
Evolving Spatial Tactics using Influence Maps

Phillipa Avery, Sushil J. Louis and Benjamin Avery

Abstract— We evolve tactical control for entity groups in
a naval real-time strategy game. Since tactical maneuvering
involves spatial reasoning, our evolutionary algorithm evolves
a set of influence maps that help specify an entity’s spatial ob-
jectives. The entity then uses the A* route finding algorithm to
generate waypoints according to the influcene map, and follows
them to achieve spatial objectives. Using this representation,
our evolutionary algorithm quickly evolves increasingly better
capture-the-flag tactics on three increasingly difficult maps.
These preliminary results indicate (1) the usefulness of our
particular influence map encoding for representing spatially
resolved tactics and (2) the potential for using co-evolution
to generate increasingly complex and competent tactics in our
game. More generally, this work represents another step in our
ongoing effort to investigate the co-evolution of competent game
players in a real-time, continuous, environment that does not
assume complete knowledge of the game state.

I. INTRODUCTION

Evolving group tactics in our research involves using
spatial information to determine relative entity positions and
then maneuvering to achieve a set of spatially resolved
objectives. We are specially interested in generating new and
interesting tactics and in player modeling. That is we are
interested in methods of generating tactics that we and our
subject matter experts may not have come up and we are
interested in recording and learning from players’ game play.
As a first step in our overall research objectives, this paper
investigates the evolution of boat group tactics in a naval
real-time capture-the-flag game.

The ability to automatically generate spatially resolved
group tactics has applications in computer gaming, robotics,
multi-agent systems, and war-gaming. Our prior work in co-
evolving real-time strategy game players pointed out the
importance of tactical superiority when strategies and re-
sources are balanced among competing players [1]. Real-time
stategy games emphasize ”strategy,” but achieving strategic
objectives depends on tactics. Bad tactical planning, an
inability to adapt quickly, and unskilled maneuvering can
ruin good strategy. Tactical planning thus plays an important
role in many situations.

Although we have discussed tactics and strategy, we have
not yet defined these terms. For our work, we find it useful
to define strategic planning as planning that uses all available
resources to achieve a goal such as winning the game. Tac-
tical planning uses a subset of available resources to achieve
an objective that supports the over-arcing strategic objective
of winning the game. Tactical and strategic planning are the

Phillipa Avery and Sushil J. Louis are with the Evolutionary Computing
Systems Laboratory (ecsl.cse.unr.edu), Dept. of Computer Science and
Engineering, University of Nevada, Reno, Nevada, USA; (email: pippa,
sushil@cse.unr.edu).

same when there is no grouping (no resource subsets) in a
game.

Hierarchical tactical control approaches have the ad-
vantage of a central intelligence guiding group behavior.
Classical knowledge-based techniques are particularly well
suited to centralized intelligence approaches. However, losing
the leader (the central intelligence) can lead to confusion
and significantly degrade tactical adaptiveness. The obvious
counter tactic spends resources in finding and destroying the
leader then mopping up the disorganized remaining enemy
forces. An interesting question here is: How can we identify
the leader of a group, especially when we have incomplete
knowledge of the game-state? We do not address this issue
here.

Distributed tactical control approaches represent the other
end of the spectrum. Because of the non-linear nature of
interactions among independent entities trying to act together
to achieve an objective, writing a good distributed controller
is non-trivial. Evolutionary computing approaches such as
genetic algorithms were designed to attack such non-linear
problems and as such seem particularly suited to generating
distributed tactical controllers. We believe computational
intelligence approaches therefore represent a good approach
to designing automated, adaptive, tactical controllers. In this
paper, we use evolutionary algorithms to try evolve tactical
control for small groups of boats as we work towards tactics
that involve deception, sacrifice, feints, flanking, splitting
enemy firepower, and hopefully others that will surprise us.
We want the game entities (boats) to function autonomously,
but still work with the rest of their group in achieving an
objective. The autonomous behaviour allows the boat some
independence - to move and attack on its own, while the
coordination provides an overall tactic for the attacks.

To achieve the necessary level of autonomoity and coordi-
nation, we have designed a representation based on Influence
Maps (IMs). An evolutionary algorithm evolves a set of
parameters that define a set of IMs, one IM for each boat
in the group. This mechanism allows coordinated attacks
by providing the same influence values for attacks points
on the map. Individually, the IM for a boat gives direction
and goals for the boat independent of other boats in the
fleet. Cooperatively, by evolving the IMs together as one
individual in the population, the IMs work together to obtain
the overall reward given by the evaluation function. Our
results show that this representation can lead to competent
tactical behavior including the generation of sub-objectives
that represent sequential steps towards an overall tactical
objective. We believe the early results presented in this
paper indicate the potential of our approach for generating
competent tactical behavior for entity groups.



This paper is organized as follows. The background section
gives a brief description of IMs and the other relevant
work done in this area. The methodology section describes
the mechanisms used in the research, and the setup for
the experiments performed. The results section provides the
results from the experiments, along with a discussion on the
observations made. The conclusion provides a summary of
the research presented, along with a plan for the future work
still to be done.

II. BACKGROUND

An influence map is a grid placed over the game map with
values assigned to each grid cell by some function. Once
computed, an influence map can encode spatial features or
some spatially related concept. They can identify boundaries
of control, ”choke points”, and other tactically interesting
spatial features. It is interesting to note that influence maps
evolved out of work done on spatial reasoning within the
game of Go and have since then been occasionally used in
video games and the AI and CI in games communities [2],
[3], [4], [5], [6], [7], [1], [8].

Prior work in our lab evolved a single influence map tree
to generate objectives for the LagoonCraft RTS game [9].
These objectives were then achieved by a genetic algo-
rithm generated near-optimal allocation of resources [1]. The
current work differs in that we are evolving cooperative
influence maps for a group of entities that coordinate to
complete a task. Each entity uses an individually assigned
influence map, but the fitness evaluation assigns one fitness
to the entire set of influence maps evolved. In other words, if
we have five boats in our attack group, each individual in the
population contains parameters that generate five influence
maps.

Bergsma and Spronck also use influence maps to generate
tactics for a turn based strategy game [8]. A neural network
layers several influence maps to generate attack and move
values for each cell. Like Miles’ work, Bergsma and Spronck
combine influence maps to generate tactical or strategic
objectives. Unlike Miles’ work, they use neural networks
(whose weights are evolved) to combine the influence maps.

To the best of our knowledge, this is the first attempt
to evolve and co-evolve a set of co-operative influence
maps together and use these co-adapted plans to generate
competent, adaptive tactics for attack and defense.

The prior work cited in this section seems most relevant,
but there is much other work in using influence maps for
spatial reasoning, organizational behavior, and in other non
game related fields [?], [?], [?]. We next describe the game,
our representation for tactics in the game, and our fitness
computation.

III. METHODOLOGY

This section describes the evolutionary algorithm and
representation used to generate spatial tactics. Before doing
so however, we provide the game context within which we
work.

A. The Game

We implemented a simple game of capture the flag.
Figure 1 depicts this scenario which has two teams of boats.
Attackers in green occupy the lower portion of the figure
while stationary defenders defend the flag on the upper right.
The attacking team’s goal is to reach the flag positioned
behind defenders within a limited time. Defenders, in turn,
must stop the attackers from reaching the flag in the given
time limit.

Fig. 1. Capture the flag game scenario

In this simplified game, defenders maintain their starting
position and only fire when an attacker is within firing
distance. The evolutionary algorithm evolves attackers. The
goal is to capture the flag in the least time possible, and
sink as many of the enemy on the way while retaining
as many of the attackers as possible. Next, we move to a
co-evolutionary model where we evolve both attackers and
actively maneuvering defenders. The co-evolutionary version
has the same goal for the attackers, with the goal of the
defenders to stop the enemy reaching the flag while sinking
attackers and retaining defenders.

The game entities use simple boat physics which model
a turning circle and acceleration/deceleration. This game is
continuos. Weapons fire automatically, with a firing range
set for each boat. As soon as a boat enters the limited firing
range, its weapon fire. If two boats enter the firing range at
the same time, the closest boat gets targetted.

B. Evolving Influence Maps

Each entity has its own influence map and an entity moves
towards the current lowest value on its IM. The location
of each entity in the world is marked on the IM with a
value, vi, and a radius of influence, r, corresponding to
the firing range of the enemy weapon. For each entity, our
evolutionary algorithm evolves the vi value for all entities in



the world. The radius of influence is fixed. Thus if there are
5 attackers, 5 defenders, and one flag, we have a total of 11
game entities. Given that we are evolving 5 IMs for the 5
attackers, we will have 11 values to evolve (v1 to v11 ) for
each of these 5 attackers for a total of 11×5 = 55 values (or
parameters). Thus each individual in the population consists
of a 55 parameter length string.

In general, given n game entities (including the flag) and
m of these entities to be controlled by evolved IMs, the
evolutionary algorithm searches through the space of n×m
parameter values to generate m IMs that control our group of
m entities in carrying out a tactical capture-the-flag mission.

Here’s the algorithm for generating the IM for one entity.

for x in maxX
for y in maxY

if(not isOccupied(Map[x][y]))
IM[x][y] = 0

if (friendly(Map[x][y])
genFriendlyInfluence(IM, x, y, friendID)

if (enemy(Map[x][y])
genEnemyInfluence(IM, x, y, enemyID)

genFriendlyInfluence sets the IM cell value at
location x, y to be the evolved parameter value (vi) for
the entity (i) at that location. genEnemyInfluence does
a little bit more. In addition to setting the IM cell value
at location x, y to be the evolved parameter value for the
enemy entity at that location, the IM cell values for cells
neighboring the location x, y get reduced according to the
following formula:

IM [x′][y′] + = vi − d× vi

r

where i is the enemy entity id for enemy entity ei, vi is
the evolved parameter value for ei, d which ranges from 1
through r, is the current cell’s distance from ei’s location and
r = 4 is a fixed constant representing the enemy weapon’s
firing range. Since it is possible for multiple entities to be in
the same map/IM cell or close enough for their influences to
overlap, an IM cell value is the sum of all influences on that
cell, hence the += C-programming language notation in the
formula above.

The EA uses a simple two point crossover, rank se-
lection, and mutation. The mutation combines small and
large parameter perturbations with a smaller chance of a
large mutation occurring. The small mutation was to add
or subtract 1 from the parameter. Large mutation involved
picking a new random integer between the −50 to 50 range
of all parameters. The evaluation function was run after an
individual had completed a game, that is, when time ran out
or the team captured the flag.

The evaluation function was:

fitness = winScore + fWeight× friendlyCount
−eWeight× enemyCount + time

where winScore was 1000 if the flag was captured and
0 otherwise. friendlyCount was the number of friendly
units left after the encounter. Similarly, enemyCount was
the number of enemies left. time was the amount of time

left with respect to the given time limit. For example, if the
time limit was 60 seconds, and the individual reached the
flag in 40 second, than time would equal 20. An additional
reward was given if all the enemy boats in the scenario were
sunk. The fitness function was then a maximizing function. It
should be noted that this evaluation function is a very simple
start, and can be improved upon. This is something we will
be investigating in future research but for now, this simple
function enabled us to get to the results described in the next
section.

C. Using the Influence Maps

To use the generated IM, the boats use the A* algorithm
to generate a path. A* uses IM cell values to plot a path
from the entity’s current location to the minimum value on
this entity’s IM. The lower the IM cell value (−50 to 50),
the higher the chance of creating a path to that object. A*
runs every time the destination location (the lowest IM cell
value location) changes.

This destination can change if: 1) the destination is no
longer in the game (e.g. a boat sinks), and 2) the boat
moves. If one friendly entity’s A* destination location is
another friendly entity (a teammate), we will see friendly
boats following each other. Given an admissable heuristic, A*
is optimal but computationally expensive. To speed up our
runs, we did not run A* every time the destination location
changed but only when the destination location changed by
over 300 units.

Using such an IM combined with A* for movement for
each boat allows coordinated attacks when assigning similar
weights for the enemy boats and allows attackers to follow
each other as described above. The IM can also encode for
a sequence of destinations (objectives). For example, if the
miminal IM value was for an enemy entity and the next
lowest value was for the flag, then the boat using this IM
would attack the enemy entity and then move towards the flag
(the next objective) when the enemy entity gets destroyed.

This ability to generate a sequence of objectives can lead to
more complex tactics. For example, the assigned IMs could
draw fire to some boats letting other boats move past to take
the flag, or hold back some boats waiting for other boats
to engage the enemy and then dart past once the battle has
begun.

Finally, note that as the game state changes, the IMs for
each boat in the attacking group changes.

We began our evaluation with three simple scenarios
where stationary defenders protect a flag. Next, we try to
model a somewhat more hierarchical tactical controller by
having a leader-entity whose destruction can reduce tactical
effectiveness. Finally, we look at co-evolving attackers and
defenders.

D. Co-evolution

We changed the game to include an active defence of
the flag defenders. This means that defenders needed their
own IMs to specify defensive tactics and we co-evolved a
population of attackers against a population of defenders. In



this version of the game, attackers won if they captured the
flag. Defenders won by destroying all attackers or if they
succeeded in fending off attackers from capturing the flag
within the game-time limit. The new fitness was calculated
as follows:

fitness = winRatio× winWeight
+fWeight× friendlyCount
−eWeight× enemyCount
+time

where winRatio was the percentage of games won over
all games played by the individual. The winWeight then
assigned the weight that the winRatio has on the fitness.
The rest of the function variables are the the same as before.
We computed an individual’s winRatio by playing every
individual in the population against five randomly chosen
opponent individuals. Each individual could therefore actu-
ally participate in more than five games per generation with
a possible (but very unlikely) maximum of popSize×5+5.

IV. RESULTS

This section describes the experimental scenarios that we
implemented in more detail and discusses the results obtained
on these scenarios. We begin with a simple experiment to test
the efficacy of our representation, followed by increasingly
difficult scenarios.

A. Scenario 1

The first experiment we performed was using the simple
scenario as depicted in Figure 1. This scenario is very simple
to find tactics for, and was simply intended to test the
viability of our encoding (the IM).

The experimental parameters are as follows. We used a
crossover rate of 30% with a 10% chance of mutation. If
it was time to mutate, then there was a 10% chance of
large mutation, otherwise our small mutation operator was
applied. We used some elitism with the top 10% of the
population copied to the next generation. For this experiment,
the population size was 10. We manually stopped evolution
as there was no set runtime. We used a small population size
for testing and because each evaluation takes a long time.
During fitness evaluation, each game ran for a maximum
of 50 seconds. fWeight and eWeight were both 12. The
winScore parameter was assigned 1000 if the individual
won, and 0 otherwise.

We repeated the above experiment ten times. It became
apparent that almost every time, there was at least one
individual in the initial randomly assigned population that
had a winning strategy. This turned out to be a very simple
scenario. Additionally, all the runs evolved what we would
consider a ’good’ tactic for this scenario by the end of the
4th generation. An example of the tactics evolved can be
seen in Figure 2.

The Figure shows the friendly boats indicated by by green
circles, and the enemy boats indicated by red circles. The
flag can be seen in the top right corner. The bottom right
friendly boat has been selected (seen by the solid coloured

Fig. 2. Example tactic for scenario 1

selection circle), and the IM for the boat is shown on the
grid. The IM weights are depicted with green as a positive
value (avoidance point) and red as a negative value (attraction
point). The strength of the weight is represented by the
transparency of the colour. For example, a highly negative
value (-50) will produce a strong green color that fades
as the value reaches closer to zero. The A* path for each
friendly boat is also depicted by the green lines going from
the friendly unit to their destination.

In the case of the selected unit in this example, it can be
seen that the strongest negative value, and hence the A* path
destination, is assigned to the flag. The path skirts around the
strong green negating values assigned to one of the enemy
boats, and heads up to the flag. While the boat is fired upon,
it survives to make it through to the flag. Other tactics similar
to this were evolved, along with tactics that set a straight path
through to the flag. As the boats can survive long enough to
’dart past’ the defenders, they make it to the flag quickly,
saving time.

B. Scenario 2

To counter the ability to skirt around the edges, and
to increase the damage taken when heading straight past
defenders, we changed the scenario to that depicted in Figure
3. We used the same experimental parameters as in Scenario
1. The initial generation very rarely succeeded in capturing
the flag. Instead, over time, evolution succeeded in generating
more complex successful tactics. To counter the defense
in this scenario, the entities developed coordinating tactics
(IMs), where pairs or groups of boats would work together to
attack defensive areas. One way was to have one boat follow
another and have the follower make it through to the flag after
the followed boat drew enemy fire and sank. Another tactic
was to have two boats attack the same enemy boat. You can



Fig. 3. Setup for scenario 2

see an example in Figure 4.

Fig. 4. Example tactic for scenario 2

This example has the top-most friendly unit selected,
hence the IM being viewed is for that boat. As can be
seen, the flag is the strongest red value and set as the A*
destination. On the way to the goal, the first defender (red)
boat must be passed. By creating a path that travels through
the enemy’s flank, the enemy firing rate is reduced, as the
number of enemies firing at the boat is only two (the second
defender in the line still in range), as opposed to three or
more at any other location. Even with only two boats firing
however, the boat would be sunk before reaching the flag.
To counter this cooperative tactics are used where the two

friendly units below the selected unit will reach the third
enemy boat first. The firing focus of the second and third
(and fourth) enemies will be on these boats, allowing the
selected boat to move past taking fire from the first defender
boat only, hence making it to the flag.

Other tactics included sending boats out in groups of two
or more following the same path. The first boat would take
the focus of the firing, while the second boat would dart
past to take the flag. One common factor was that to win in
this scenario, the IMs evolved needed to use some form of
coordinated group attack.

These results strongly indicate the suitability of our IM-
based representation for evolving competent group tactics.
To evaluated the generalizability of these initial results, we
designed another scenario: Scenario 3.

C. Scenario 3

The most difficult scenario we tested for this research was
a 13 boat defense as depicted in Figure 5. This scenario
was designed (by us) to stop the ”dart” tactics evolved.
By including two rows of defenders, any attackers coming
past the first row would be sunk by the second. Due to the
increased complexity, we increased the population size to
20. As there were large numbers of enemies in the scenario,
we also increased eWeight to 15, and decreased fWeight
to 5. After watching a few generations of the first run, we

Fig. 5. Setup for scenario 3

found that individuals were not performing very well, and
were doubtful about the creation of good tactics. However,
at around 25 generations, we were pleasantly surprised to
find good coordinating tactics emerging. This behavior was
consistent across multiple runs. One of these tactics is
depicted in Figures 6 and 7.

Figure 6 shows the IM for the leading attacker boat. It
shows that the IM given to the boat assigns a high priority



Fig. 6. Example of tactic for scenario 3 - stage 1

Fig. 7. Example of tactic for scenario 3 - stage 2

to attacking the top three defenders, with the flag having a
slightly lower priority. Other boats in the fleet had a similar
IM. Figure 7 shows the same game at a later stage and
with a different boat’s IM. Here we can see that two of the
defending boats have been sunk, with a third close to being
sunk (as indicated by the boat’s health bar). The IM also
shows that once the first defending boat died, our attacker
switched its A* destination to the flag, and a new path was
created to the flag that skirted the remaining boat in the way.
The result of this tactic was that three enemy boats were
sunk, four attackers survived, and attacker captured the flag.
The fourth attacker remained at the bottom of the screen,

with a lowest IM weight on itself. This likely occurred as it
was not needed to win, and the bonus given for its survival in
the evaluation function rewarded it staying out of the battle.
This could have potential in evolving leadership behavior.

Figure 8 graphs average best fitness over time for ten runs
on a scenario with nine defenders in two rows. After an

�������������������������

� � � � � � � � 	 �� �� �� �� �� �� �� �� �� �	 �� �� �� �� �� ��

� � 
���

�����������
Fig. 8. Average Fitness

initial jump from the randomly generated population, fitness
climbs to a relatively steady level by about generation 12.
This seems to be representative of our runs on the scenarios
described above.

D. Including a leader

We initially designate one of the attacker’s boats as a
leader. If the designated leader sinks, no new A* paths
are generated for the remaining attackers and they cannot
change their objectives (tactic). We chose this approach over
ending the game if the leader sinks, as we wanted the game
to continue and see if the remaining attackers capture the
flag anyway. We think of this as a very simplified model of
tactical planning in the face of command loss.

After performing a few runs using Scenario 3 with the
first attacker designated the leader, it became obvious this
approach was not working exactly as planned.

Rewrite: 1

E. Co-evolving attackers and defenders

We setup up scenario 1 again except that now defenders
could move. Several implementation issues with A* needed
to be resolved. For example: both sides now needed to
re-compute each A* path every time the destination point
moved, and the only stationary point was now the flag. This
additional A* computation affected the realism of movement
for each boat and we had to spend some time tuning game
parameters to our satisfaction.

Having two populations of individuals and each individual
playing five games, a run now took much longer. We also
had to increase the game time limit since attackers needed to

1The winning tactics were using all the boats to create a hole in the
defense. Once the leader was killed, the remaining boats floated past (as
their A* path was finished and not reallocated), and through momentum
slowly made their way to the flag. While it is an interesting tactic, we’re not
sure that ’sacrificing the leader’ would be a tactic the Navy would consider
too realistic. What about the enemy with suicide boats? This is an area of
research that we would like to continue in the future.



maneuver more around moving defenders to get to the flag.
We increased the game-time limit to 90 seconds from 50.
All this additional computation reduced the number of runs
we were able to perform.

Even with these difficulties, it became apparent that after
a few generations the defenders were generating two generic
types of tactics. The first was a all out attack where defenders
would head out and actively seek to destroy attackers. The
second strategy was more balanced, a combination of attack
and defense. Two or three of the defenders would circle the
flag, while the remaining defenders would head out to destroy
attackers.

In our limited runs to date, we have not observed (induced)
the tactic(s) being used by the attacking team. Mostly they
seem to spread out and try to sink the enemy, occasionally
finding a path to the flag. We believe larger population sizes
and longer run times are needed to get a co-evolutionary
arms race that generates tactics, counter-tactics, and counter-
counter-tactics to develop. We plan to parallelize our code
and run on our cluster to see this and to test the limits of
our representation.

V. CONCLUSIONS AND FUTURE WORK

From our experiments we were able to determine that
the mechanism of simultaneously evolving autonomous but
cooperative IMs was a success in the creation of group
tactics. This is significantly different from other work in
using IMs for planning [1]. Our purpose in this paper was
to find a way for a group of boats to develop their own
spatially resolved group tactics. Results show that we can
simultaneosly evolve a set of cooperative IMs that entities
can use to generate competent, adaptive, tactical plans.

Our initial experiment showed the potential for the IM
mechanism when the randomly initialized first generation
2 to the scenario. This was due to the small number of
objects on the game map, as the chances of finding a solution
where one of the five boats made its way past the defense
to the flag was fairly high. As the generations continued,
more sophisticated tactics evolved and some simple forms
of group-tactical planning emerged.

The second scenario encouraged more complex tactical
planning by degrading the ability of an attacker to easily
”dart” past defenders. The EA evolved effective group tactics
that got around our new defensive posture. The attacking
boats developed attack-and-distract tactics as well as flanking
tactics to attack a single defensive emplacement in order to
blast a hole in the defense that other attackers could exploit
to get to the flag.

The third scenario proved more difficult. Eventually
though, tactical solutions were found that involved objective
chaining encoded by differing values of entities in the IM.
These tactics involved chaining sub-goals together to finally
capture the flag. This usually involved an initial goal of
all boats attacking an area of the defense, then when done

2rewrite: showed a high tendency to find rudimentary solutions

(defender sunk), going on to the next lowest value in the IM
representing capturing the flag.

This ability of the IMs to change the tactics as the game
state changes was something we were hoping to see, but
uncertain if it would actually work. The evolutionary runs for
the third scenario demonstrated effectively that it did indeed
do as we had intended. The potential for this adaptive tactic
representation is substantial, with applications for real time
strategy and turn based strategy games. Theoretically, any
situation where autonomous spatial tactics are required could
benefit from the technique. For our purpose however, we are
looking to incorporate the mechanism into more complex and
realistic scenarios.

To accomplish our goals, we will need to extend this
research to include the ability to react to harder scenarios.
For example, once land mass is added to the scenario, how
will this effect the tactics being created. Is it possible (and
effective) to include the landmass in the IM as another evolu-
tionary parameter, with the goal of depicting the distance to
avoid the land (e.g. ’hug’ the shoreline and attempt a surprise
attack). There are many possible extensions to this research
along these lines.

3

Another way we want to extend this research is through
the implementation of a hierarchy of tactics. The tactics
described in this research have been very low level - who to
attack and where individual boats should move. In the future,
we want to implement layers of the hierarchy, representing
different planning levels. This would also involve multiple
groups of boats similar to the group in our scenarios and
approach the planning of strategy. We believe that equiping
each boat in a group with an individual IM as described in
this work, but adding a higher level IM for each group to be a
promising approach to hierarchical planning. Instead of spec-
ifying what to attack and where to move, the group IM could
provide tactics such as an area of the map that has higher
importance for a particular group. By combining the group
IM with the individual’s IM, this could be implemented.

Overall we have found the research presented here to be
an effective way of generating spatial tactics for groups of
boats.4

REFERENCES

[1] C. Miles, “Co-evolving real-time strategy game players,” Ph.D. disser-
tation, University of Nevada, Reno, 2007.

[2] A. L. Zobrist, “A model of visual organization for the game of go,” in
AFIPS Conf. Proc., 1969, pp. 34, 103–112.

[3] P. Tozour, “Influence mapping,” in Game Programming Gems 2, M. De-
Loura, Ed. Charles River Media, 2001, pp. 287–297.

[4] C. Miles and S. J. Louis, “Towards the co-evolution of influence map
tree based strategy game players,” in Proceedings of the 2006 IEEE
Symposium on Computational Intelligence in Games. IEEE Press,
2006, pp. 75–82.

3rewrite: We would also like to investigate further representations of the
leader as discussed previously.

4rewrite: The results have shown some very promising behaviour, and
shows that this is definitely a promising research area. We look forward to
improving and extending the research into a mechanism that is useful to a
number of areas.



[5] ——, “Co-evolving influence map tree based strategy game players,”
in Proceedings of the 2007 IEEE Symposium on Computational Intel-
ligence in Games. IEEE Press, 2007, p. Pages: to appear.

[6] ——, “Co-evolving real-time strategy game playing influence map trees
with genetic algorithms,” in Proceedings of the International Congress
on Evolutionary Computation, Portland, Oregon. IEEE Press, 2006.

[7] S. J. Louis and C. Miles, “Playing to learn: Case-injected genetic
algorithms for learning to play computer games,” IEEE Transactions
on Evolutionary Computation, pp. 669–681, 2005.

[8] M. Bergsma and P. Spronck, “Adaptive spatial reasoning for turn-based
strategy games,” in Proceedings of the Fourth Artificial Intelligence and
Interactive Digital Entertainment Conference. AAAI, 2008, p. Poster.

[9] C. Miles, “Lagoon craft,” 2007.


