Computational TraNsactions on

Waen®™® Evolutionary Computation

XCS for Personalizing Desktop Interfaces

Journal: | Transactions on Evolutionary Computation

Manuscript ID: | TEVC-00120-2008.R2

Manuscript Type: | Regular Papers

Date Submitted by the

Author: 20-Jan-2009

Complete List of Authors: | Shankar, Anil; University of Nevada, Reno, Dept. of Computer
Science and Engineering
Louis, Sushil; University of Nevada, Reno, Dept. of Computer
Science and Engineering

Intelligent systems, Knowledge based systems, User modeling,

ez Adaptive systems, Artificial intelligence

Note: The following files were submitted by the author for peer review, but cannot be converted
to PDF. You must view these files (e.g. movies) online.

bare_jrnl.tex

& scholarone"

Manuscript Central

IEEE Transactions on Evolutionary Computation

Page 2 of 25

P OO~NOUILAWNPE

XCS for Personalizing Desktop Interfaces

Anil Shankar and Sushil J. Louis, Member, IEEE

Abstract

We investigate whether XCS, a genetic algorithm based learning classifier system, can harness information from a user’s
environment to help desktop applications better personalize themselves to individual users. Specifically, we evaluate XCS’ ability
to predict user preferred actions for a calendar and a media player. Results from three real world user studies indicate that
XCS significantly outperforms a decision-tree learner to successfully predict user preferences for these two desktop interfaces.
Our results also show that removing external user-related contextual information degrades XCS’ performance. This performance
degradation emphasizes the need for desktop applications to access external contextual information to better learn user preferences.
Our results highlight the potential for a learning classifier systems based approach for personalizing desktop applications to improve

the quality of human-computer interaction.

Index Terms

Evolutionary Computation, Genetics-Based Machine Learning, Learning Classifier Systems, XCS, Decision-trees, User-Context

I. INTRODUCTION

CS, a genetics based machine learning scheme, has been used for a wide variety of real world applications; few of the
X areas where researchers have had success include data mining, controlling traffic signals, mapping FPGA architectures,
and clinical research databases [1], [2]. In our research, we use XCS within our user-modeling framework, Sycophant, for
learning to predict a user’s preferences for desktop computer applications.

Most desktop applications such as a media-player or calendar rely on keyboard activity, mouse usage or an internal clock
to provide input (or context) for their information processing. This reliance on meager contextual information makes such
interfaces only partially aware of a user and her environment. We believe that accessing additional contextual information may
enable user interfaces to better adapt their actions towards individual users.

For example, if Jane prefers to turn her media player volume down when she is talking with someone in her office, her
media player however does not know whether Jane is talking to someone, and therefore cannot adapt to Jane’s preference. In
a different context, if Jane prefers to pause her music when she leaves her desk, her media player is unable to detect Jane’s
absence to pause the music. Clearly, Jane’s preferences for her media player changes whether she is talking with someone in
her office or when she is not at her desk.

As another example, consider Jack, who unlike Jane, prefers to pause his media player while chatting with someone in his

office; he prefers to decrease his media player’s volume when leaving his desk. Like Jane, Jack’s media player preferences are

Anil Shankar and Sushil J. Louis are with Evolutionary Computing Systems Laboratory, Department of Computer Science and Engineering, University of
Nevada, Reno NV, 89557 USA e-mail: {anilk, sushil} @cse.unr.edu.

IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Page 3 of 25

2

context dependent. From our media player example, we note the following about user preferences. First, a user’s preference for
an application action (changing volume, pausing music) depends on the context of use (talking with someone or leaving the
desk), Second, application action preferences vary from user to user in the same context of use; Jane and Jack have different
preferences for the same media player application while talking with someone in their office and when they are not at their
desks. In addition to a user’s context-dependent variation in application action preferences, the sparse, noisy, temporal, and
discontinous nature of this problem domain makes learning to predict user preferences for desktop applications a challenging
task.

If applications harnessed contextual information from a user’s external environment they could learn to better predict user
preferred actions and thereby improve that user’s interface experience.

In this paper, we compare a learning classifier system’s performance against other learners’ performance in predicting user
preferences of the sort outlined above for two applications. Sycophant, our generalized user modeling framework, gathers
simple contextual information from both the internal and external environment of a user [3], [4]. A web-camera checks for
movement (motion) in a user’s environment and we label this contextual information as motion. Similarly, a microphone
monitors a user’s environment for the presence or absence of speech. In addition to sensing a user’s external environment,
we also monitor keyboard and mouse activity. Sycophant aggregates the external and internal contextual data from these four
sensors and processes the sensors’ information to extract user-related contextual features. XCS within Sycophant uses these
features to generate a preference model for an individual user. An application can then leverage this user model to predict user
preferred actions. For example, Jane’s media player would leverage a learned user preference model to automatically pause her
music whenever Jane left her desk. Sycophant primarily uses XCS to construct such an application specific preference model
for an individual user.

While we briefly explain our user studies design and methodology in the subsequent sections, the first author’s dissertation

gives further details about our user studies [5]. This works’ primary focus is twofold:

1) To demonstrate a learning classifier system’s feasibility for learning to predict user preferred application actions.

2) To compare machine learning techniques for context-aware applicatons’ user preference learning.

We conducted three real world user studies with Winamp and Google Calendar and our results from these studies can be
summarized as follows [6], [7]: First, XCS successfully learned an individual’s preferences for an application action. Second,
XCS achieved the highest prediction accuracy and statistically significantly outperformed an implementation of C4.5 (decision
tree) and zero-R (baseline rule learner) on these user preference prediction tasks [8]. Third, external user-related contextual
information such as motion and speech better enabled XCS to predict a user-preferred action. Finally, Sycophant successfully
context enabled two applications Winamp, GoogleCalendar, and generalized learning user preferences for multiple users for
these applications. These results highlight the promise for an evolutionary learning system based approach for personalizing
desktop user interfaces.

The rest of the paper is organized as follows. Section II introduces user-context and gives Sycophant’s architectural details.
Once we have provided this background, we review related work. Section III examines related work by researchers in context

aware systems, interruption based studies, and XCS applications. We briefly overview XCS, its system operation, and describe
IEEE Transactions on Evolutionary Computation

Page 4 of 25

P OO~NOUILAWNPE

condensing classifiers in Section IV. Section V provides the design and procedure of our user studies and shows that XCS
outperforms a popularly used decision tree learner for predicting user preferences. We highlight the feasibility of a classifier
systems based approach to personalize desktop applications based on results in Section VI. Finally, we summarize our results

and examine a few avenues for future research to use XCS in long term studies for personalizing user interfaces.

II. THE SYCOPHANT FRAMEWORK FOR PERSONALIZING INTERACTIVE USER INTERFACES

In this section, we first define user-context and then describe Sycophant, our context-aware user modeling framework
available from the author’s website based on the Open Standards software requirements license [9], [10]. Sycophant comprises
four layers: Sensors, User-Context, Learning Services, and an Application layer. In the next two subsections we describe these
four layers and the system’s operation. Our software engineering paper provides usage examples of Sycophant’s Application

Programming Interface (API) [11].

A. User-Context

Researchers in ubiquitous computing have done extensive work to standardize a clear definition of context [12]-[14]. Dey

gives one of the widely accepted definitions of context and defines context as [15]:

Context is any information that can be used to characterize the situation of an entity. An entity is a person, place
or object that is considered relevant to the interaction between a user and an application, including the user and the

application themselves
We extend Dey’s broad definition of context to make it applicable to a desktop environment, and define user-context as [3]:
Any user-related contextual audio and video information in the vicinity of a desktop computer.

With this working definition, we structure Sycophant, our user modeling framework into four layers. The next section describes

these layers.

B. Architecture

Figure 1 shows Sycophant’s four layer architecture. Context sensors in the sensors layer gather information from a user’s
environment and store this information in the user-context layer. From this sensor data at the user-context layer, we extract
user-context features for different sensors. For example, we extract the Count feature to check the number of times a sensor was
active in the last five minutes. Section II-B2 explains user-context features that we extract from the sensor data. The learning
services API then helps to format user-context features into an appropriate data format for machine learning algorithms in
the learning services layer. In this layer, a machine learner generates an application-specific user model that predicts a user’s
preferences. The application layer supports multiple desktop applications that harness the generated user-model in the learning
services layer to predict user-preferred actions. We describe these layers in detail in the next four subsections.

1) Sensors Layer: At the lowest level we extract raw sensor information from a user’s environment using a clean, well-
defined sensors API. Sycophant currently supports four sensors: a motion sensor, a speech sensor, a keyboard sensor, and a

mouse sensor. However, the sensors API is designed to easily support the addition of new sensors. We use the sensors API to
IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

Page 5 of 25

4

-k Application-N

APPLICATIONS LAYER

Google » Winamp Medial,
F Calendar Player

APPLICATION API

User Model

LEARNING SERVICES API LEARNING SERVICES LAYER

=
L

USER CONTEXT LAYER
—
CONTEXT API —

Mation Speech Keyboard Mouse
Sensor Sensor Sensor Sensor

SENSORS AP SENSORS LAYER
= - T |
—N User Environment

Fig. 1. Sycophant’s Four Layer Architecture. The figure shows Sycophant’s layers along with the APIs used to access different services in the layers.

TABLE I

USER-CONTEXT DATA EXAMPLE

Feature

Sample Value(s)

User-identifier
Motion (Anyl, Alll, Any5, All5, Count)
Speech (Anyl, Alll, Any5, AllS, Count)
Keyboard (Anyl, Alll, Any5, All5, Count)
Mouse (Anyl, Alll, Any5, All5, Count)

user—1

1, 0, 1, 0, 16

set up a sensor, associate a log file with that sensor, and start (or stop) the sensor. The next layer up, user-context layer stores

this context data gathered from different sensors for use by the learning services layer.

2) User-Context Layer: We use the context API to extract user-related contextual features from the raw sensor data collected

by the sensors layer. For example, we use this API to examine the motion log file to check if the motion sensor was active in

the last five minutes (AllS). This layer stores a number of user-related contextual features for each of the four sensors in the

sensors layer. In this paper, we extract the following five user-related contextual features based on user studies conducted by

Shankar et al., and Fogarty et al. [3], [4], [11], [16]:

o Anyl: checks if a sensor was active in the last minute when the sensor was polled every fifteen seconds.

IEEE Transactions on Evolutionary

Computation

Page 6 of 25

©CoO~NOUTA,WNPE

o Alll: checks if a sensor was active in all the fifteen second intervals in the last minute.

o Any5: this is similar to Anyl, except that we check sensor activity history in the last five minutes.

o AllS: this feature is similar to Alll with the sensor history checked in the last five minutes.

o Count: checks the number of times the sensor was active in the last five minutes. If we poll a sensor every 15 seconds,

a sensor count can have a maximum value of 20 for five minutes.

Table I shows sample values for each of these features for Sycophant’s four user-context sensors. For the motion sensor, Count
has a value of 16 showing that this sensor was active 16 (out of 20) times in the last five minutes. The Any5 and All5 values are
1 and 0 indicating that the motion sensor was active in the last five minutes when the sensor was polled every fifteen seconds
but was not active during all of the 20 fifteen second intervals during the same period. Similarly, Any/ is 1 for the motion
sensor indicating that this sensor was active in the last minute, and A/l is 0 showing that the motion sensor was not active
during all of the four 15 second intervals during the same period. We can similarly interpret Table I for the speech sensor and
note from Count that this sensor was active 4/20 times in the last five minutes while being active in the last minute. The 0
values for keyboard and mouse features indicate that these sensors were not active. From these sample sensor values we notice
that there was some motion and speech activity but no keyboard or mouse activity. Over time these user-context features are
used by different machine learning algorithms to generate an application specific user-preference model at the learning services
layer.

3) Learning Services Layer: The learning services layer hosts XCS and a set of other machine learning algorithms provided
by Weka’s machine learning toolkit [17]. Weka is an open source collection of machine learning algorithms for data mining
tasks. We preprocess user-related sensor features from the context layer into an appropriate data format for a machine learning
algorithm using the learning services API. We select a machine learner using this API and generate an application-specific
user model that predicts user-preferred actions. For example, first we use the learning services API to select XCS for learning
a user’s preference for Google Calendar alarm types. Next, Google Calendar plugged in at the application layer harnesses this
XCS generated user model (based on training data) to predict calendar alarm preferences for a user when new context data (a
test exemplar) is available during calendar use.

4) Application Services Layer: The application services API facilitates plugging in multiple applications in the application
services layer. Currently, we have plugged in Google Calendar and Winamp. Google Calendar harnesses a learned user
preference model generated in the learning services layer for learning alarm type preferences for a particular user. Similarly,
Winamp accesses its own learned preference model for an individual user in predicting one of its four interface actions. Thus
we keep the user-context based preference model separate from an application that accesses this model to predict user-preferred

actions. This separation makes Sycophant’s framework flexible and modular.

C. System Operation

Figure 2 shows the operation of our system. Sycophant’s four user-context sensors include a web-camera, a microphone,
a keyboard, and a mouse. The web-camera detects user-movements and logs this motion information at the sensors layer.

Similarly, the microphone detects the presence or absence of speech and logs that information. The system also checks for

IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

Page 7 of 25

6

-

-
AN/

User Context Sensora ser

F==="
] |
1 I

=1 -
- -

gEs = e
User Context Data
o \

Traiining

Maching LEEIFI"IH"IQ
Algorithms

USER

Siden MODEL

' (Ser preferred
action
Application

I.

Mew Contoxt Data

Fig. 2. Sycophant’s System Operation

keyboard and mouse usage and logs these sensors’ information as well. All our sensors operate in a binary mode; that is, if
the web-camera detects motion it logs a 1 into its log file and 0 otherwise. Note that this sensor information is user-related and
we consider such information as user-context (II-A). As explained in section II-B2, for each sensor we extract Anyl, Alll,
Any5, AllS5, and Count features from the raw sensor data and store this preprocessed information in an appropriate format at
the Context Layer. A machine learning algorithm, such as XCS, accesses this user-context data from the sensors and generates
an application specific action preference model for an individual user. For example, based on Jane’s XCS generated preference
model, Winamp would learn to pause when she left her desk.

However we need training data to generate this preference model. Sycophant creates training data in the following manner:
Initially, when no training data is available, Sycophant chooses a random application action and generates a feedback request.
This feedback request asks a user whether the generated alarm was appropriate and whether the user would have preferred a
different alarm. Figure 3 shows the user feedback interface. A user selects one of the interface actions in the feedback request
window and Sycophant logs this feedback as their preference. Section V-A explains the four alarm types shown in Figure 3.
We ensure that the feedback window automatically disappears after 15 seconds to mitigate the effect of annoying a user with
feedback requests. A user’s feedback along with the user-context sensor information is stored as a training data exemplar in the
context layer. In this work, our system periodically asks the user for feedback. Before we describe XCS and how it leverages

user-context data we briefly summarize related work in adaptive user interfaces and learning classifier systems.

IEEE Transactions on Evolutionary Computation

Page 8 of 25

P OO~NOUILAWNPE

U OTUu AU DMBEMDIAMDIAMBAEDIAMDIMDNWOWWWWWWWWWWNDNNDNNNNMNNNNRPRPRPERPRERPERRER
QOO NOUPRRWNRPOOO~NOUOPRRWNPRPOOONOOUOPRARWNRPEPOOONOODURAWNRPOOO~NOOUUDMWNEO

0O {elp me learn your Alarm preference 00O
Alarm
content
drea

[The only peaple for me are the mad ones - the ones who are mad to live,

Imad to talk, mad to be saved, desirous of everything at the same time,

the ones who never yawn or say a commonplace thing, but burn, burn, burn

Quote like fabulous yellow Roman candles

- Jack Kerouac, "On the Road"

Which Alarm-type do you prefer?

QVIS‘I.I m VIsasTEvaice m

S
User feedback e
for alarm types

Fig. 3. A Calendar Voice Alarm. The figure shows feedback interface highlighting the alarm content area, a quote displayed as incentive for a user’s feedback,
and the feedback buttons for different alarm types that a user can select.

III. RELATED WORK

In this section we synergize the advances made in context-aware systems and genetics-based machine learning research to
provide a background for our XCS-based generalized user modeling framework.

Related research in context-aware systems has mainly addressed managing a user’s attention, building statistical models
to predict the state of interruptability of a user, and tracking a user’s interactions with all applications for reducing a user’s
interaction overhead with these applications. Bailey and Adamczyk have quantitatively shown that a user’s attention must
be carefully managed among competing applications [18]. They necessitate such user attention management to mitigate any
disruptive effects of interrupting a user at inappropriate times. Igbal has primarily worked on managing a user’s attention
in multitasking environments [19], [20]. Her attention management system schedules interruptions during task executions by
using a cost-benefit approach for generating interruptions. Managing a user’s attention across multiple desktop applications
or devices is the main focus of her research. In the TaskTracer project, Herlocker et al. track a user’s interactions with all
desktop computer applications. They track applications to organize a user’s information based on tasks and make desktop
applications more task-aware. TaskTracer’s primary focus is to reduce overhead interaction and cognitive load while users
switch tasks and improve personal productivity [21], [22]. Fogarty’s Subtle uses sensor-based statistical models to predict the
state of interruptability of a user [16], [23]. Fogarty based Subtle’s design on the results of his Wizard of Oz study for building
statistical models that could predict interruptability of office workers. Currently, Subtle is more suited to notebook computers
and collects data from a system’s opening, closing, audio analyses, mouse-clicks and WiFi sensing activities for predicting the
state of interruptability of a user.

In Learning Classifier Systems (LCS) research, Kovacs has surveyed real-world LCS applications used to solve a wide variety
of problems in optimization, medial domains, data mining, control and modeling [2]. XCS, in particular has been successfully
applied in diverse domains for data mining. The next section gives XCS’ details. Wilson used XCS to mine the Wisconsin

Breast Cancer (WBC) data set and highlighted XCS’ promise from both performance and pattern-discovery viewpoints [24].

IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

Page 9 of 25

8

XCS achieved a mean test set performance of 95 percent on a stratified 10 fold cross validation of WBC data. Saxon and Barry
further tested XCS on the Monk’s problems data set and showed that XCS’ performance was comparable to that of neural
networks and production based classifier systems [25].

We consolidate these advances in LCS research and context-aware systems. Extending interruption based studies, while
Fogarty’s work only showed when an application should interrupt a user, in addition to showing when, we also show how, that
is, what type of action an application should take to generate an interruption. In contrast to research in attention management
that has primarily focused on the internal environment of a desktop computer (tasks, applications), we gather user-related
contextual information from both the internal (keyboard, mouse) and external (motion, speech) environment of a user’s desktop
computer to better personalize desktop applications. Within Sycophant, our context learning framework, we use XCS’ superior
predictive accuracy to enable Google Calendar and Winamp to learn an individual’s preferences for different application actions.

We next describe XCS and its operation.

IV. XCS

Learning Classifier Systems (LCS) were John Holland’s innovative work in creating a domain-independent rule-based machine
learning complex adaptive scheme [26]. Holland’s work in this area laid a comprehensive foundation for Genetics-Based
Machine Learning (GBML) techniques [27]. Wilson simplified Holland’s LCS by removing the bucket brigade and the internal
message list and he derived XCS from his ZCS and Animat programs [1], [28]-[31]. In the next four subsections, we describe
XCS’ architecture, the operation of the system when subjected to an accuracy criterion to evolve a minimal, maximally general,
and accurate model for a learning task, and the parameter settings we use for learning to predict user preferences within our
Sycophant framework [29]. The key distinction between XCS and a traditional LCS is that an XCS classifier’s fitness depends
on the prediction of its expected payoff while an LCS’ classifier’s fitness depends on the actual prediction itself. A reader

familiar with XCS can skip to Section IV-D

A. XCS Architecture

Figure 4 shows XCS’ architecture. We show XCS interaction with an environment via detectors for sensing the environmental
input and effectors for executing an action. The environment provides reward, a scalar reinforcement, that is action dependent.
XCS’ core consists of a classifier population where each classifier represents a simple if-then rule; a classifier’s left side consists
of a single condition and its right side codes an environmental action. Figure 5 shows a classifier population. In addition to the
classifier population, XCS components include the match-set formed for a sensed input message, the prediction array created
from the match-set, an action-set corresponding to one of the actions selected from the prediction array, and a genetic algorithm
that searches through the space of action-set classifiers. Before, we describe these components we briefly explain the following
important classifier attributes to aid in a better understanding of XCS’ overall operation. Wilson’s papers give additional details
about classifier components [1], [28], [31]. Each XCS classifier consists of the following important attributes:

» Condition: is defined over the ternary alphabet {0, 1,#}L, where L is a classifier’s individual bit-string length. The

meta character # matches either a 0 or 1. Whenever the system senses an input from the external environment, XCS’

IEEE Transactions on Evolutionary Computation

Page 10 of 25

©CoO~NOUTA,WNPE

Environment

PREDICTION
ARRAY

Predictions, Ermrs, Fitness

\ UPDAy
Environment =

classifiers try to match the input’s condition part. For example, when XCS learns to predict a user’s Google Calendar’s

Fig. 4. The XCS Classifier System

alarm preference, the condition component corresponds to an exemplar from the user-context data. Table I shows sample

user-context data values and the corresponding exemplar is:

participant-1,1010(16),1000(4),0000(0),0000(0)
A system generated classifier’s condition component for the above exemplar would be as shown below. Section IV-D
explains this binarization in detail.

0001,101#(10000)1000(00100)000#(00000)00#0(00000)

Action: Action is an operation which a classifier can execute; generally, action is chosen from a set of finite classes. For
example, in case of Google Calendar, a classifier’s action could be a voice-alarm, a visual-alarm, both voice and visual
alarms, or none. Section V-A explains these alarms in detail.

Prediction Estimate: is the value of an estimated pay-off if a classifier’s condition part matches the environment’s input
and the system executes this classifier’s action. It is this key attribute which distinguishes XCS from a traditional LCS.
Prediction error: is an estimate of error made by a classifier’s predictions. The system computes prediction error after

it receives an environmental reward.

IEEE Transactions on Evolutionary Computation

P OO~NOUILAWNPE

Page 11 of 25

10

« Fitness: represents a classifier’s fitness value. In XCS, a classifier’s fitness is calculated by reestimating its attributes if

that classifier is present in the action-set. The system receives an environmental reward as a result of a classifier executing

a particular action. This reward influences fitness reestimation. We describe action-set formation in the next subsection. A

classifier’s reward also factors in the system’s predictions and errors updates. Subsequently, the system estimates accuracy

and converts this estimate into a relative accuracy value. This relative accuracy value along with the learning rate (3 is used

to update a classifier’s fitness. We do not modify XCS’ fitness computation mechanism but use Butz’ implementation [32];

hence we refer an interested reader to Wilson’s papers that give mathematical details about these intricate computations [1],
[31].

We explain the other main XCS components including the match-set, the action-set and the GA in the context of system

operation in the next subsection.

B. XCS System Operation

Figure 5 shows the system’s operation during training and testing phases. We first give a brief overview of the training
and testing phases of the system operation and next explain these phases in detail. During the training phase, XCS evolves a
classifier set for a training fold (a subset of all data collected for a user) and stores these classifiers after our experimentally
determined stopping criterion of repeatedly sampling 20000 random problems (exemplars) or when the training performance
reaches 1.0. Thus, from the training data XCS learns a classification model of the target concept, that is, the interface action
type to predict. During the testing phase, we test these training-set evolved classifiers on the testing fold (mutually exclusive
subset of the training fold) and record the system performance. Thus the testing fold helps to evaluate XCS’ predictive accuracy
on unseen cases. Even though our learning set up is set up in this batch-mode, we could progressively update the training model
as new data is available to the system. Such an update could either be done when Sycophant is inactive (no user-preferred
actions to predict), or periodically (say, every twelve hours).

During system training a user-context data exemplar serves as the environmental input message string to the system. XCS’
classifiers whose condition component match this input message string are grouped to form the match-set (M). For each of the
actions present in M the system computes a fitness-weighted average for each of M’s classifiers. The system next selects the
best-action (experimentally determined) which is the action associated with the highest fitness in the prediction array. XCS’
effectors send this action to the external environment. Based on this action the system receives an appropriate reward from
the external external environment. This cycle of environmental input sensing, action selection and factoring in the reward is
continued until the system meets the training-phase termination condition of randomly sampling 20000 problems or achieving
a training-set prediction accuracy of 100 percent (experimentally determined). We store the classifiers (rules) at the end of the
training phase.

During system testing a new user-context exemplar whose action component is unknown is available to the system. XCS
uses the training-phase evolved classifiers to match the condition component of this test-exemplar. Similar to the training phase
the system forms a match-set for the test-exemplar and predicts an action to execute.

In more detail, during the training phase the system forms the match-set for a sensed input message string from the

IEEE Transactions on Evolutionary Computation

Page 12 of 25

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

/Training Phase \ Testing Phase
User1, 10030, 8,1,0, 1,1, 111
I 0010011001 0010001111 7

001-1010 1111 CHO100-1-0-1- 11

XCS l

NONOT0I0 10111:0 |
O O Co06111:1
001 D000 001003 111: 2 |Rule| Base

10100 O A0 1 00000 3 4 ;
D EEEE e Action 2)

If econdition= matches

input usercontext features,
then generate =action-N=

<5
Action(1)

N

Fig. 5. XCS System Operation. The figure shows a trained XCS predicting both visual and voice alarm (action type-2) for a test exemplar.

environment. If none of the classifiers in the population match the condition component of the input message string, the system
creates new classifiers with each of the possible environmental actions to form the match-set. This procedure is called covering.
In our set-up we start with an empty classifier population and initiate covering only at system initialization.

After the system creates M, it calculates a fitness-weighted average of each of M’s classifiers for each of the actions present
in M. There are many action selection mechanisms, for our system’s optimal performance we use the best-action selection
mechanism for choosing one of M’s actions (a). The system sends this action, a, to the external environment for the sensed
input message string. XCS gets 1000 (experimentally determined) reward if it takes the correct action and O otherwise. Due
to project time constraints, we did not investigate the theoretical basis for the success of the best-action selection mechanism,
but we believe that it would be an interesting avenue for future research. At the same time, the match-set classifiers which
proposed a are grouped to form the action-set (A). The action-set classifier attributes (including fitness) get updated based on
the actual reward received from the environment. We run the GA on the action-set based on 654, a threshold parameter to
improve our system performance.

When the system executes a selected action and receives an appropriate reward from the environment, classifiers in the action-
set whose action was chosen get their fitness values updated. This procedure ensures that accurately predicting classifiers tend to
reproduce more due to their increased fitness for choosing the correct action, while inaccurately predicting low-fitness classifiers

tend to get weeded out of the population. This cycle of environmental input sensing, action selection, factoring in the reward

IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

Page 13 of 25

12

and running a GA on the action-set classifiers is continued until a termination condition is met. Based on experimental runs,
we use a termination condition of randomly sampling 20000 problems (context data exemplars from the training set) or a
training set performance prediction accuracy of 100 percent. We also use condensation to extract a minimal classifier subset

to represent the final solution for predicting user-preferred interfaces actions.

C. Condensation

Condensation consists of running XCS with crossover and mutation rates set to zero. This process suspends genetic search
since no new classifiers are generated. However, XCS’ selection and deletion processes continue to operate whenever the GA
gets triggered. As a result, there is a tendency for less fit, less general classifiers to be weeded out of the population. Reducing
the number of classifiers enables the system to extract a minimal classifier subset capable of representing the final solution [1],
[29]. Our system enables condensation after our stopping criterion is met. Based on trials to tune our system performance,
we choose to stop condensation after sampling an additional 20000 problems from the training set. In the next subsection, we

give the value of various XCS parameters that we use in our system.

D. XCS’ Encoding and Parameter Settings

XCS’ parameter values are based on our attempts to optimally tune the system performance (test-set prediction accuracy).
We start with an maximum population size of 20000. For an XCS classifier, 3 is the learning rate for updating predictions,
prediction error, fitness and the action set size estimate. We set 3 to 0.2. The threshold for applying the GA in an action
set, 64, to optimally tune our system performance is set to 25. The GA has probability of crossover(x) set to 0.8, mutation
probability(u) set to 0.04, and meta character (#) probability set to 0.33. The other parameter values are the default values
provided by Butz [32].

A user-context data exemplar is a shown below:

participant-1, 1010(22), 0000(0), 1010(26), 1010(2):3

where the first attribute denotes a study participant. The next five are motion attributes - Anyl, Alll, Any5, All5, Count5
(shown in parentheses); Section II-B2 describes each of these user-context features. Similarly, the next fifteen attributes in
groups of five relate to speech, keyboard, and mouse activity. The value after “:” denotes the class to which this exemplar
belongs. Here, we show an exemplar for Google Calendar alarms, where class 3 corresponds to both voice and visual alarms.

We binarize this user-context data exemplar into an XCS suitable format as shown below:

Binary Equivalent:
0001,1010(10110),0000(00000),1010(11010),1010(00010):3
XCS Classifier:

0001101010110000000000101011010101000010:3

This converted binary string represents one of XCS’ classifiers in the population. The binary values before the “:” denote the

condition part and the 3 denotes this particular classifier’s action part. In the next section we give the design of three real world
IEEE Transactions on Evolutionary Computation

Page 14 of 25

©CoO~NOUTA,WNPE

user-studies which we conducted to evaluate the feasibility of an XCS-based approach for predicting user-preferred application

actions.

V. USER STUDIES METHODOLOGY

We conducted three user studies to investigate whether Sycophant could accurately predict an application’s (Google Calen-
dar/Winamp) action for an individual user. The Office of Human Research Protection at our university approved and validated
our studies that involved human-subjects. Our research questions were refined by building upon the results in successive studies.
To illustrate Sycophant’s gradual progress in predicting user-preferences, we first present the study designs and next give the
results in the next section.

Our first study was a pilot study to evaluate the feasibility of learning a user’s interface action preferences based on user-
context. In our second study, we examined if Google Calendar’s alarm action preference learning generalized across different
users. In the third and final study, we evaluated if Sycophant could enable an additional interface, Winamp, and thus generalize
our user-context learning approach across two widely-used desktop applications. We next describe our three study procedures

in detail.

A. Pilot Study

We developed a functional calendaring application that had options for adding (or deleting) appointments for this study.

Our calendar generated four types of alarms:

1) None: No alarm was generated to interrupt a user.
2) Visual Alarm: A popup window displayed the appointment text.
3) Voice Alarm: A text-to-speech synthesizer voiced out the alarm text.

4) Both: Combined visual and voice alarms.

In this study we investigated whether Sycophant could successfully leverage user-context information to predict one of the four
calendar alarm types. Since the focus of this study was to validate the feasibility of learning to predict user preferred application
actions, we recruited only three participants for this study. However we used at least ten participants in our subsequent user
studies based on encouraging results from our pilot study.

Three users set appointments for their daily activities over a period of six to eight weeks. During this period we collected
323, 347, and 354 exemplars from these three participants, respectively. These three participants were graduate students in
our department. We considered the task of predicting whether or not to interrupt a user with an alarm as the Two-Class
Problem, and the task of predicting an alarm from one of the four alarm types as the Four-Class Problem. The two-class
problem prediction accuracy helped us evaluate Sycophant’s performance on deciding when to interrupt a user for comparing
our results with Fogarty’s interruption based studies [16]. We used the four-class problem prediction accuracy to evaluate
Sycophant’s performance on deciding how to interrupt a user. Figure 3 shown earlier depicts a Voice Alarm; in this figure,
note that we display an interesting quote along with the alarm as an incentive for a user to provide feedback. In the next phase

we plugged in Google Calendar into Sycophant’s application layer. Similar to our pilot study’s functional calendar, Google

IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

Page 15 of 25

14

Calendar generated the four alarm types for different study participants. Detailed results in Section V-A show that XCS helped

Sycophant to accurately predict a user’s preferred alarm-type.

B. Short-term Studyl, Google Calendar

Figure 6 shows the user-context sensor positions for our study enabled desktop computer in our first short-term study.
Section II-C explains our approach to gather motion, speech, keyboard and mouse information. In contrast with our pilot
study where we collected calendar usage data from three participants over a span of three weeks, this study was a short-term
study that simulated an average work day in our research lab where students read research papers. When reading papers, most
students in our lab listen to music while they are sometimes interrupted with conversations from neighbors. We investigated if
contextual information from these students’ environment could help Sycophant to accurately predict their preferred alarm-types.

Ten participants who were graduate and undergraduate students in our department attended four separate 45 minute sessions

T""""'- RE Motion
Detector
(webcam)
T
Google
Calendar

& Visual
Alarm

Speech
Detector
(microphone)

Fig. 6. Short-Term User Study Computer Setup. The figure highlights the motion sensor (web-camera), the speech sensor (microphone), and a visual-alarm
generated by Google Calendar.

each. In each session, a participant read an article on the study desktop for the first 30 minutes, and answered article related
questions in the last 15 minutes. Sycophant generated alarms for a participant during the first 30 minutes of each session.
The alarm content was either study related or related to a session article. A participant provided feedback by selecting one of
her preferred alarm-types whenever an alarm was generated. We collected an average of 60 user-context exemplars from our
participants in the four study sessions.

Table II shows the experimental design for four study sessions. Column I shows the session numbers. The article reading
lengths are shown in Column /1. We show the randomized alarm order in Column I77. We used this randomized design to
control study variation, and the same randomized alarm order was used for all the participants in our study. The alarms 0, 1,2
and 3 correspond to no-alarm, visual alarm, voice alarm and both visual and voice, respectively. Column IV shows the four

study conditions, that is the treatments which we applied to all our study participants. We applied Talk, Music, No-Music,
IEEE Transactions on Evolutionary Computation

Page 16 of 25

©CoO~NOUTA,WNPE

TABLE II
STUDY-1: GOOGLE CALENDAR SHORT-TERM STUDY’S EXPERIMENTAL DESIGN

I 11 I v
Session | Task | Alarm Order Conditions
1 short 0,2,3,1 Talk, No-music
article 3,1,2, 0 Music, No-talk
1,0,2,3 No-music, No-talk
2,1,0,3 Music, Talk
2 long 0,2,3,1 Talk, No-music
article 1,2,0,3 Music, No-talk
1,3,2,0 No-music, No-talk
3,02, 1 Music, Talk
3 short 1,3,0,2 Talk, No-music
article 2,3, 1,0 Music, No-talk
2,0, 3,1 No-music, No-talk
3,2,0,1 Music, Talk
4 long 0,3,2,1 Talk, No-music
article 1,0, 2,3 Music, No-talk
1,0, 2,3 No-music, No-talk
3,0, 1,2 Music, Talk

and No-Talk as treatments. In this study, we used scripted talk to initiate conversation with a study participant and labelled
this treatment as Talk. We played music (selected through participant survey) and we labelled this as the Music treatment.
Suspending conversation was labelled No-Talk and stopping music was labelled No-Music.

A self-report was a participant preferred alarm type, and the construct we measured was the calendar generated alarm-
type. Sycophant randomly generated alarms as shown in Column I7]. A participant read a short article in the first session,
a longer article in the second session, an article of similar length in the third session and finally a short article in the last
session. A subsequent participant read a long, short, short, and long articles in the study. We thus counter balanced the article
lengths for every participant pair to reduce the chances of article length order affecting alarm-type preferences. Results in
Section VI-B show that user-context helped XCS to better participant’s preferred alarm types and that this user preference
prediction generalized across multiple participants. In our next study, we evaluated whether Sycophant could context-enable

Winamp and predict a user’s preference for one of its four interface actions.

C. Short-term Study2, Winamp

In our second short-term study, we investigated if we could leverage user-context to predict a user’s Winamp preferences. We
checked if Sycophant could context-enable Winamp in addition to Google Calendar and thereby generalize our user-context
learning approach to another desktop application. Similar to our first short-term study, 10 graduate and undergraduate students
in our department participated in this study. Our study simulated computer science graduate students reading an article, listening
to music on Winamp while having short conversations or leaving their desk for various reasons.

Table III shows the experimental design for four study sessions. Winamp action was the independent variable in our study.
IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

Page 17 of 25

16

Column [shows the session number. We show the session article lengths in /7, and the treatments applied to all study

TABLE III
STUDY-2: WINAMP SHORT-TERM STUDY’S EXPERIMENTAL DESIGN

I I I
Session | TASK Conditions
1 short | No Talk, No Map Reading

article No MapReading, Talk
Map Reading, Talk

MapReading, No Talk

2 long | No Talk, No Map Reading

article No MapReading, Talk
Map Reading, Talk

MapReading, No Talk

3 long | No Talk, No Map Reading

article No MapReading, Talk
Map Reading, Talk

MapReading, No Talk

4 short | No Talk, No MapReading

article No MapReading, Talk
Map Reading, Talk

MapReading, No Talk

participants in V. The Talk treatment was the same as in our previous short-term study. We again counter-balanced the article
lengths for every participant pair and applied the same treatments to all the 10 participants.

Participants anonymously completed a survey questionnaire that listed a song and indicated their song preference based on
a five point Likert scale (strongly dislike, dislike, neutral, prefer, and strongly prefer) [33]. After the 10 participants completed
our survey, we chose songs that all the participants preferred at the neutral level or higher. Participants listened to these
songs during their four study sessions. We kept the article reading and question answering session times the same as our first
short-term study.

Each participant attended four separate sessions and each session lasted 45 minutes. While a participant read an article,
she was interrupted with talk (using a script) and/or made to leave the study area to perform a place-location task on a
map. Participants left their desk to find a place on a map of Yosemite National Park. We label this as the MapReading
treatment (Column II7) in our design. During these interruptions, we hypothesized that different participants tend to have
different preferences for Winamp. To capture these preferences, computer generated requests periodically (every 70 seconds)
solicited participant feedback for one of Winamp’s four actions (pause a song, play a song, increase volume by 10 percent, and
decrease volume by 10 percent). We used a feedback request similar to the one shown in Figure 3 for recording a participant’s
feedback. Sycophant collected an average of 60 user-context exemplars (user feedback) for every participant during the four
study sessions. Instead of selecting one of the four alarm types, a participant selected one of Winamp’s four interface actions

listed in the parentheses above. During the last 15 minutes of a 45 minute study session, a participant answered questions

IEEE Transactions on Evolutionary Computation

Page 18 of 25

©CoO~NOUTA,WNPE

related to the article without being interrupted. We recorded a participant’s Winamp action preference, motion activity, speech
activity, keyboard activity, and mouse activity as contextual information from their desktop environment. Our goal was to find
a mapping from this contextual information to a participant’s Winamp action preference. In the next section, we present results

from these three user-studies.

VI. RESULTS

We used three machine learning schemes for these user studies: Zero-R, J48, and XCS. Zero-R is a majority voting learning
scheme that predicts the majority class in any data set. For example, if a participant’s data had play in 8 out of 10 cases
for Winamp, then Zero-R predicted play as Winamp’s default action for this user. J48 is a decision-tree implementation of
Quinlan’s C4.5 learner in Weka, a popular machine learning tool kit [8], [17]. At the end of this section we discuss some of
the insights we gained into using XCS for predicting user preferred actions and the relevance of user-context for successfully
personalizing applications to individual users.

We categorize the results from our user studies to answer the following questions:

1) Can Sycophant accurately predict a user-preferred alarm type based on user-context?

2) Is XCS a feasible approach for learning user-preferences for alarm types?

3) Does user-context help XCS to better predict a participant’s alarm type preference?

4) Does our user-context based approach to learn participant preferences generalize across multiple participants?

5) Can Sycophant support Winamp in addition to Google Calendar?, and can XCS successfully predict a participant preferred

Winamp action?

We use a two sample t-test with a confidence interval of 95 percent to compare XCS’ performance with that of a decision-tree
machine learning algorithm [34]. We record XCS’ performance by noting the percentage of correctly solved problems in the
last 50 sampled problems. Our system assumes that a problem is solved if a classifier correctly predicts the interface action type
to take for the classifier’s condition component. The user-context data collected for an individual was not sufficient to create
10 cross-validation folds for evaluating a machine learning algorithm’s test-set prediction accuracy. Hence we use a three-fold
cross-validation approach but conduct 10 runs for each pair of training-testing folds to get a robust statistical estimate. We
repeat the same procedure for the decision-tree learner, J48. Based on experiment runs to optimally tune XCS, we train XCS by
making it evolve a classifier set on a training fold and store these classifiers after our stopping criterion of repeatedly sampling
20000 random problems (exemplars) or when the training performance reaches 1.0. Thus, from the training data XCS learns
a classification model of the rarget concept, that is, the interface action type to predict. We test these training-set evolved
classifiers on the testing fold and record the system performance. The testing fold thus helps us to evaluate XCS’ predictive

accuracy on unseen cases.

A. Pilot study results

Our feasibility study paper gives results of our pilot study in more detail [35]. The first author provides a more comprehensive

treatment of feature design including the predictive power of each feature in his dissertation [5]. We briefly summarize this

IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

Page 19 of 25

18

study’s results here to highlight our gradual evaluation of XCS’ feasibility to predict user-preferred interface actions. For three
study participants on the two-class problem of learning to predict whether or not to generate an alarm, XCS, J48 and Zero-R
had average prediction accuracies (performance) of 89, 84 and 72 percent, respectively. Thus XCS and J48 performed better
than Zero-R’s base rate performance. XCS’ performance of 74 and 100 percent matched that of J48 whose prediction accuracies
were 74 and 100 percent for two participants. XCS with a predictive accuracy of 93 percent also outperformed J48 which had
a predictive accuracy of 78 percent for the third participant.

On the four-class problem of learning to predict one of the four alarm types (none, visual, voice, and both), again, XCS
and J48 performed better than Zero-R’s base rate performance. XCS, J48 and Zero-R had average prediction accuracies of 97,
81 and 72 percent, respectively. XCS significantly outperformed J48 for two participants with predictive performance of 100
percent (for both participants) when compared to J48’s 70 and 72 percent for these two participants. Also XCS’ performance
(91 percent) was worse than J48 (99 percent) for the last participant. When we examined this participant’s data, we found that
visual and voice alarms were preferred by this participant for 349/352 instances. We attribute XCS’ lower predictive accuracy
to this participant’s static alarm type preference; this also explained the majority voting Zero-R’s high predictive accuracy.

Our pilot study results indicated that Sycophant could accurately predict a participant-preferred alarm type by relying on user-
context, thus answering the first question which we posed in Subsection VI. Also, our two-class problem’s predictive accuracy
(deciding whether or not to interrupt a participant) was comparable to that of Fogarty’s interruption based studies [16]. In our

next study we investigated if we could learn alarm type preferences for multiple participants.

B. Short-term studyl, Google Calendar, results

Tables IV and V show the test set predictive accuracy of Zero-R, J48, and XCS on the two-class and four-class Google

TABLE IV
SHORT-TERM STUDY 1: TEST SET PERFORMANCE ON THE TWO-CLASS ALARM PROBLEM FOR GOOGLE CALENDAR.

Learning I 1T v v VI Vil
Algorithm Zero-R | J48tuc Jag—uc | XCStue XCS~“¢ | XCS better
than J48?
Participant | (V > 1D
1 0.5806 | 0.8871 0.8548 | 0.9530 0.9015 TRUE
2 0.5000 | 0.7407 0.7778 | 1.0000 0.9608 TRUE
3 0.7121 | 1.0000 1.0000 | 1.0000 1.0000 SAME
4 0.6200 | 0.9400 0.9400 | 1.0000 0.9213 TRUE
5 0.5455 | 0.8485 0.8485 | 0.8788 0.8030 TRUE
6 0.7143 | 0.8889 0.8889 | 0.9008 0.8349 TRUE
7 0.7460 | 09841 0.9048 | 1.0000 0.9833 TRUE
8 0.5625 | 0.7083 0.6875 | 0.8915 0.8301 TRUE
9 0.8163 | 09184 0.8980 | 1.0000 0.9792 TRUE
10 0.5246 | 0.6885 0.7377 | 0.9153 0.7025 TRUE
4 9 9

Calendar alarm problems, respectively. In both the tables, Column [lists the participant, and Column /I shows Zero-R’s test-set
prediction accuracy. Columns I1I and I'V show J48’s prediction accuracy with and without user-context features, respectively.
Similarly, Columns V and VI show XCS’ prediction accuracy with user-context and without user-context. Column V'II is

the statistical inference comparing XCS” performance with that of J48 on the alarm prediction tasks. The three numbers in
IEEE Transactions on Evolutionary Computation

Page 20 of 25

©CoO~NOUTA,WNPE

the last row indicate the number of participants for whom removing user-context degraded J48’s performance, the number of
participants for whom removing user-context resulted in XCS* performance degradation, and the number of participants for
whom XCS outperformed J48 on the alarm prediction tasks.

TABLE V
SHORT-TERM STUDY 1: TEST SET PERFORMANCE ON THE FOUR-CLASS ALARM PROBLEM FOR GOOGLE CALENDAR.

Learning I I v A% VI Vil
Algorithm | Zero-R | J48tuc J48—ue¢ | XCStue XCS~%¢ | XCS better
than J48?
Participant | (V > 1II)
1 0.5806 | 0.6129 0.5806 | 0.9697 0.9182 TRUE
2 0.5000 | 0.5185 0.5926 | 1.0000 0.9227 TRUE
3 0.7121 | 0.7347 0.7755 1.0000 1.0000 SAME
4 0.6200 | 0.7400 0.6000 | 1.0000 0.9236 TRUE
5 0.5455 | 0.5152 0.5303 | 0.7879 0.4545 TRUE
6 0.7143 | 0.6825 0.7143 | 0.7047 0.6548 TRUE
7 0.7460 | 0.9683 0.8889 | 1.0000 0.9167 TRUE
8 0.5625 | 0.5625 0.5625 | 0.9556 0.9163 TRUE
9 0.8163 | 0.6818 0.7121 | 0.9702 0.9563 TRUE
10 0.5246 | 0.5574 0.4754 | 0.8833 0.5072 TRUE
4 9 10

On the two-class problem, both J48 and XCS perform better than Zero-R’s base rate performance. Removing user-context
degrades J48’s prediction accuracy for 4 participants - 1, 7, 8, 9 (Column IV bold-faced values). This clearly shows that external
user-context (motion and speech) helps J48 to better learn these participant’s preferences. XCS* performance significantly
degrades without user-context for all participants except for one participant. When we examined this participant’s data, we
found that this individual had no varying preferences and hence presence (or absence) of user-context had no effect on learning
this participant’s alarm type preferences. Also, XCS significantly outperforms J48 for 9 participants who did have varying
preferences.

We notice a similar behavior of the machine learning schemes on the four-class problem of predicting one of the four
calendar alarm types. Again, removing user-context degrades J48 (participants:1, 4, 7, 10) and XCS’ (all participants except 3)
alarm prediction accuracy. We ranked J48’s context-features for all the 10 participants using the Information-Gain Ratio (IGR),
a measure for evaluating the relevance of an attribute for a decision-tree, in Weka. In the top 15 ranked features, participants
1,4, 7, and 10 had more user-context features (related to motion or speech) when compared to the other participants. That is,
IGR showed that user-context features were important for these participants and hence removing user-context degraded J48’s
prediction accuracy on the two-class problem. Also we note that XCS outperforms J48 for all the 10 participants.

The results in this study further substantiates our hypothesis of relying on user-context to better predict a participant’s alarm
type preference. XCS’ superior predictive performance across all participants (when compared to the decision-tree learner)
demonstrates that it is viable technique for predicting application action preferences. This result answers the questions (2 and
4) that we posed earlier in Section VI related to XCS’ feasibility for predicting user preferences and generalizing this preference
learning across multiple participants. The performance degradation of both J48 and XCS highlights the importance of harnessing

external user-related contextual information from a participant’s environment to learn their preferences for different alarm

IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

Page 21 of 25

20

types. This result answers the question (3) that we posed in Section VI about user-context’s relevance to predict user-preferred
application actions. Next, we checked if Sycophant could context-enable Winamp and thereby evaluate the generalizability of

our framework for supporting another widely used desktop application.

C. Short-term study2, Winamp, results

TABLE VI
SHORT-TERM STUDY 2: TEST SET FOR PREDICTING ONE OF WINAMP’S FOUR ACTIONS (PLAY, PAUSE, INCREASE VOLUME, DECREASE VOLUME).

Learning II I v \" VI VII
Algorithm Zero-R | J48*Tuc J4g—uc | XCStue XCS~“¢ | XCS better

than J48?
Participant | (V > 1)
1 0.4940 | 0.4940 0.4337 | 0.5185 0.3951 TRUE
2 0.5000 | 0.4630 0.5556 | 0.7113 0.3442 TRUE
3 0.6136 | 0.5682 0.6136 | 0.7897 0.3333 TRUE
4 0.5306 | 0.5102 0.4082 | 0.7520 0.7122 TRUE
5 0.8061 | 0.7653 0.8061 1.0000 0.6559 TRUE
6 0.7111 | 0.6889 0.7111 0.8790 0.5801 TRUE
7 0.7733 | 0.7733 0.7733 | 0.9321 0.8812 TRUE
8 0.7315 | 0.6944 0.7315 | 0.7660 0.4926 TRUE
9 0.6727 | 0.6727 0.6545 | 0.8519 0.7593 TRUE
10 0.5800 | 0.6200 0.5800 | 0.8741 0.5667 TRUE

3 10 9

Table VI shows the test-set prediction accuracy for one of the four Winamp’s actions: play, pause, increase volume by 10
percent, and decrease volume by 10 percent. Column I lists the participants and we show Zero-R’s performance in Column
11. J48’s performance with and without user-context is shown in Columns /77 and IV, respectively. Similarly we show XCS’
performance with and without user-context in Columns V and V'I.

Comparing the prediction accuracy for various participants in Column /I with Column /1], we see that the decision-tree’s
(J48) performance is worse than the base-rate (except for participant-10). Similarly comparing Columns I and V' shows that,
unlike J48, XCS outperforms Zero-R (base-rate). When we compare Columns I7] and V, we note that XCS significantly
outperforms J48 for all our 10 study participants. XCS’ superior predictive accuracy shows that it is a better learner than either
Zero-R or the decision-tree learner for predicting participant preferred Winamp actions. Similar to our first short-term study,
removing user-context degrades J48’s performance for four participants (1, 4, 9, 10) thereby emphasizing the importance of
external user-context (motion and speech) for learning these participants’ preferences.

For participant-1, all the three machine learners had a low predictive accuracy. We examined participant-1’s data and found
that this participant’s variation in Winamp action preferences was greater when compared to any other participant in this study.
We need to collect additional user-context exemplars from this participant to investigate the low predictive accuracy of all three
machine learners. Also, removing user-context degrades XCS’ ability to accurately predict a user-preferred Winamp action.
This result again highlights the importance of user-context information for an application to better predict user preferences.
Sycophant was thus successfully able to context-enable Winamp and predicted participant preferences for Winamp actions.
These results answer the final question (5) that we posed regarding Sycophant’s generalizability across multiple applications

in Section VI. We next discuss some additional insights which we gained from these three user studies.
IEEE Transactions on Evolutionary Computation

Page 22 of 25

©CoO~NOUTA,WNPE

21

.+ (speschCounts

-
Example Ruel _ ° »0 ==

"'
& Both

mouseCounts MNong

Voice Maone =8]

Maone Visual

Fig. 7. An Example Rule predicting a Winamp action for participants 1, 2, and 3, respectively

D. Discussion

Our three user studies showed that XCS significantly outperformed a widely used decision-tree learner for predicting
participant preferred interface actions for a calendar and a media player. To investigate XCS’s superior predictive accuracy,
we examined the classifiers generated for each interface action for individual participants. We found that XCS generated an
equal number of classifiers covering each class for a participant. For example, user7 had 148 classifiers (rules) covering every
Winamp action. For other participants too, we found that each class had roughly an equal number of classifiers covering it.
We attribute XCS’ superior performance (when compared to a decision tree learner) to its ability of forming complete maps
of its payoff landscape, emphasizing and discovering classifiers that accurately generalize over sets of inputs, and a covering
mechanism that assists with low-volume data [1]. These mechanisms result in more XCS rules covering each class (when
compared to a decision-tree learner, J48) and hence explains its higher test-set predictive accuracy.

When we examined the decision trees generated for participants in all our user studies, we found that for most of the
participants, if they had preferences, each participant had a different set of rules predicting the same interface action preference.
For example, we found that the rules predicting participant-3’s preference for pausing Winamp’s were different from the rules
predicting participant-4’s preference for the same Winamp action. This result emphasizes that users have different preferences
for the same interface actions and hence the need to personalize applications to individual users.

We next examined the decision trees to interpret how the action predictions were made for our study participants. Figure 7

IEEE Transactions on Evolutionary Computation

©CoO~NOUTA,WNPE

Page 23 of 25

22

shows a part of a decision tree generated for participants in our first short-term user study (Google Calendar). To interpret
“Example Rule 17, we start at the root node of the tree and traverse the tree along the dotted line towards a leaf node. The
rule here checks to see if there was any speech in the last five minutes (speechCount > 0), next examines if keyboard usage
was low (Count5 = 4/20), and monitors for low motion activity (motionAnyl = 0). The rule also checks for low mouse
usage (mouseCount5 < 8). and examines the user-id to predict an alarm type. This is an instance of personalization where
the alarm type prediction is user-based. From this decision-tree snapshot, we infer that if there was speech, low keyboard
and mouse usage, participant-1 preferred a voice alarm if the mouse was not used and no alarm if mouse was used. At the
same tree level (user), unlike user-1, user-2 preferred a visual alarm if mouse was used and preferred not to be interrupted (no
alarm) with low mouse usage. In the same scenario, user-3 preferred to be not interrupted. The user-context features present
at different nodes in the decision-tree emphasize the importance of external user-context (speech derived user-context features)
to predict an appropriate alarm for these three users. We have found similar evidence of personalization to individual users
where user-context has played a significant role in all our user studies. All study related files are available at Sycophant’s

website [10].

VII. CONCLUSION AND FUTURE WORK

In this paper, we first showed that XCS, within Sycophant, our user modeling framework, could harnesses external user-related
information (motion and speech) from their desktop environments to enable widely-used applications such as Google Calendar
and Winamp to learn an individual user’s preferences for various interface actions. Second, our three real-world user studies
demonstrated that XCS significantly outperforms a decision-tree learner on the inteface-action prediction tasks for different
participants. In addition to showing that XCS is a viable technique to predict interface action preferences for specific users,
this result also indicated that we could successfully learn user preferences for multiple participants and applications thereby
establishing Sycophant’s generalizability. Our third result showed that removing user-context significantly degraded both XCS’
and a decision-tree learner’s action prediction accuracy. This performance degradation highlighted the need for applications to
access external user-related information to better learn user preferences.

The work discussed in this article suggests further investigations into feature selection and different approaches for soliciting
user-feedback. We would like to examine additional user-context features in addition to motion and speech to better predict
user preferred actions. Additionally, we also wish to experiment with different approaches that solicit user feedback in a less
intrusive manner.

Currently, we are collecting long-term usage data from participants using Google Calendar for their daily activities. We
also intend to conduct a similar long-term study for Winamp in the future. We expect the results from these studies to further
substantiate our hypothesis of using an XCS-based approach to better predict user-preferences for common desktop applications
by harnessing user-related external contextual information. We believe that such user-preference learning can improve the quality

of human-computer interaction.

IEEE Transactions on Evolutionary Computation

Page 24 of 25

P OO~NOUILAWNPE

[
= O

[1]

B e
AWN

[2]

2
o o

[3]
[4]

N e
O © o~

[5]

NN NN
A WNPE
E)

[7]
[8]

NN NN
®~N oo
=

[10]
(11]

WWWWN
WNPFE O

[12]

W W w
[N N

[13]

w W
o

[14]

D W
= O ©

[15]

P
W N

[16]

A A D
(oI F SN

[17]
[18]

ab b Db
O © 0~

[19]

g1 a1
N

[20]

o1 g1 Ol
o b~ w

[21]

(206]
~N O

[22]

o 01Ul
o ©O©

23

ACKNOWLEDGMENT

The authors thank all the participants in our user studies for their time and patience. We thank three anonymous reviewers
for their insightful comments that helped us to improve this article. This work was supported in part by contract number

N00014-0301-0104 from the Office of Naval Research and the National Science Foundation under Grant No. 0447416.

REFERENCES

S. W. Wilson, “Classifier fitness based on accuracy,” Evolutionary Computation, vol. 3, no. 2, pp. 149-175, 1995. [Online]. Available:
citeseer.ist.psu.edu/wilson95classifier.html

T. Kovacs, Bibliography of Real-World Classifier Systems Applications. Springer, April 2004, vol. 150, pp. 300-305. [Online]. Available:
http://www.cs.bris.ac.uk/Publications/Papers/2000096.pdf

A. Shankar, “Simple user-context for better application personalization,” Master’s thesis, University of Nevada, Reno, 2006.

A. Shankar, S. J. Louis, S. Dascalu, L. J. Hayes, and R. Houmanfar, “User-context for adaptive user interfaces,” in IUI '07: Proceedings of the 12th
international conference on Intelligent user interfaces. New York, NY, USA: ACM, 2007, pp. 321-324.

A. Shankar, “Sycophant: A context based generalized user modeling framework for desktop applications,” Ph.D. dissertation, University of Nevada,
Reno, Reno, Nevada, Aug. 2008. [Online]. Available: http://www.cse.unr.edu/"syco

Google calendar (accessed apr. 5, 2008). Http://www.google.com/calendar.

Winamp media player (accessed apr. 5, 2008). Http://www.winamp.com.

J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann, 1992.

Open source initiate (accessed apr. 5, 2008). Http://www.opensource.org/.

Sycophant (accessed apr. 5, 2008. Http://www.cse.unr.edu/"syco.

A. Shankar, J. Quiroz, S. M. Dascalu, S. J. Louis, and M. N. Nicolescu, “Sycophant: An api for research in context-aware user interfaces,” in ICSEA
'07: Proceedings of the International Conference on Software Engineering Advances (ICSEA 2007). Washington, DC, USA: IEEE Computer Society,
2007, p. 83.

P. J. Brown, J. D. Bovey, and X. Chen, “Context-aware applications: from the laboratory to the marketplace,” IEEE Personal Communications, vol. 4,
no. 5, pp. 58-64, October 1997. [Online]. Available: http://www.cs.kent.ac.uk/pubs/1997/395

P. J. Brown, “The stick-e document: a framework for creating context-aware applications,” in Proceedings of EP’96, Palo Alto. also published in it
EP-odd, January 1996, pp. 259-272. [Online]. Available: http://www.cs.kent.ac.uk/pubs/1996/396

A. K. Dey, G. D. Abowd, M. Pinkerton, and A. Wood, “Cyberdesk: A framework for providing self-integrating ubiquitous software services,” in ACM
Symposium on User Interface Software and Technology, 1997, pp. 75-76. [Online]. Available: citeseer.ist.psu.edu/dey98cyberdesk.html

A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware appplications.”
Human Computer Interaction, vol. 16, 2001.

J. Fogarty, S. E. Hudson, and J. Lai, “Examining the robustness of sensor-based statistical models of human interruptibility,” in CHI ’04: Proceedings
of the SIGCHI conference on Human factors in computing systems. New York, NY, USA: ACM, 2004, pp. 207-214.

I. H. Witten and E. Frank, Data Mining: Practical machine learning tools with Java implementations. San Francisco, USA: Morgan Kaufmann, 2000.
P. D. Adamczyk and B. P. Bailey, “If not now, when?: the effects of interruption at different moments within task execution,” in CHI ’'04: Proceedings
of the SIGCHI conference on Human factors in computing systems. New York, NY, USA: ACM, 2004, pp. 271-278.

S. T. Igbal and B. P. Bailey, “Understanding and developing models for detecting and differentiating breakpoints during interactive tasks,” in CHI ’07:
Proceedings of the SIGCHI conference on Human factors in computing systems. New York, NY, USA: ACM, 2007, pp. 697-706.

S. T. Igbal and E. Horvitz, “Disruption and recovery of computing tasks: field study, analysis, and directions,” in CHI ’07: Proceedings of the SIGCHI
conference on Human factors in computing systems. New York, NY, USA: ACM, 2007, pp. 677-686.

J. Shen, L. Li, T. G. Dietterich, and J. L. Herlocker, “A hybrid learning system for recognizing user tasks from desktop activities and email messages,”
in IUI "06: Proceedings of the 11th international conference on Intelligent user interfaces. New York, NY, USA: ACM, 2006, pp. 86-92.

A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, L. Li, and J. L. Herlocker, “Tasktracer: a desktop environment to support multi-tasking
knowledge workers,” in IUI ’05: Proceedings of the 10th international conference on Intelligent user interfaces. New York, NY, USA: ACM, 2005,

pp. 75-82.
IEEE Transactions on Evolutionary Computation

P OO~NOUILAWNPE

U OTUu AU DMBEMDIAMDIAMBAEDIAMDIMDNWOWWWWWWWWWWNDNNDNNNNMNNNNRPRPRPERPRERPERRER
QOO NOUPRRWNRPOOO~NOUOPRRWNPRPOOONOOUOPRARWNRPEPOOONOODURAWNRPOOO~NOOUUDMWNEO

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]

Page 25 of 25

24

J. Fogarty and S. E. Hudson, “Toolkit support for developing and deploying sensor-based statistical models of human situations,” in CHI ’07: Proceedings
of the SIGCHI conference on Human factors in computing systems. New York, NY, USA: ACM, 2007, pp. 135-144.

S. W. Wilson, “Mining oblique data with XCS,” Lecture Notes in Computer Science, vol. 1996, pp. 158-?7, 2001. [Online]. Available:
citeseer.ist.psu.edu/article/wilson0Omining.html

S. Saxon and A. Barry, “XCS and the monk’s problems,” in Proceedings of the Genetic and Evolutionary Computation Conference, W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds., vol. 1. Orlando, Florida, USA: Morgan Kaufmann, 13-17 1999,
p- 809. [Online]. Available: citeseer.ist.psu.edu/article/saxon99xcs.html

J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence.
Cambridge, MA, USA: MIT Press, 1992.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley, 1989.

S. W. Wilson, “ZCS: A zeroth level classifier system,” Evolutionary Computation, vol. 2, no. 1, pp. 1-18, 1994. [Online]. Available:
citeseer.ist.psu.edu/wilson94zcs.html

T. Kovacs, XCS Classifier System Reliably Evolves Accurate, Complete, and Minimal Representations for Boolean Functions. Springer-Verlag, August
1997, pp. 59-68.

Stewart W. Wilson, Classifier Systems and the Animat Problem, ser. Machine Learning. Hingham, MA, USA: CCSDS, 1987, no. 3. [Online].
Available: http://dx.doi.org/10.1023/A:1022655214215

S. W. Wilson, “Generalization in the XCS classifier system,” in Genetic Programming 1998: Proceedings of the Third Annual Conference, J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.Goldberg, H. Iba, and R. Riolo, Eds. University of Wisconsin,
Madison, Wisconsin, USA: Morgan Kaufmann, 22-25 1998, pp. 665-674. [Online]. Available: citeseer.ist.psu.edu/wilson98generalization.html

M. V. Butz, “XCSJava 1.0: An Implementation of the XCS classifier system in Java ,” Tech. Rep. 2000027, 2000. [Online]. Available:
citeseer.ist.psu.edu/butz00xcsjava.html

R. Likert, A technique for the measurement of attitudes. New York: New York, 1932.

J. L. Devore, Probability and Statistics for Engineering and the Sciences. Duxbury, 1999.

A. Shankar and S. J. Louis, “Better personalization using learning classifier systems,” in Proceedings of the 2005 Indian International Conference on

Artificial Intelligence, December 20-22 2005, Poona, INDIA, 2005, pp. 115-120.

Anil Shankar is a Ph.D. student in the Evolutionary Computing Systems Laboratory. He is working on using evolutionary com-

and he can be reached at anilk @cse.unr.edu.

Sushil J. Louis is a professor and director of the Evolutionary Computing Systems Laboratory, in the Department of Computer
Science and Engineering, University of Nevada, Reno, Nevada 89557, USA. Dr. Louis received the Ph.d. from Indiana University,
Bloomington, in 1993 and is a member of the IEEE and ACM. More information on his current work is available at his website

http://www.cse.unr.edu/"sushil and he can be reached at sushil@cse.unr.edu.

IEEE Transactions on Evolutionary Computation

puting techniques for adaptive user interfaces research. More information on his current work is available at his website http://www.cse.unr.edu/ anilk

