
selling and highly-rated commercial games these days are
real-time continuous state games. Fifteen of the top twenty
rated games of 2007 are real-time continuous state games
[7], and of the top ten selling games of 2007 half are real-
time continuous state games [11]. Second, we have experi-
ence working in the domain of these games [12, 13]. Third,
real-time continuous state games have not been explored for
research as much as turn-based discrete games [6, 14, 1].

To aid us in developing our adaptive agents, we impose
two guidelines on the game we are designing. First, the game
must be balanced so that the adaptive agent can formulate
a counter strategy. If the game is not balanced, then the
player can find a strategy that the agent cannot beat and
the purpose of adaptive agents have been defeated. Second,
the player’s strategies must be able to be determined based
on analysis of the player’s actions. Analyzing a player’s
strategies directly from their actions can be difficult because
different strategies can share similar moves and no moves
may directly correspond to a single strategy. By ensuring
that certain actions correspond to certain strategies, then

those strategies can be easily observed. This ensures that
we can build a model of the player for later training.

1.2 Using coevolution to evaluate game bal-
ance

Coevolutionary algorithms are a subset of genetic algo-
rithms which optimize problems with coupled fitness func-
tions such as two player games[9, 8, 10]. In two population
coevolution, two populations of players are repeatedly com-
pared and evolved against one another. Each generation,
one population tests the other population and successful in-
dividuals may pass their successful strategies to the next
generation. The two populations form an “arms race” [5],
constantly changing and improving to beat the other popu-
lation.

Evolutionary algorithms tend to converge towards strate-
gies that win all the time. Coevolution has the advantage
of being able to play games faster than humans and search-
ing the strategy space implicitly in parallel [10]. As we will
demonstrate experimentally for our game CaST, and likely
for many similar games, if dominating strategies exist in the
game, coevolution will likely find them and converge. If the
game is balanced with proper counter strategies, then the
two populations will never stop adapting to each other.

Even if a game is unbalanced and there exists an ultimate
strategy coevolutionary search is not guaranteed to locate
it. Deficiencies in the agent representation may prevent the
search from testing all of the strategies available to a human
player. Although the portion of the strategy space coevo-
lution can explore is limited by the representation, within
that rather large space, coevolution can be used to locate
game imbalances. The remainder of the strategy space can
be explored via human testing.

In section 2, we describe the CaST game, the strategy
space, and the agent artificial intelligence used. We dis-
cuss coevolution, how it works, and its relationship to game
balancing in section 3. Section 4 and 5 describe our exper-
imental design and results respectively. Lastly, we give our
conclusions and future work in sections 6 and 7.

2. THE GAME

2.1 The Initial CaST Game Rules
CaST is a two player, real-time action game where the

goal is to be the first to score 50 points. CaST is short for
“Capture, Steal, Territory”. If neither player scores 50 points
in a 5 minute time period, then the player with the most
points wins. Each player controls a single ship equipped
with a tractor beam.

We developed CaST for two reasons. First, it is a good
game for testing game balancing. It is complex enough to
require balancing due to its continuous nature but simple
enough to find a representation of its rules for use in a GA.
Second, it is a good test platform for developing agents be-
cause it is easy to tell which strategy they are using when
deployed.

2.1.1 Scoring Points
There are two ways a player can score points: 1) by cap-

turing a crate and taking it to their base, or 2) by controlling
more territory than their opponent. Points that are acquired
through taking a crate to a base are counted as crate points.

Figure 1: A ship is capturing a crate. The trail ex-
tending from the crate represents progress in cap-
turing. When the trail reaches the ship, the crate
becomes captured.

Figure 2: The red player is about to capture the
crate upon returning to his base. Along the way, he
has flipped several tiles to his color.

Points that are acquired through controlling territory are
counted as territory points.

To capture an unclaimed crate, the player must use their
tractor beam on the crate for a short period of time (1

2
sec-

ond). As long as the crate lies in the arc described by the
tractor beam capturing progress is made (Figure 1). Cap-
turing progress is indicated by a yellow line extending from
the crate to the player’s ship. A captured crate can be stolen
by the opposing player if they focus their tractor beam on
the crate for a period of 1 second. After capturing a crate,
a player can score points by returning to their base with the
crate in tow. Once it has been taken to a base the crate
then reappears at it’s starting position. If a player is towing
a crate then they are unable to take control of tiles.

Scoring points through territory requires that a player
controls more tiles than their opponent. A tile is controlled
by the last player to have physically occupied the tile. Peri-
odically, the game awards points to the player with the most
tiles based on the following equation:

points = ∆Tiles ·∆Time · C (1)

where ∆Tiles is the difference in tiles between players,
∆Time is the time since the last check, and C is a constant
representing the rate of tiles per second. Initially, C had a
value of 1

100
.

Ship Physics
The ships move according to a simple physics model. A
ship’s speed changes each tick by t×accelConst×∆Time×
s/smax, where t is a throttle set from −1 to 1, s is the

Figure 3: This is CaST at the start of a match. Each
player starts in the corner near his base. The flag
is in the middle. The thing diagonal rectangles are
obstacles that players must drive around.

current speed, smax is the max speed, and accelCost is an
acceleration constant. A ships rotation changes each tick by
r× turnConstT ime× s/smax, where r is a rudder set from
−1 to 1 and turnConst is a turning constant. The tractor
beam can be used to capture unclaimed crates and to steal
crates from the opponent.

The Game Board
CaST is played in a two-dimensional arena of 800 by 600
pixels surrounded by walls (see Figure 3). Four additional
walls are placed in the center of the arena blocking access
to the crate. The map is divided evenly into 64 tiles, called
territory tiles. Each territory tile can be in one of three
states: controlled by player 1, controlled by player 2, or
uncontrolled. At the center of the board is a crate. At the
upper left corner of the board is player 1’s base and in the
lower right corner is player 2’s base.

2.2 The Strategy Space
Since one of the goals of CaST is to serve as a platform for

researching opponent modeling it needs a well defined strat-
egy space. CaST was designed to have three core strategies,
each of which cancels out one of the others.

Crate Running The player takes the quickest route to the
crate, grabs it, and returns it to their base. This pro-
cess is repeated as many times as possible.

Grab Territory The player tries to convert as many tiles
to their side as they can. Priority is given to converting
territories controlled by their opponent.

Stealing Crates The player waits around the crate until
his opponent takes the crate. Then the player steals
the crate and returns it to their own base.

Each of these strategies beats one of the other core strate-
gies and loses to the third, much like Rock-Paper-Scissors.
Crate Running beats Grab Territory as it will earn more
points at the end of a match than Grab Territory. Grab
Territory beats Stealing Crates because grabbing terri-
tory generates points that Stealing Crates cannot block.
Stealing Crates beats Crate Running because stealing
crates prevents the opponent from taking the crate to their

base and scoring. The nature of these core strategies en-
sures that for any strategy a player chooses, there is another
strategy to counter it. Also, each strategy should tie when
played against itself, as their point outputs will be the same.

2.3 Agent AI: Representing the Strategies
Each player is represented as a state-machine with three

states, one for each core strategy. Each state will run for a
set amount of time after which a new state will be chosen.
The runtime for each state is determined by a parameter
specific to that state. Each state has a probability of getting
chosen such that Pcrate +Pgrab +Psteal = 1. Once a state is
chosen, it is queried every 0.5 seconds to determine the next
action. Ship navigation is handled by a combination of A*
and a low-level reactive navigator to avoid their opponent.

The A* algorithm works on an adjacency map generated
by dividing the game arena into a 16 by 16 grid. Each grid
intersection is a vertex in the adjacency map and the edges
connect neighboring vertices including diagonals. Each edge
is tested to see that it does not intersect with fixed obstacles
in the map. If an edge does intersect with an obstacle, it is
removed from the map.

Each point in the path that A* finds is passed into the
low-level navigator. First, it finds the heading to the desired
point (dh) and sweeps across an array of angles. The length
of the array is 2×sweepWindow and stores the vote of each
angle as a possible candidate direction. The value of each
vote (v) for each angle (a) is based on the following equation:

v(a) =

(
C×turnBias×(1−|dh−a|)

2×sweepWindow
if a < dh

C(1−|dh−a|)
2×sweepWindow

if a >= dh
(2)

where C is a scaling constant and turnBias applies a
scalar to angles left of the desired heading. This value, if
not 1.0, gives a preference to move right or left depending
on whether or not turnBias is less than or greater than
1.0 respectively. Second, the navigator then does coarse ray
traces around the perimeter of the ship within a certain dis-
tance (distThresh). If a ray trace intersects with land, an-
gles in the voting array around that ray trace angle receive
a penalty of p(a) = distToLand/distThresh. The ship then
turns towards the angle with the highest value of v(a)×p(a).

2.4 Evolving the Agent
Genotype: The genotype is comprised of 11 distinct

parameters and is stored as a bit string of length 72. Each
state is represented by two parameters: the probability of
transitioning to the state from either of the other states,
and the amount of time to stay in the state. The last five
parameters tune the low-level navigator.

Phenotype: The first set of decoded parameters deter-
mines the probabilities for transitioning from one state to
another. The three parameters are summed and a random
number is chosen between 0 and the total. The parameter
that corresponds to the random number is the next state.
Each parameter is 6 bits long and decodes to a value between
0 and 63.

The second set of parameters determine how long each
state runs. Each parameter is 6 bits long and decodes to an
amount of time ranging from 1

8
th of a second to 8 seconds

in increments of an 1
8
th of a second.

The last set of parameters tune the low-level navigator as
shown in Table 1.

Figure 4: The simplex for each strategy shows wins
against the space of mixed strategies with dark grays
meaning more wins.

A single player’s actions during a run of the game can be
described as the amount of time spent in each of the three
states. Mixed strategies such as grabbing the crate and tak-
ing an indirect path to the base in order to flip additional
tiles can expressed as time spent with Crate Run and time
spent with Territory Grab. The agent representation can
replicate this time breakdown through the use of appropri-
ate parameters. Although players can employ more subtlety
when using a mixed strategy than the agent, the agent can
still mimic those decisions with parameters that result in a
similar time breakdown. Fidelity may be lost, but anything
the player does can be mapped into the space of possible
strategies for analysis and replication.

3. BALANCING WITH COEVOLUTION
Ideally, any core strategy will beat one of the other core

strategies and lose to the third. In the space of mixed strate-
gies, the strength of a core strategy will weaken as the level of
the strategy it is good against in the mixed strategy lessens.
This balance is depicted in Figure 4 where each triangle is
a simplex graph. A simplex is a three-dimensional point
where the sum of the components equals one. Black points
in the graph correspond to high levels of success against that
mixed strategy. The ability for a core strategy to win against
a mixed strategy lessens as it moves away from the corner
of the core strategy it does well against. The line between
the core strategy and the dominating strategy is all white,
because any mixed strategy on the line will result in either a
tie or a loss. Realistically, unless the rules are set just right,
these gradients will not arise. We use coevolution to test if
the game is balanced and to suggest which mixed strategies
are too weak or too strong.

3.1 Testing the Game
Competitive coevolution creates an arms race between two

populations, where each population is trying to beat the
other [16]. Through the course of a coevolutionary run, the
strategy space is sampled and searched many times faster
than human players can do by themselves. In our experi-

Table 1: Parameters Used by the GA for Obstacle Avoidance
Name Bits Values Description

sweepWindow 7 0− 127 Numbers of angles to sweep left and right
voteScalar (C) 8 0− 2.56 Scalar C used in Eq. 2

turnBias 7 −0.64− 0.63 Give preference to turn left of right
distThresh 9 200− 711 Range to search for land

landSweepRes 5 1− 32 Angle distance between land raytrace

ment, each population takes the role of one of the two play-
ers. In a game with good balancing, if one population con-
verges on one strategy, then the other population will find an
appropriate counter strategy. The first population will then
need to change its strategy to beat the second population
again. This will form cycles in the population, as they both
constantly try to out do each other. For example, if the first
population converges on the Crate Running strategy, then
the second population will have to move to the Territory
Grab strategy. To counter this move, the first population
must then adopt the Steal Crates strategy. This cycle will
continue until the end of the coevolutionary run.

If the game is not properly balanced, then many things
may happen. One strategy may be weak, causing the pop-
ulations to cycle inside a smaller area of the search space.
One strategy may dominate all the other player’s strategies,
causing one population to converge and the other to drift
around looking for a counter strategy. By looking at the
patterns of the populations as they change over time, weak-
nesses or strengths can be discovered providing insight on
changes to bring game balance.

3.2 Coevolutionary Algorithm
We used a competitive two population coevolutionary al-

gorithm to evolve and test game playing agents for CaST.
The algorithm we used is a variation of the one described
by Rosin and Belew ([16]). An outline of the algorithm is
provided below:

Initialize two populations

Designate populations as hosts and parasites

do

Choose individuals from parasites to test hosts

Evaluate hosts against the parasite sampling

Save best individual of hosts to hall of fame

Copy best of last hosts to new population

Create children for remainder of new population

Exchange roles of two populations

while(Ending condition not met)

This algorithm used shared sampling when choosing par-
asites, fitness sharing, and a hall of fame. Shared sampling
ensured that the small set of parasites chosen maximally test
the host population. The shared sampling procedure chooses
parasites that performed well against individuals that the
other parasites in the current sample did not perform well
against.

Fitness sharing rewards individuals that competed well
against a parasite that other individuals did not compete
well against. This ensures that standout individuals will
receive higher fitness for wins against hard parasites than
an individual with an equal number of wins against easier
parasites. Fitness sharing also encourages niching, allowing
for multiple counter strategies in one population. The fitness

calculation also included a second component designed to
minimize the number of collisions the ships were involved
in. As the simulation progressed, we logged all collisions
of the host individual that last longer than a half second.
We ignored shorter collisions as this game is quick paced
and short collisions are often unavoidable. The number of
collisions between 0 and 100 are normalized from 1.0 to 0 and
is saved for each of the individuals matches. If the number
of collisions is over a hundred, we set the value to 0. After
fitness sharing is calculated for each individual, we scale this
fitness by the average of these normalized collision counts.
This way, we prefer individuals with high fitness that crash
the least.

Lastly, the hall of fame ensures that individuals not only
perform well against the current parasite population, but
also against good parasites from earlier generations in the
coevolutionary run.

Coevolution Parameters
Each run of the coevolutionary algorithm was done with a
population size of 30 for 100 generations. For testing the
host population, three parasites were chosen using shared
sampling and three members of the hall of fame were chosen
at random. For reproduction, we used roulette selection,
1-point crossover with a probability of 70%, single bitwise
mutation applied to each bit with a probability of 5%, and
the top two members of the last generation were passed to
the next generation.

4. EXPERIMENTAL DESIGN
We propose a game balancing process consisting of three

stages:

1. Coevolve two populations of game playing agents

2. Analyze the dynamics of the coevolutionary process

3. If the game is unbalanced, tune the game rules and
parameters

Although we repeated this process more than five times we
will only show the analysis for five key iterations of the game
balancing process: the initial game, three midway through
the game balancing process, and the final balanced game.
For each iteration, we describe the rules used, show graphs
(see below) resulting from those rules.

4.1 Analysis
During each coevolutionary iteration the algorithm was

run five times. The combined results of all five runs were
displayed as a heat map combined with a simplex graph.
The simplex heat map is our primary form of visualization
and takes a simplex-value mapping and displays it in a range
of grayscale values. We generate our graphs in three phases.
First, the parameters for state selection are converted into

Figure 5: A simplex heat map with example data
points. Each data point from top to bottom is max
fitness, 2

3
max fitness, 1

3
max fitness, and lastly two

overlapping points each at 2
3

max fitness.

Figure 6: The simplex heat maps for both popula-
tions of all five coevolved runs under the initial game
rules. Dark spots indicate that those portions of the
strategy space were better represented in the runs.
Stealing Crates is the strongly preferred strategy.

simplex values. Second, we weight the simplex values by
the time each state runs. For example, if each state has an
equal chance of running, but Crate Running and Terri-
tory Grab run for one second and Steal Points runs for
two seconds, then overall Steal Points will run for half of
the simulation and the other two states will run a quarter
of the time each. In other words, this value is the pre-
dicted fraction of time that each behavior will run. The
third phase converts the simplex values into two dimensional
coordinates. The value for the simplex point equals the nor-
malized fitness times a scalar (30 for the graphs we present).
This value becomes an impact radius and all points within a
distance of this radius receives an value increase equal to the
impact radius minus the distance between points. Finally,
the whole graph is normalized such that the highest value is
black and the lowest white and then graphed.

Figure 5 shows a graph with a few sample points: one at
max fitness, one at 2

3
max fitness, one at 1

3
max fitness, and

lastly two overlapping points at 2
3

max fitness each. These
graphs aim to show where high fitness individuals tend to
converge. Convergence looks like dark black spots while a
lack of convergence would be a cloudy gray.

5. GAME BALANCING

5.1 Initial Configuration
In the initial configuration, capturing an unclaimed crate

took 1
2

second, stealing the crate took 1 second, returning

the crate earned 5 points and holding territory earned 1
100

points per difference in tiles per second. The heat map pro-
duced by these parameters are shown in Figure 6.

Figure 6 shows that individuals tended to converge on

Figure 7: Simplex heat map of the first iteration.
Notice that stealing is now highly effective as well.

Crate Running heavy strategies but also spent time along
the Crate Running and Territory Grab edge. The figure
also shows that individuals using the Crate Stealing strat-
egy were not heavily represented in the population. This
suggested that either the evolved agent was unable to effec-
tively implement stealing or that stealing was unbalanced.

5.2 Iteration 1
In response to the results of the initial coevolutionary

analysis we altered the difficulty of the stealing strategy by
reducing the time it took to steal a crate. The time required
to steal a crate was changed to 0.75 seconds from 1 second.
The results of the change are shown in Figure 7. As can
be seen in the figure, reducing the time caused Stealing
Crates to become a preferred strategy along with Crate
Running. The edge between Crate Running and Terri-
tory Grab continued to show some activity but Territory
Grab itself remains relatively unrepresented.

5.3 Iteration 2
In order to address the weakness of the Territory Grab

strategy the constant C was increased from 1
100

to 1
75

. Figure
8 shows that this small change caused both populations to
almost completely converge on Stealing Crates. Since the
only change in the rules was to change the effectiveness of
Territory Grab, the convergence on Crate Stealing was
nonintuitive. Further investigation into the actual behav-
ior of these strategies, however, revealed a flaw in the rules
which could be exploited by the agent or player. Agents in
the stealing state followed their opponents until there was
a crate to steal. This meant that if the opponent was cur-
rently grabbing territory the agent would simply follow the
opponent around and take control of every tile right after
their opponent did, making stealing effective against both
Crate Running and Territory Grab. Inadvertently, the
alterations had turned Crate Stealing into an unbeatable
strategy. In order to correct this imbalance the stealing me-
chanic was redesigned so that it was ineffective against Ter-
ritory Grab.

5.4 Iteration 3
In order to rebalance CaST the ability to steal a crate cur-

rently held by the other player was removed, and the ability
to steal crate points was added. In this third iteration, in-
stead of stealing crates from their opponents, player had the
ability to steal up to 10 points from their opponent’s base
by focusing the tractor beam on it. The number 10 was se-
lected because a player using the steal strategy has to move

Figure 8: Simplex heat map of the second iteration.
In all five runs both populations converged on Steal-
ing Crates as the most effective strategy.

Figure 9: Simplex heat map of the third iteration.
The coevolved populations were dominated primar-
ily by Territory Grab.

twice as far as a player implementing Crate Running. In
order to complete the stealing of points, the player has to the
place their tractor beam on their own base. This change in
the steal mechanic reduced the effectiveness of steal against
Territory Grab, but maintained its effectiveness against
Crate Running.

The results of the new mechanic are shown in Figure 9. As
a result of the rule change Territory Grab took over as the
most effective strategy. Since the Territory Grab constant
had been increased in an earlier iteration we decreased it for
the next iteration.

5.5 Iteration 4
The Territory Grab constant was reduced from 1

75
to

1
200

. Figure 10 shows that the results of these changes
are much more promising. The individuals still spend the
majority of their time on territory grabbing strategies but
they also implement more mixed strategies than ever before.
Strategies appear to become more ineffective as stealing be-
comes more involved. Since Territory Grab now seems to
be functioning well, rather than altering C any further, the
other two strategies are strengthened.

5.6 Iteration 5
To improve crate running and stealing strategies, the point

values for each strategy were doubled. Taking a crate to a
base earned 10 points and a player could steal up to 20
points at one time. Figure 11 shows that as a result of this
final round of changes the game appears to be well balanced
with respect to the evolvable agent. Individuals are spread
all over the space. They still cluster a bit around Territory

Figure 10: Simplex heat map of the fourth iteration.
For the first time mixed strategies started to appear
on the map.

Figure 11: Simplex heat map of the fifth iteration
with the final set of rule changes. The populations
are fairly diverse over the strategy space.

Grab and not much around Stealing Points, but this is
acceptable when considering the performance of the game
as a whole.

6. CONCLUSIONS
By combining coevolution, an evolvable agent, and a clever

visualization technique we were able to effectively balance
the game of CaST. After each round of coevolution, the
simplex heat map displayed not only whether or not the
populations had converged, but if they had, which pheno-
type they had converged to.

6.1 Discussion
There are two main challenges to generalizing this bal-

ancing procedure for other games: selecting an appropriate
representation and developing an effective visualization tech-
nique. Picking the correct representation is quite difficult.
The representation needs to be easy to code and evolve; yet
at the same time it needs to be capable of searching the
same set of strategies as a human player. Each represen-
tation needs to be weighed in terms of the portion of the
strategy space it can represent as well as how easy it is to
search the strategy space with that representation. Neu-
ral nets, for example, when combined with a neuroevolution
technique can represent a larger subset of the strategy space
than the representation used here. On the other hand, the
simpler representation when combined with the right agent
can search the same sorts of strategies that humans use much
more quickly.

The other main challenge in using coevolution to balance a
game is in choosing the right visualization technique. CaST

has only three core strategies, so the simplex can effectively
display a useful portion of the strategy space. For more
complex games such as Chess, Checkers, Go, or Supreme
Commander this visualization would be insufficient. While
the lack of a visualization wouldn’t prevent the coevolution
from detecting game imbalances, it would make it more chal-
lenging to identify the source of the imbalance. It should be
noted, however, that even with the simplex heat map visu-
alization, choosing the appropriate changes to make to the
game rules can be difficult.

In response to Figure 7, for example, the constant C was
increased. The simplex head map suggested that making
Territory Grab stronger was the best option, when in fact
it was stealing that needed changing. The visualization was
effective, however, when it came to determing how close the
game was to being balanced.

7. FUTURE WORK

Automating the Balancing Procedure
In the current implementation a developer has to hand code
any changes to the game between each iteration of coevolu-
tion. In order to automate the game balancing process we
could tie the coevolutionary algorithm to a GA evolving a
parameterized version of the game rules. The convergence
time of the coevolutionary algorithm could be used as the
fitness function for the GA. The faster the coevolution con-
verges the less balanced the game, and the lower the fitness
of the game parameters. While fully automated this ap-
proach would be limited by the ability to parameterize the
game rules.

Human Testing
Human testing will eventually figure in to any game balanc-
ing process. With current AI techniques, it is unlikely we
will be able to perfectly capture just what a human player’s
strategy is, and we may not be able to completely test the
game space. Humans can be very good at search, taking
into account many factors that may escape a fitness func-
tion, and can find unbalanced strategies quickly. Human
testing can also provide a sanity check on any game balance
changes that we implement. We would like to study hybrid
game balancing processes that combine human testing with
coevolutionary search.

Visualization
Finally, we need to explore the role visualization techniques
play in diagnosing game balance problems. Using techniques
such as nonlinear projection and fitness webs we can pro-
duce 2D plots of the high dimensional landscapes common
in game strategy spaces. These plots can be used to pro-
vide intuition about individuals in a fitness landscape [2]
and guide us towards producing more balanced games.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the Office

of Naval Research under contract number N00014-05-0709.

9. REFERENCES
[1] P. J. Angeline and J. B. Pollack. Competitive

environments evolve better solutions for complex

tasks. In Proceedings of the 5th International
Conference on Genetic Algorithms, pages 264–270,
San Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

[2] J. Ashlock, D.; Schonfeld. Nonlinear projection for the
display of high dimensional distance data.
Evolutionary Computation, 2005. The 2005 IEEE
Congress on, 3:2776–2783 Vol. 3, 2-5 Sept. 2005.

[3] D. Charles and M. Black. Dynamic player modeling:
A framework for player-centered digital games. In
International Conference on Computer Games:
Artificial Intelligence, Design and Education,
November 2004.

[4] D. Charles, M. McNeill, M. McAlister, M. Black,

A. Moore, K. Stringer, J. KÃijcklich, and A. Kerr.
Player-centered game design: Player modeling and
adaptive digital games. In DiGRA 2005 Conference:
Changing Views - Worlds in Play, 2005.

[5] R. Dawkins and J. R. Krebs. Arms races between and
within species. In Proceedings of the Royal Society of
London, number 205 in Series B, pages 489–511, 1979.

[6] D. B. Fogel. Blondie24: Playing at the Edge of AI.
Morgan Kaufmann, 2001.

[7] http://www.gamerankings.com/, January 28 2008.

[8] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison Wesley
Longman, Inc., 1989.

[9] W. D. Hillis. Artificial Life II, chapter Co-evolving
parasites improves simulated evolution as an
optimization technique, pages 313–384.
Addison-Wesley, 1997.

[10] J. H. Holland. Adaptation in natural and artificial
systems. MIT Press, Cambridge, MA, USA, 1992.

[11] P. Klepek. Npd fallout: Best selling games of 2007.
http://www.1up.com/do/newsstory?cid=3165505.

[12] R. E. Leigh, T. Morelli, S. J. Louis, M. Nicolescu, and
C. Miles. Finding attack strategies for predator
swarms using genetic algorithms. In Proceedings of the
2005 Congress of Evolutionary Computation,
September 2005.

[13] C. Miles and S. J. Louis. Co-evolving influence map
tree based strategy game players. In 2007 IEEE
Symposium on Computational Intelligence in Games.
IEEE Press, 2007.

[14] J. B. Pollack, A. D. Blair, and M. Land. Co-evolution
of a backgammon player. In C. G. Langton and
K. Shimohara, editors, Artificial Life V: Proc. of the
Fifth Int. Workshop on the Synthesis and Simulation
of Living Systems, pages 92–98, Cambridge, MA,
1997. The MIT Press.

[15] J. Portnow. The fine art of balance. http://
gamecareerguide.com/features/478/
the fine art of .php.

[16] C. D. Rosin and R. K. Belew. New methods for
competitive co-evolution. Evolutionary Computation,
5(1):1–29, 1997.

