
Simulating Formations of Non-Holonomic

Systems with Control Limits

Along Curvilinear Coordinates

Athanasios Krontiris, Sushil Louis, and Kostas E. Bekris

Computer Science and Engineering Department
University of Nevada, Reno - Reno, NV, 89557, USA

bekris@cse.unr.edu

Abstract. Many games require a method for simulating formations of
systems with non-trivial motion constraints, such as aircraft and boats.
This paper describes a computationally efficient method for this objec-
tive, inspired by solutions in robotics, and describes how to guarantee
the satisfaction of the physical constraints. The approach allows a hu-
man player to select almost an arbitrary geometric configuration for the
formation and to control the aircraft as a single entity. The formation
is fixed along curvilinear coordinates, defined by the curvature of the
reference trajectory, resulting in naturally looking paths. Moreover, the
approach supports dynamic formations and transitions from one desired
shape to another. Experiments with a game engine confirm that the pro-
posed method achieves the desired objectives.

Keywords: Path Planning, Flocking and Steering Behavior, Physics-
based Motion, Navigation and Way-finding

1 Introduction

Many computer games and simulations involve the modeling of agents, such as
airplanes and boats, which have to move in formation to reflect the behavior
of their real world counterparts. For example, military games can utilize forma-
tions to move teams of airplanes before attacking a user specified target. This
paper is especially motivated by training simulations for military officers, which
must model realistically the maneuvers of opposing and friendly aircraft and
boats. The need to model formations arises as a primary requirement during the
development of such simulations.

An important characteristic regarding the motion of airplanes and boats
is the presence of non-holonomic constraints as well as limits in velocity and
steering angle. For instance, aircraft have to maintain a minimum velocity and
cannot turn beyond a maximum curvature. These constraints complicate the
motion planning process for these systems, especially when a formation has to
be maintained. Traditionally, games sacrifice either the accurate modeling of the
motion constraints or the accurate maintenance of a formation so as to achieve
computationally inexpensive and simple solutions. This paper is motivated by
the objective of simulating an aircraft formation while respecting the physical
constraints of the aircraft, modeled as non-holonomic systems with limits in
velocity and curvature. A low computational cost solution is proposed that builds
upon motion planning solutions for formations of mobile robots [3].

Fig. 1. Blue lines correspond to the trajectory of
airplanes. Triplets of white markers point to the
positions of the aircraft at the same points in time.

In the proposed approach, the
user specifies a destination for
a team of aircraft. A reference
point for the formation moves
independently so as to achieve
this goal and the aircraft move
in response so as to maintain
the formation. The parameters
of the formation are expressed
as the difference between air-
craft and the reference point
in curvilinear coordinates rather
than the usual rectilinear coor-
dinates, as shown in Figs. 1 and
2. The curvature of the curvilinear coordinates is the instantaneous curvature
of the reference point. This approach allows the exact, geometric computation
of the velocity and curvature for each follower aircraft based on the reference
point’s control parameters. The computation, however, may violate the velocity
or curvature limits for the airplanes. This paper shows how to impose constraints
on the motion of the reference agent so that the limits are always satisfied for the
followers. It also provides details for the correct implementation of the scheme.
Simulated results illustrate that the proposed scheme allows a human player to
guide on-the-fly aircraft formations defined over curvilinear coordinates.

Background Many research challenges in computer games deal with the motion
of multiple agents, such as crowd simulation [4, 12,15,19,20], pedestrian forma-
tions [8,22], shepherding and flocking behaviors [17,26]. It has been argued that
formations can help to model crowd motions such as tactical arrangements of
players in team sports [24]. Kinematic formations can be defined using a gen-
eral framework for motion coordination that employs generalized social potential
fields [11]. Nevertheless, most work on popular game agents, such as people, em-
ploys simple motion models. It is important to explore algorithms for agents who
obey complex motion constraints (e.g., non-holonomic ones), and dynamics [6].

Formations for aircraft are typically studied in aerospace engineering and
robotics. Motion planning and control techniques, developed originally in these
areas, are today mature enough to be used in computer games [5]. The various
approaches to formation control can roughly be divided into three categories:
(i) Behavior based approaches [1,2,10] design simple motion primitives for each
agent and combine them to generate complex patterns through the interaction of
several agents. The approach typically does not lend itself to a rigorous analysis
but some schemes have been proven to converge [13]. (ii) Leader-follower ap-
proaches [3,7,9,25] designate one or more agents as leaders and guide the forma-
tion. The remaining agents follow the leader with a predefined offset. (iii) Rigid-
body type formations [16] maintain a constant distance between the agents’
configurations during all motions.

Control theory in particular has been used to study aircraft formations
with tools such as input-output feedback linearization for leader-follower forma-
tions [9], where the stability of the controller is typically the issue [25]. Control-
theory is often integrated with graph theory to define controllers that allow the
transition between different formations [7]. Graphical tools have also been used
to study whether there exist non-trivial trajectories for specified formations given
the agent’s kinematic constraints [23]. Moreover, a formation space abstraction
has been defined for permutation-invariant formations of robots that translate
in the plane [14]. More recently, there have been methods for distributed task
assignment so that mobile robots can achieve a desired formation [18].

This paper builds upon a motion planning method for formations of mobile
robots [3], which appears appropriate for gaming applications. It allows a hu-
man player to control the formation as a single entity by defining a desired goal.
In contrast to the optimization and linearization tools typically employed for
formations, the technique is geometric and exact. It provides equations so that
each follower tracks the reference trajectory but instead of maintaining a fixed
distance to the leader, it adapts the shape during turns so as to satisfy the non-
holonomic constraints. When a formation is turning, the method automatically
plans for followers on the “outside” to speed up and robots on the “inside” to
slow down, resulting in natural and pleasant formations to the human eye. The
approach is also very fast, allowing for good scalability and real-time operation.
Moreover, it supports almost any arbitrary geometric formation and is homoge-
neous, since each agent uses the exact same algorithm given certain parameters.
Furthermore, it supports dynamic formations, which allow transitions from one
shape to another.
Contribution Beyond proposing this method as a way for achieving formations
for systems with non-holonomic constraints in games , this paper contributes a
series of algorithmic improvements: 1) The controls of the leader are computed
on the fly based on user-specified targets. In the previous work, the knowledge
of a precomputed path is utilized to maintain the formation. 2) The approach
models non-holonomic systems with a minimum velocity, which cannot move
backwards, such as airplanes. Then it defines constraints in the leader’s mo-
tion that allow the followers to respect such physical limits as well as guarantee
formation maintenance. Note that the original controller would violate such con-
straints, since it can return paths for mobile robots that required them to move
backwards or turn with a very high curvature. 3) The approach extends the
application of the limits for the formation’s leader to the case of dynamic forma-
tions, which can be used so as to switch between user-specified static formations.
4) The paper describes the implementation of the overall technique within a typ-
ical graphics rendering loop and provides the related implementation details.

2 Problem Setup

The model employed is that of a simple car, that is a planar, first-order, non-
holonomic system, with state parameters [xi, yi, θi] (Cartesian coordinates and
orientation). The controls correspond to the velocity ui and steering angle φi,

which relates the path’s curvature Ki (Ki = tan (φi)). For system i:

ẋi = ui cos θi, ẏi = ui sin θi, θ̇i = ui tanφi, (1)

where the velocity and curvature are limited similar to an aircraft:

|Ki| ≤ Kmax, 0 < umin ≤ ui ≤ umax (2)

It is also possible to consider different limits for each aircraft.

Fig. 2. An illustration of a for-
mation along curvilinear coordi-
nates.

The objective is to maintain a static forma-
tion defined over curvilinear coordinates, which
are a coordinate system in which the coordinate
lines may be curved. The formation is defined
relative to a reference agent, which is directly
controlled by the human player and follows con-
trols uL and KL. The reference agent can corre-
spond to a leader aircraft or to a virtual refer-
ence point. Then, the curvature of the curvilin-
ear coordinates becomes the instantaneous cur-
vature of the reference agent. For example, if
airplane L in Fig. 2 is the leader, then the mid-
dle blue line corresponds to the “x” axis of the
curvilinear system, and the line perpendicular to
the airplane is the “y” axis. To maintain a static
formation, each follower aircraft must maintain
pi distance along the leader’s curved trajectory

and qi distance along the perpendicular direction, as in Fig.2. Finally, the vari-
able dL denotes the distance the reference agent has covered and si = dL + pi
denotes the distance that the projection of follower i has covered along the
leader’s trajectory.

A human player must be able to select n aircraft, which are flying indepen-
dently in the game, specify the type of formation and a goal that the team must
achieve. Then the aircraft must move so as to reach the vicinity of the goal
while maintaining the formation along curvilinear coordinates and respecting
Eq. 1 and 2. The human player should be able to change the goal on the fly and
the aircraft should adapt their trajectory.

3 Aircraft Formations along Curvilinear Coordinates

The approach automatically selects a reference point, which in the resulting
formation will end up not having any aircraft ahead of it. This point moves
independently to reach the goal specified by the user. For an obstacle-free envi-
ronment, this can be achieved with a PID controller. The steering angle φL of
the leader is changed to minimize the difference between θL and the direction to
the goal. The controller makes the leader to gradually turn towards the goal and
then execute a straight-line path. As the leader approaches the goal, it reduces
velocity and initiates a circular trajectory around it defined by the maximum
curvature and the original position from which the controller was initiated. The
leader respects the control limits of Eq. 2. Different types of planners and con-
trollers can be substituted for the leader, especially for the case of environments

with obstacles, but the current solution achieves low computational overhead
for planar aircraft formation, which typically operate in obstacle-free environ-
ments. Furthermore, the approach described here can be directly applied when
the player “flies” one of the airplanes or when the target for the reference point
is a moving goal, such as another airplane or a target on the ground.

3.1 Equations for Maintaining a Static Formation

Consider a follower aircraft, which must retain a constant distance pi and qi
from the leader along curvilinear coordinates as described in Section 2. Then,
given Figure 2 and basic trigonometry on angle siKL(si) at the pivot point, the
coordinates of the follower aircraft can be expressed as:

xi = (
1

KL(si)
−qi)·sin(siKL(si)) yi =

1

KL(si)
−(

1

KL(si)
−qi)·cos(siKL(si)).

If qi, pi are constant and KL(si) is instantaneously constant at si, the first
derivatives of the Cartesian coordinates are:

ẋi = ṡi(1− qiKL(si)) · cos(siKL(si)) ẏi = ṡi(1− qiKL(si)) · sin(siKL(si))

where ṡi =
d(dL+pi)

dt
= ḋL = uL(dL). Thus:

ui(si) =
√

ẋ2 + ẏ2 = uL(dL)(1− qiKL(si)) (3)

Note that uL(dL) is the current velocity of the leader at dL but KL(si) is defined
as the projection of the follower’s position on the leader’s trajectory (i.e., the
curvature of the leader at distance pi along its trajectory). To compute the
follower’s curvature, it is necessary to compute the second order derivatives of
the Cartesian coordinates, since K = ẋÿ−ẍẏ

(ẋ2+ẏ2)3/2
, which results in:

Ki(si) =
KL(si)

1− qiKL(si)
(4)

The advantage of considering curvilinear coordinates is that it is possible to
exactly compute Eqs. 3, 4 that provide the controls of the followers as functions
of the reference agent’s controls. The follower requires access only to the past
leader curvature KL(si) and current velocity uL(dL). For KL(si) to be known,
it has to be that pi < 0, which is the reason why the reference agent is selected
to be ahead of every other aircraft. Otherwise, a follower requires the curvature
of the reference agent into the future. When the leader’s trajectory is computed
in real-time, this is not available.

Using Eqs. 3 and 4 it is possible to maintain a perfect formation, such as the
triangular one implied by Fig. 2, when the leader moves along a straight line.
When the leader turns, the Cartesian distances between the aircraft change and
the formation becomes flexible. The aircraft “outside” of the leader’s turn have
lower curvature and higher velocity. Aircraft “inside” of the leader’s turn will
have higher curvature and lower velocity.

3.2 Respecting the Control Limits

There is an important issue that arises with the above approach when the leader’s
trajectory is computed in real time. It is possible that the controls for the follower
computed using Eqs. 3 and 4 will violate the control limits specified by Eq. 2.

Fig. 3. (left) Velocity of the left follower in Fig. 4, (right) steering angle of same aircraft,
(both) green line: the control value when the limits are ignored for the follower, blue:
the control value given the proposed fix, red: the limits respected by the leader.

Fig. 4. A benchmark for-
mation trajectory.

For instance, consider the trajectory displayed in Fig-
ure 4 for a triangle formation, where the two followers
have parameters pi = −70 and |qi| = 90. This trajec-
tory can be achieved by the proposed approach only
if the control limits in Eq. 2 are not respected. Fig. 3
shows that for certain control limits respected by the
leader, Eqs. 3 and 4 will result in control values for
the followers that violate the same limits. The pro-
posed idea in this paper is to compute online limits
for the control parameters of the leader so as to guar-

antee that the result of Eqs. 3 and 4 will never violate the limits of Eq. 2. This is
not as straightforward as it appears, since the followers’ controls depend on the
current velocity of the leader uL(dL) and a past curvature value KL(si). Thus,
the leader’s controls become correlated over time.

Constraints for the leader’s curvature Given Eqs. 4 and 2, it has to be true
for a follower that:

∣

∣

∣

∣

KL(si)

1− qiKL(si)

∣

∣

∣

∣

≤ Kmax

Consider tentatively only right turns, for which K > 0. If the leader turns
right using maximum curvature then the right side followers (for which qi > 0)
will have to use even greater curvature, which will violate the above constrain.
Consequently, for K > 0 it has to be that:

max

(

KL(si)

1− qiKL(si)

)

≤ Kmax ⇒
KL(si)

1−max (qi)KL(si)
≤ Kmax

Let’s denote the maximum positive qi value as: q+max = max (qi), then:
• if (1− q+maxKL(si)) > 0 then: KL(si) ≤

Kmax

1+q
+
maxKmax

• if (1− q+maxKL(si)) < 0 then: KL(si) ≥ Kmax · (1− q+maxKL(si))
But for the second case, it has been assumed that KL(si) > 0, Kmax > 0 and
(1 − q+maxKL(si)) < 0. Consequently, the second equation is always true since
KL(si) is greater than something negative. Thus, only the first case imposes
a constraint on the leader’s curvature. For the case that the leader turns left,
the computations are symmetrical. If q−max = min (qi) denotes the maximum
negative value for qi, the overall constraint for the leader’s curvature is:

−Kmax

1− q−maxKmax

≤ KL(si) ≤
Kmax

1 + q+maxKmax

(5)

Constraints for the leader’s velocity given past curvature values Given
Eqs. 3 and 2, it has to be true for a follower that:

0 < umin ≤ uL(dL)(1− qiKL(si)) ≤ umax

For the lower bound, and given that uL(dL) > 0, it has to be true that:

min
i
(uL(dL)(1− qiKL(si))) ≥ umin ⇒ uL(dL)(1−max

i
(qiKL(si))) ≥ umin

Then there are two cases:
• If (1−maxi (qiKL(si))) > 0 then: uL(dL) ≥

umin

1−maxi (qiKL(si))

• If (1−maxi (qiKl(si))) < 0 then: uL(dL) ≤
umin

1−maxi (qiKL(si))

The second case implies that uL(dL) must be less than or equal to something
negative. This should never be true, however, for the aircraft. For that reason,
and in order to guarantee that (1−maxi (qiKL(si))) > 0, it has to be that:

|KL(si)| <
1

maxi (|qi|)
(6)

This means that a follower cannot be further away from the leader along the
perpendicular direction than the pivot point defined by the maximum curvature
value. Otherwise, a follower has to move backwards.

For the upper bound, and given that uL(dL) > 0, it has to be true that:

max
i

(uL(dL)(1− qiKL(si))) ≤ umax ⇒ uL(dL)(1−min
i
(qiKL(si))) ≤ umax

Due to Eq. 6, it is true that 1 − mini (||qiKl(si)||) > 0. Then this implies:
uL(dL) ≤

umax

1−mini (qiKL(si))

By combining the lower bound and the upper bound, it is possible to define
the constraint for the leader’s velocity:

umin

1−maxi (qiKL(si))
≤ uL(dL) ≤

umax

1−mini (qiKL(si))
(7)

Constraints for the leader’s curvature to allow future velocities Notice
that it is possible the lower bound in Eq. 7 to become greater than the upper
bound. This means that given past curvatures choices at different points in time,
which depend on the pi parameters of the followers, it is possible at some point
the leader not to have any valid velocity to choose from, given Eq. 7. To guarantee
that this will never happen it has to be always true that:

umin

1−maxi (qiKL(si))
<

umax

1−mini (qiKL(si))

The minimum upper bound is achieved for the maximum value of 1−mini(qiKL(si)).
But given Eq. 6: max{1−mini(qiKL(si))} = 2, thus the upper bound in Eq. 7
is at least umax

2 . Thus it is sufficient to guarantee that:

umin

1−maxi (|qiKL(si)|)
<

umax

2
⇒ max

i
(|qiKL(si)|) ≤

umax − 2umin

umax

⇒

|KL(si)| ≤
umax − 2umin

umax maxi (|qi|)
(8)

Given the above equation, it has to be that umax ≥ 2umin to guarantee the
existence of a valid curvature. Overall, if the leader satisfies Eqs. 5, 6, 7 and 8,
then followers that execute Eqs. 3 and 4 will always satisfy Eq. 2.

3.3 Dynamic formations
Allowing the shape of the formation to change over time might be desirable for
multiple reasons. For instance, the user might want to change the formation or
the team might have to fit through a small opening. Dynamic formations can
also be useful for assembling a static formation from a random configuration.
To achieve dynamic formations, the approach allows the coordinates [pi, qi]
to be functions of time or distance along the leader’s trajectory. Following the
derivation in the original work on formations along curvilinear coordinates [3]
the controls for the followers in the case of dynamic formations are:

ui = QuL(dL) (9)

Ki =
1

Q
(KL(si) +

(1− qi(si)KL(si))(dq
2
i /ds

2
i) +KL(si)(dqi/dsi)

2

Q2
) (10)

where Q =
√

(dqi
dsi

)2 + (1− qi(si)KL(si))2. Once the functions qi(si),
dqi
dsi

(si) and

dq2i
ds2i

(si) are defined for the above controllers, it is possible to use them together

with any reference trajectory. For example, these functions can be defined so as
to change the formation from a square to a line, magnify the current shape or
even permute positions within the same formation [3].

The control limits must still be satisfied during the execution of dynamic
formations. Note that in the case of static formations, the limits on the leader’s
curvature (Eqs. 5, 6 and 8) could be computed once given the value maxi|qi|
of the static formation. For the dynamic formation, qi can be dynamic and the
approach has to update the constraint for the leader’s curvature online by using
the qi(si) function for the followers at that point in time. A conservative ap-
proximation for the dynamic formation is to consider the maximum qi achieved
by any of the followers during the execution of the entire dynamic formation
(maxi|qi(si)|, ∀si). Then the constraint for the leader’s velocity (Eq. 7) is re-
computed every iteration as in the case of a static formation but for the latest
value of the qi(si).

4 Implementation

In order to evaluate the proposed approach, a game engine developed at the
University of Nevada, Reno for educational purposes was utilized. The engine is
built over the Python-Ogre platform using Python as the programming language.
This engine provides the opportunity to select aircraft and direct them to a
desired goal. As is often the case in game engines, the engine repetitively calls
a function that executes the necessary operations for physics, AI and rendering
that models a constant amount of simulation time dt. Each aircraft is modeled as
a different entity and has a specific amount of time to complete its computations.

Recall that equations 3 and 4 require the follower to utilize the leader’s cur-
rent velocity uL(dL) together with the leader’s past curvature KL(si). For static
formations, during simulation step dt, the follower’s projection along the leader’s
trajectory must move the same amount as the leader does, so as to retain a con-
stant curvilinear distance pi. This means that the duration for which a specific
curvature value followed by the leader in the past is not going to be the same

as the duration that the follower will use it to compute its own curvature. This
is because the two agents are moving with different velocities during the corre-
sponding time windows. The correct duration for which a curvature is going to
be followed can be computed by finding the distance for which the leader exe-
cuted the same trajectory and dividing with the current velocity of the follower.
It might happen that during a single simulation step dt, the follower will have
to switch multiple controls if the leader is moving faster.

Fig. 5. A follower may be forced to switch
controls during a single simulation step.

Fig. 5 illustrates this issue. As-
sume the leader and the follower
start at the positions shown in
Fig.5(top). Each box represents the
time window that the leader was us-
ing a specific set of controls. The
numbers are the distances that the
leader covered within each time win-
dow. For instance, the leader is
about to cover a distance of 4 units.
In a static formation, the same dis-
tance must be followed by the fol-

lower’s projection along the leader’s trajectory during the same window. But
in the past and for the same distance of 4 units, the leader had switched three
different curvature values (for distances 2, 1 and 6). The duration for which the
follower will execute the nth control is tn = box distancen/uL, where uL(t) is
the leader’s current velocity. For the consecutive step, it happens that the fol-
lower will execute a single control, since the leader has currently slowed down
compared to its past velocity.

5 Results

Variety of Formations: The proposed approach is able to accommodate a
large variety of geometric configurations for formations. The only limitation
is due to Eq. 6, which means that in order to allow non-zero values for the
leader’s curvature, the max (|qi|) value has to be limited. For reasonable values
of curvature constraints and size of aircraft, the limitation on max(|qi|) is such
that allows followers in a considerable distance from the leader relative to the
aircraft size. Fig. 6 provides examples of formations achieved.

Fig. 6. Check: http://www.raaf.gov.au/roulettes/images/formations.jpg for forma-
tions tested. (left) Delta type. (middle) Domino type. (right) Leader Benefit type.

Fig. 7. These figures evaluate the errors for: (top) version 1, (middle) version 2, (bot-
tom) version 3. (left) the error in Cartesian coordinates (unit is pixels) between the
followed path and the correct path, (right) Error in orientation (unit is radians).

Errors in Formation Maintenance: The formation in Figure 4 for p = −60
and |q| = 50 was also used to evaluate the amount of error in the achieved forma-
tion. The following results considered three versions for testing formations.

• In version 1 the aircraft do not respect control limits, so they can follow any
formation. The implementation employs a constant control for the follower dur-
ing each simulation step using the leader’s current velocity and the leader’s past
curvature at the beginning of the step. Thus, this step ignores the discussion
in section 4.

• Version 2 properly implements the time window approach described in Section
4 but the aircraft respect control limits. The leader respects only the original
limits of Eq. 2 but not the limits proposed in Section 3.

• Version 3 corresponds to the proposed approach.

Figure 7 provides the error between the desired formation and the achieved
formation at each simulation step for the trajectory in Fig. 4. Similar results
have been acquired for hundreds of trajectories. If the steps in Section 4 are not
followed or the limits on the leader’s controls are not respected, the formation
cannot be followed and the error increases considerably. For the proposed ap-
proach, the error remains well below 10−2 pixels for many minutes of simulation.

Effects of Control Limits: Figure 8 studies how constrained a team of aircraft
becomes when it has to respect the control limits specified in this paper. The
left image shows the velocity limits for the leader for the trajectory in Fig. 4
and shows that still a large portion of the velocity parameters is valid but care

Fig. 8. (left) Red lines: general velocity limits for the aircraft, Blue: velocity limits for
the leader that guarantee formation maintenance, Green: actual velocity of the leader
(right) # of steps to reach a destination for aircraft formations that don’t respect
control limits (red dots) and aircraft that do (blue triangles).

has to be taken for the extreme values. The right image shows how much time
it takes for the triangular formation to reach various random targets if it is not
constrained or constrained. Sometimes, the more physically realistic, constrained
formation has to follow a longer trajectory to reach a target due to the intro-
duction of the constraints for the leader. But the difference is not significant and
does not justify not respecting the control limits during the simulation process.
Dynamic Formations: Figure 9 shows the extension of the approach to the
case of dynamic formations.

6 Discussion

This paper has outlined a framework for simulating planar formations along
curvilinear coordinates for systems with non-holonomic constraints. A previous
method for mobile robots [3] has been extended to handle systems with curva-
ture limits and minimum velocity. The implementation employs a PID controller
for computing the controls of the reference agent but allows for the user to di-
rectly control one of the aircraft or to assign a mobile target to the formation.
Future work includes integration of the formation algorithm with path planners
and reactive methods (e.g., [21]) to get formations that avoid static (e.g., moun-
tains) or dynamic obstacles (e.g., missiles or other aircraft). A 3D version is of
significant interest for aircraft formations, as well as an extension to higher-order
aircraft to allow for continuous or smooth velocity.

Fig. 9. Dynamic formations along curved trajectories for five and four airplanes.

References

1. Balch, T., Arkin, R.: Behavior-based formation control for multi-robot teams. IEEE
Transactions on Robotics and Automation 14(6), 926–939 (Dec 1998)

2. Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In:
IEEE International Conference on Robotics and Automation. pp. 73–80 (Apr 2000)

3. Barfoot, T.D., Clark, C.M.: Motion planning for formations of mobile robots.
Robotics and Autonomous Systems 46(2), 65–78 (February 2004)

4. van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision
avoidance. In: International Symposium on Robotics Research (ISRR) (Sep 2009)

5. Bottesi, G., Laumond, J.P., Fleury, S.: A motion planning based video game. Tech.
rep., LAAS CNRS (Oct 2004)

6. Brogan, D.C., Hodgins, J.K.: Group behaviors for systems with significant dynam-
ics. Autonomous Robots 4, 137–153 (1997)

7. Desai, J., Ostrowski, J., Kumar, V.J.: Modeling and control of formations of non-
holonomic mobile robots. Transactions on Robotics and Aut. 17(6), 905–908 (2001)

8. Ennis, C., Peters, C., O’Sullivan, C.: Perceptual evaluation of position and orienta-
tion context rules for pedestrian formations. In: Symposium on Applied Perception
in Graphics and Visualization (APGV’08). pp. 75–82 (2008)

9. Fierro, R., Belta, C., Desai, K., Kumar, V.J.: On controlling aircraft formations.
In: IEEE Conf. on Decision and Control. pp. 1065–1070. Orlando, FL (Dec 2001)

10. Fredslund, J., Mataric, M.J.: A general, local algorithm for robot formations. IEEE
Transactions on Robotics and Automation 18(5), 873–846 (Oct 2002)

11. Gayle, R., Moss, W., Lin, M.C., Manocha, D.: Multi-robot coordination using
generalized social potential fields. In: ICRA. pp. 3695–3702. Kobe, Japan (2009)

12. Geraerts, R., Kamphuis, A., Karamouzas, I., Overmars, M.: Using the corridor
map method for path planning for a large number of characters. In: 1st Intern.
Workshop on Motion in Games (MIG). Utrecht, The Netherlands (June 2008)

13. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile agents using
nearest neighbor rules. IEEE Trans. on Automatic Control 8(6), 988–1001 (2003)

14. Kloder, S., Hutchinson, S.: Path planning for permutation-invariant multirobot
formations. IEEE Transactions on Robotics 22(4), 650–665 (2006)

15. Lau, M., Kuffner, J.: Behavior planning for character animation. In: ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation (SCA) (2005)

16. Lewis, M., Tan, K.H.: High-precision formation control of mobile robotis using
virtual structures. Autonomous Robots 4(4), 387–403 (Oct 1997)

17. Lien, J.M., Rodriguez, S., Malric, J.P., Amato, N.: Shepherding behaviors with
multiple shepherds. In: International Conf. on Robotics and Automation (2005)

18. Michael, N., Zavlanos, M.M., Kumar, V., Pappas, G.J.: Distributed multi-robot
task assignment and formation control. In: ICRA. pp. 128–133 (May 2008)

19. Patil, S., van den Berg, J., Curtis, S., Lin, M., Manocha, D.: Directing crowd simu-
lations using navigation fields. IEEE Transactions on Visualization and Computer
Graphics (TVCG) (2010)

20. Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density
crowd simulation. In: ACM SIGGRAPH / Eurographics Symposium on Computer
Animation (SCA). vol. 3, pp. 99–108. San Diego, CA (August 3-4 2007)

21. Snape, J., Manocha, D.: Navigating multiple simple-airplanes in 3d workspace. In:
IEEE International Conference on Robotics and Automation (ICRA) (2010)

22. Stylianou, S., Chrysanthou, Y.: Crowd self organization, streaming and short path
smoothing. In: Computer Graphics, Visualization and Computer Vision (2006)

23. Tabuada, P., Pappas, G.J., Lima, P.: Motion feasibility of multi-agent formations.
IEEE Transactions on Robotics 21(3), 387–392 (2005)

24. Takahashi, S., Yoshida, K., Kwon, T., Lee, K.H., Lee, J., Shin, S.Y.: Spectral-based
group formation control. Comp. Graph. Forum: Eurographics 28, 639–648 (2009)

25. Tanner, H.G., Pappas, G.J., Kumar, V.J.: Leader-to-formation stability. In: IEEE
Transactions on Robotics and Automation (2004)

26. Vo, C., Harrison, J.F., Lien, J.M.: Behavior-based motion planning for group con-
trol. In: Intern. Conf. on Intelligent Robots and Systems. St. Louis, MO (2009)

