Domain Knowledge for Genetic Algorithms

Sushil J. Louis Fang Zhao
Dept. of Computer Science Dept. of Civil and Environmental Eng.
Mackay School of Mines Florida International University
University of Nevada, Reno, NV 89557 Miami, FL 33199
sushil@cs.unr.edu zhaof@fiu.edu
Abstract

This paper describes the encoding of domain knowledge for use by a genetic algorithm. We
use the domain of system configuration design problems; specifically, the structural design and
optimization of trusses to ground our discussion and results. The approach applies evolutionary
principles to the optimally directed configuration design of complex structures and incorporates
engineering domain knowledge into a genetic algorithm to synthesize the topology, geometry,
and component properties of the structure. Preliminary results indicate that genetic algorithms
with domain knowledge can generate feasible and useful designs.

Keywords: Genetic Algorithms, Domain Knowledge, Truss Design

1 Introduction

Design problems can be classified into two types based on the problem specification and expected
results. Preliminary or conceptual design deals with structuring a design problem and reducing
it to a form suitable for detailed design. Configuration design is an example of a preliminary

design problem and as such, has to cope with uncertain and missing information as well as system

complexity brought on by the large number of components and their possible interactions. Its
ill-structured nature leads to a lack of rigorous and/or effective design methods for attacking this
problem. Artificial intelligence techniques typically cast such ill-structured problems as search
problems in a large state space of possible solutions. Since genetic algorithms were designed to
effectively search large, poorly-understood spaces, we use them as the search method of choice for
this research.

When considering configuration design as a search problem, the number of possible solutions
is usually too large for exhaustive search. Knowledge-based systems rely on expert or experiential
knowledge to narrow the search space to a manageable size. Examples of such systems can be
found in (Tong and Sriram, 1992). This approach works well in areas where such knowledge is
encodable, but there are two disadvantages: 1) it is often difficult to extract and encode relevant
design knowledge and 2) knowledge applicable in one domain may not be applicable in another
domain.

Optimization techniques work well for well-understood problems (Radford and Gero, 1988).
However, many problems are not well-understood and may not meet the preconditions necessary
for the application of mathematical techniques. In addition, the problem size may be so large that
the time taken to find a solution is not practical.

Genetic algorithms (GAs) are stochastic, parallel search algorithms based on the mechanics of
natural selection, the process of evolution (Holland, 1975). GAs were designed to efficiently search
large, non-linear, poorly-understood search spaces where expert knowledge is scarce or difficult
to encode and where traditional optimization techniques fail. They are flexible (not brittle) and
robust, exhibiting the adaptiveness and graceful degradation of biological systems. As such, GAs
appear well suited for searching the large, poorly-understood spaces that arise in design problems.

We seek to combine some of the speed and accuracy of knowledge based systems with the

robustness and flexibility of genetic algorithm search by incorporating domain knowledge in a
genetic algorithm

We chose the structural design and optimization of trusses as the application domain for three
reasons. First, truss design involves the determination of the topology and geometry of a truss
system as well as the properties of the truss members. Second, the structure of a truss only
consists of axially loaded truss members with the major property of truss members being their
cross sectional areas. Thus, truss design has the essential characteristics of a complex system while
being simple enough to allow an understanding of both the interactions of different design elements
and the effectiveness of the methodology. We use a genetic algorithm augmented with engineering
heuristics to design the topology, geometry, and member properties of trusses while minimizing the
weight and maintaining feasibility. The third and last reason was that we could use a finite element
analysis program to provide the feedback required by the GA.

The next section provides a briefl introduction to search in design problems and the use of
domain knowledge. Section 3 describes genetic algorithms and truss design. Section 5 describes
our representation, encoding of domain knowledge, and the effect of genetic operators on candidate
designs. Initial results reported in Section 6 suggest that genetic algorithms can be used in system
configuration problems to provide feasible and useful designs. The last section discusses the results

and suggests questions for future research.

2 Design and Search

Casting design as a search problem, a formulation with a well-established heritage in artificial
intelligence research, a design process searches through a state space of possible structures for one

or more structures that perform a specified function. Points in the state space represent candidate

designs, and one or more of these points defines a goal state representing a design that meets
specifications.

In search there is a tradeoff between flexibility — applicability in different domains, and speed
— the number of candidate designs searched through before finding the correct one. Current de-
sign systems tend to depend on domain-specific knowledge and favor speed over flexibility. Such
knowledge-based systems therefore do not perform well when domain knowledge is scarce but per-
form extremely well on the domains they were designed for. At the other extreme are enumerative
or exhaustive search algorithms that trade flexibility for speed. They perform about equally well
(or badly) across a wide variety of domains, but are usually prohibitively slow.

In between these extremes of random and/or exhaustive search and no search, every other search
algorithm makes assumptions of varying kinds about search spaces. These assumptions correspond
to knowledge about the space and may be correct, incorrect, or misleading, implicit or explicit,
and known or unknown, when used for searching a particular space. This knowledge is exploited to
guide exploration, speeding up search by generating a search bias manifested in the set of generated
solutions.

Genetic algorithms belong to a class of algorithms, called blind search algorithms, which make
the assumption that there is enough knowledge to compare two solutions and tell which is bet-
ter (Rawlins, 1991). They make do with little domain knowledge, make few assumptions about
the search space, and use domain-independent operators for generating candidate points in a state
space.

A hybrid system that combines the best aspects of knowledge-based systems (speed) with the
robustness of genetic algorithm search (domain-independence) would therefore be more useful,
especially in engineering domains where domain knowledge is available but where such knowledge

is usually not enough to solve a problem to optimality. Engineers use heuristics (rules of thumb)

to help solve design problems. This knowledge is usually relatively easy to capture or encode, and
helps to cut down the search space size. In this context, we describe a system that uses domain
knowledge to guide a genetic algorithm that looks for feasible solutions in the domain of structural
design and optimization of trusses. These solutions can then be improved through post processing

by an engineer.

3 Genetic Algorithms and Truss Design

3.1 Truss Design

A truss is a structure that consists of a set of long, slender members arranged in the shape of one
or more triangles (see figure 1). The members are assumed to be connected by frictionless pins
and external loadings are applied only at the truss joints. Truss design usually starts with a given
distance that the structure has to span and the loading conditions. Next, the designer determines
the depth and overall profile of the truss (geometry), the number of members and their arrangement
(topology), and the shape and areas of member cross sections (component properties) such that the
truss will be able to resist the given loads while meeting the service requirements (specifications).
The goal of truss optimization is to maximally utilize the material to result in the lightest structure
while satisfying all the design, manufacturing, and other physical constraints.

Traditionally, truss optimization is performed using mathematical optimization techniques for a
truss with a fixed configuration. That is, given the geometry and topology, the truss member cross
sectional areas are optimized. The task, although well formulated, involves intensive computation.
Using mixed integer optimization techniques, limited topology optimization may be achieved based
on a set of alternative fixed configurations. An example of applying GAs to truss member opti-

mization is reported in (Goldberg, 1989). Jenkins also applies a GA to optimize truss geometry and

Verticals — top chord diagonal
L

(o) Howe
depth

%/
. bottom chord

pannel sze v e
(a)Warren

(c) Fink

Figure 1: Three Different Types of Trusses

member cross sectional areas (Jenkins, 1991). In his study the topology is fixed and geometry is
defined by a set of parameters such as member lengths and their inclined angles. To our knowledge,
the only reported attempt on optimization of truss topology is described in Cagan and Mitchell’s
work (Cagan and Mitchell, 1993), in which simulated annealing (a search algorithm) is used to
search through possible truss topologies. A truss topology is first generated by a shape grammar
producing a triangularized shape. The geometry is then adjusted to satisfy problem constraints
(the locations of supports and loads), followed by shape optimization based on, for example, stress,
buckling, and manufacturing constraints using traditional optimization techniques. Based on the
utility of the resultant shape the simulated annealer searches for another shape and the whole pro-
cess is repeated. One problem with this approach, as pointed out by the authors, is that a complete
shape optimization is performed at each step. This takes significant computational time, especially
if the truss is statically indeterminate. The internal force distribution in a statically determinate
truss, or any such structure in general, may be calculated independently of the members’ properties

while its calculation in a statically indeterminate structure requires information about members’

properties, which are themselves the targets of optimization.

Genetic algorithms have also been used in shape design (Gero et al., 1994; Watabe and Okino,
1993). Although shape grammars provide a powerful representation technique, we chose a different
representation for reasons of computational complexity and because we found it difficulty to encode
heuristic (engineering design) knowledge. Our representation is described in Section 5 while the

next subsection introduces genetic algorithms.

3.2 Genetic Algorithms

Genetic algorithms, originally developed by Holland, model natural selection, the process of evo-
lution (Holland, 1975). Conceptually, GAs use the mechanisms of natural selection in evolving
individuals that, over time, adapt to an environment. They can also be considered a search pro-
cess, searching for better individuals in the space of all possible individuals. In practice, individuals
represent candidate designs in a state space of possible designs, while the environment provides a
measure of “fitness” that helps identify better individuals. Genetic algorithms are a robust, parallel
search process requiring little information to search effectively. Goldberg’s book provides a large
list of application areas (Goldberg, 1989).

As already noted, the motivational idea behind GAs is natural selection implemented through
selection and recombination operators. A population of candidate designs (usually encoded as bit
strings) is modified by the probabilistic application of the genetic operators from one generation
to the next. The basic algorithm where P(?) is the population of strings at generation ¢, is given

below.
t=20
initialize P(t)

evaluate P(t)

while (termination condition not satisfied) do
begin

select P(t+ 1) from P(t)

recombine P({ + 1)

evaluate P({ + 1)

t=t+1

end

Evaluation of each string which encodes a candidate design is based on a fitness function that
is problem dependent. This corresponds to the environmental determination of survivability in
natural selection. For our problem, a finite element analysis program calculates the total weight,
node displacements, and member stresses, providing the information necessary for evaluating a
design.

Selection is done on the basis of relative fitness and it probabilistically culls from the popula-
tion those designs that have relatively low fitness. Recombination, which consists of mutation and
crossover, imitates sexual reproduction. Mutation, as in natural systems, is a very low probability
operator and just flips a specific bit. Crossover in contrast is applied with high probability. It
is a structured yet stochastic operator that allows information exchange between candidate solu-
tions. Two point crossover is implemented by choosing two random points in the selected pair of
strings and exchanging the substrings defined by that point. Figure 2 shows how crossover mixes
information from two parent strings, producing offspring made up of parts from both parents. We
note that this operator, which does no table lookups or backtracking, is very eflicient because of
its simplicity. In summary, selection concentrates search in promising areas of the search space,

while crossover and mutation provide new points in the search space (solutions) to evaluate. We

can think of a genetic algorithm as a population of information exchanging hill climbers.

Crossover Points
= ~—_

Parents
P1 | | P2

Children
ol N Bl

Figure 2: Crossover of the two parents A and B produces the two children C and D.

Holland’s fundamental theorem of genetic algorithms, the schema theorem, leads to the building
block hypothesis which states that genetic algorithms work near-optimally by combining certain
types of building blocks corresponding to partial solutions or designs (Goldberg, 1989). In terms of
truss design, genetic algorithms can be expected to combine good parts of candidate structures to
generate improved structures.

The next section describes our methodology, the representation of the space of possible trusses,
and how knowledge is encoded in the representation and genetic operators. The genetic algorithm
searches this space for a feasible truss that optimizes weight, nodal displacement, and member

stresses.

4 Methodology

We only consider planar trusses with (initially) rectangular profiles. As will be shown later the
converged solution’s profile may no longer be rectangular. A truss’ geometry and topology may
be defined by a set of joints, or to borrow from the terminology of finite element analysis, a set

of nodes. A set of members connect these nodes. The set of nodes and their locations defines the

geometry of a truss, while the set of members and the nodes they connect defines the topology.

There are three approaches to using domain knowledge in genetic search. We can place this
knowledge 1) in the initial population 2) in the encoding of the genotype, and 3) in the genetic
operators of crossover and mutation.

Initializing the genetic algorithm with individuals that our domain knowledge tells us are
highly fit usually results in quicker convergence and/or better adaptability in changing environ-
ment (Grefensttete and Ramsey, 1993). However, the reduced diversity that may result can lead to
premature convergence. To alleviate this problem we use high crossover and mutation probabilities.

Domain knowledge in the form of constraints on the range of variables is usually placed in
the encoding of the genotype. In addition, ensuring that only viable offspring are produced is a
task that depends on both the encoding and the recombination operators. In our task we use bit
strings to encode member cross sections and top chord node heights. The topology and the rest
of the geometry are encoded as more complex data structures with correspondingly different and
“smarter” crossover and mutations operators. Instead of randomized crossover and mutation, these
“smarter” operators use domain knowledge to guide crossover and mutation and usually lead to
quicker convergence.

Note that as more domain knowledge is used to guide search, the less robust the algorithm
becomes. Ideally we would like to start with a robust algorithm and using domain knowledge tune
it to the domain.

The next section provides more detail on our representation and engineering heuristics used to

seed the initial population.

5 REPRESENTATION

The first engineering heuristic that we encode indicates that good values for truss depth lie between
1/12 and 1/8 of the span for Warren trusses. Providing some leeway, we initialize the population
by randomly generating trusses with depths between 1/14 and 1/6 of the span. Thus we determine

initial truss depths with the following formula

span

t depth = ————
res aep rnd(6, 14)

where rnd(z, y) generates a random number between z and y inclusive.

The panel size heuristic suggests that panels be of approximately the same size as the depth.
Thus trusses in the initial population have approximately equal depths and panel sizes.

Members are now generated to connect nodes such that the profile is, with high probability,
triangularized. Triangularization makes for stable trusses. If we consider a rectangular truss to be
made of two chords, top and bottom, we start with the leftmost node in the top chord and generate
between 2 and 5 members to connect to adjacent nodes. Step 0 in Figure 3 shows that 3 members
have been generated from node [1,0] to nodes [0,0], [0,1], [1,1]. There is already one triangular
structure, but one member ([1,0] — [1,1]) has been left dangling. In the next step, we connect
node [1,1] with other nodes. This time we have generated (randomly) 4 members connecting to
the nodes [0,0], [0,1], [0,2], [1,2]. We continue in this way until reaching the rightmost node, in
this case node [1,5]. At this point, if a node does not form the vertex of a triangle, we add bracing
members to triangularize the structure. This results in the truss structure shown at the bottom of
figure 3.

Each member’s cross sectional area is generated randomly in the range between 0.1 and 6.5

square inches. This procedure repeats until enough individual are generated to fill the initial

1 11
(Lo 11 Top chord

(Step 0)

Bottom chord

[0,0] [0,1]
[1,0] [1,1] [1,2]

Top chord

(Step 1)

Bottom chord

[0,0] [0,1] [0,2]

)
[1,0] [1,1] [1,2] [1,3] [1,4] [1,5]
Step 5) Top chord
Bottom chord
[0,0] [0,1] [0,2] [0,3] [0,4] [0,5]

Figure 3: Generating a truss in the initial population.

population. The genetic algorithm then searches for a structure that satisfies design constraints
and minimizes the objective function described below. For simplicity, only the most important
design constraints, which are constraints on stress in the truss members and deflection of the truss,

are used.

total weight + p1 D Limembers |S6T€SSallowed — StT€SSqctual

+ po |deflection,jipweq — deflection gesyqi

Here stressyiowed and stressgciuq are the allowed and the actual stress for each truss member
and deflectiongy,,, and deflectiongesyq; are the allowed and actual vertical deflections, at a pre-
determined truss node. p; and p; are penalty weights. Excessive stresses, excessive nodal dis-
placements, and underutilization of material are penalized. Generated trusses that disobey hard
constraints on nodal displacements and member stresses are more heavily penalized than those
that satisfy these constraints. For example, overstressed members are penalized more than un-
derstressed members. Thus, p; takes a larger value if stressgeruqr > stressgioweq as does po if
deflectionyeyq; > deflectiongyoweq. pl and p2 will take a smaller value if stress,eiyq; < stressyiow or
deflectioneqq; < deflectiongo,,. The smaller values penalize the truss for wasted material. Ideally,
an optimal solution will be of minimum weight with stressgcruqr = stressgiow and deflectiongesyq =
deflectionyjjoq, since maximum utilization of material implies that all members are stressed to the
design limits and the truss has just enough stiffness to satisfy the deflection requirement. However,
it has been shown that optimal solutions may not always exist using the full stress design criterion
(Save and Prager, 1985).

Figure 4 presents some of the trusses produced at initiation. The objective function returns
a fitness value that is minimized to drive the genetic search in the direction of feasible, minimal

weight solutions.

D<DXININ XX

Figure 4: Trusses produced by the initiation procedure.

5.1 Representation and the Effect of Genetic Operators

Unlike traditional genetic algorithm representations that emphasize bit strings, we use a mixed
representation, employing bit strings as well as more complex structures. This makes it easier to
add heuristic constraints to the problem and reduces the size of the search space. Panel sizes are
not subject to crossover and are fixed for an individual limiting exploration of this parameter to
within the space spanned by the initial population.

Selection in genetic algorithms concentrates search in a promising area and is the exploitation
operator. We discuss selection in the next section.

We want the crossover and mutation operators to generate new structures and guide explo-
ration of the search space of possible truss structures. Starting with a statically determinate truss
(triangularized), we need to be able to change the topology, geometry, and member cross sections
in order to explore the space.

Exploring member cross sections and truss depths is fairly straightforward. We store these
parameters as binary strings. Crossover and mutation as defined in the section on genetic algorithms
suffice to explore the space of possible cross sections and truss depths.

Although changing the depth of nodes explores some of the topological space, we do not change
the geometry. We define new crossover and mutation operators which are not simple bit string
exchanges but in keeping with the spirit of genetic algorithms, have the effect of exchanging infor-
mation.

Since crossover in genetic algorithms combines good substructures to improve solutions, we
implement structural crossover by randomly selecting a contiguous set of nodes on the top chord
and exchanging them as well as the members connected to them. Figure 5 depicts the result of
crossing over the two structures on the bottom. The nodes to be crossed over are labeled [1,4] and

[1,5] (shaded) and exchanging these nodes results in the structures labeled “child 17 and “child 2.”

Intuitively, “child 1”7 is a copy of “parent 1” except for the nodes that came from “parent 2” and

vice versa.

Parent 1
17

Parent?2
C

e I A
|

L]

(10 L] 12 iK

O g LT (g

J NP W T\
Chilg2 Child 1

Figure 5: Structural crossover of trusses. Nodes [1,4] and [1, 5] are exchanged.

Thus, structural crossover has the effect of changing both the topology and geometry of trusses in
the population. Since member cross sectional areas are exchanged along with the members attached
to a node, the cross sectional areas change in this way as well. Structural mutation adds and deletes
non-randomly chosen members and nodes, and randomly perturbs member cross sectional areas.
We encode engineering heuristics in the structural mutation operator by biasing it toward removing
members with low stresses and adding members to nodes with large displacements. The probability

of a member’s removal due to structural mutation is inversely proportional to the stress on that

member while the probability of a member being added to a node is directly proportional to the
displacement. Top chord nodes can be removed through random mutation although there is no
provision for adding nodes.

Recombination of this kind may generate trusses that are statically indeterminate (not trian-
gularized). Every offspring is therefore checked and, if needed, additional members are added to

brace and triangularize the truss.

6 Results

The test problem presented in this section is the design of a truss with a span of 100 feet and
an evenly distributed vertical load that has an intensity of 600 pounds per linear foot. Since the
loading is symmetric, for simplicity, we designed only for half trusses. This simplification restricts
the trusses to have an even number of panels, but does not affect the validity or feasibility of our

methodology. We assume the following:

1. Material is A36 steel with Young’s modulus E = 29%psi

2. Truss members have circular cross sections

3. Allowable deflection = 1/240 of span, which is 5 inches

4. Allowable tensile stress = 22,000 psi

5. Allowable compressive stress is determined according to the American Institute of Steel Con-
struction (AISC) “Specification for the Design, Fabrication and Erection of Structural Steel
for Buildings.” The allowable compressive stress for A36 steel is a function of the I/r ratio of a
truss member in compression, where [is the length of the truss member and r the least radius

of gyration (Merritt, 1983). Depending on the magnitude of [/r, the allowable stress ranges

between 3730 psi (for {/r = 200) and 21160 psi (for [/r = 10), and is larger for a shorter
member with a larger r and smaller for a longer member with a smaller r. It is assumed that

for I/r > 200, the allowable stress is zero.

Some typical configurations of the initial GA population were already shown in figure 4. The
population size for the genetic algorithm was 50 and it ran for a 100 generations. We used the CHC
elitist selection strategy in which for a population of size N, the offspring double the size of the
population and the N best are chosen for the next generation from the 2N population of parents
and offspring. Since elitism increases selection pressure and because the heuristic initialization of
the population reduces diversity we used a crossover probability of 1.0 and a mutation probability
dependent on the mutation cite. The probability of mutating a bit in cross sectional area of
a member or height of a node was 0.07 and the probability of adding/removing a member was
proportional to the relative stress on the member (removal), or displacement at a corresponding
node (addition). Empirical testing established these parameter values as better than the more
traditional values of 0.66 and 0.001 for crossover and mutation probabilities. The figures shown
below are the best results from more than 20 genetic algorithm runs with different random seeds
and parameters.

Figure 6 shows several intermediate truss designs (half trusses) produced by the GA, in which
the best was found at generation 67. Numbers next to truss members are their cross sectional areas
in square inches. A typical rate of convergence is depicted in figure 7 where we plot weight in pounds
versus generation number. We use this graph of the genetic algorithm’s performance instead of the
average over many runs since a designer will be more interested in the best result rather than an
average. The genetic algorithm quickly reduces the weight and finds the best solution for the run
in the 67" generation. This is typical behavior for the runs that we observed. Table 1 summarizes

some of the major structural characteristics of the design solutions shown in figure 6.

11 640 [12 569 [13 630 [L4l 630 s [NoddY ()
’ L1l 6%
yT 203 112 714
35 T8 T0o] 132 103 550 550|105 [1,3] 714
[0,0]F ’ [0,1] ['] o [’1] [0!4] ’ [’] [1,4] 8.33
5@10' =50 > L5 7T
(a) Generation 67
11 ed0 112 560 [13 630 LA 6% 15 [Noddv ()
003 [1,1] 6.25
' [12]| 714
[O’O]F 5.89 [0,1] 0.99 [0,2] 132 [0,3] 5.69 [0,4] 6.50 [0,5] [[1’3]] ;;’:
ey 14| 8
5@10' =50 - = e
(b) Generation 33
[10] 528 [11]325 [1.2] 650 [1.3] 569 [1,4] 650 [15] 650 [L.6]
)
6.25 0.81 V 6.09 714
6.09

[0,0]L5-89 [0,1] 487 [0,2] 599 [0,3]>09 [0,4] 438 [05] 518)‘[0,6]

[1.0]

6@8.33 =50
(c) Generation 16

651164 [12 321365 [14] 65[L5] 65 [16] 58 [1.7]

6.3

[0,0]

< 7@7.14 =50 =t

[0,7]

(d) Generation0

Figure 6: Some solutions produced by a genetic algorithm run

4.80

4.60
Decrease in weight over time 7]

3

4.40

4.20

4.00

3.80

3.60

Weight in [bsx 10

3.40

3.20

] | | | | |
0.00 2000 4000 _ 60.00 80.00 10000
Generations

Figure 7: Convergence behavior, best truss weighed 3214 pounds.

[Table 1 here]

In the table, column two gives the maximum depth of each truss while column three provides
panel size and column four the total weight. Column five to seven report maximum, minimum, and
average ulility factors, which are defined as the ratios of the actual stress to the allowable stress
in truss members. The last column displays the maximum displacement. Truss (e) (generation
0) is not feasible because of the large utility factor, indicating overstressing in the truss. The
design stress requirement used here allows truss members to be overstressed by 3%, which means a
maximum utility factor of 1.03. All other trusses are feasible solutions, with utility factors smaller
that 1.03 and the maximum displacement, which occurs at the rightmost bottom node, smaller than

the 5 inches permitted. It appears that design constraint on stresses plays a much more dominant

role than the deflection constraint does.

The results indicate that the evolution of the population has brought changes in their topology,
geometry, as well as cross sectional areas. Truss envelopes have evolved from rectangles to curves,
which, in general, agree with the shape of the moment diagrams of the trusses (see figure 8). In
trusses (a) - (c), the depth is reduced at the center of the trusses (at node [1,5]). We note that
if the depth remains 8.33 feet as at node [1,4], the truss will be lighter while all the the design
constraints are satisfied. The maximum depth of trusses (a) - (c) range from 7.14 to 8.33 feet, which
is approximately 1/14 to 1/13.5 of the span. Since average utility factors reflect the efficiency of
material use, another indication of improvement in the population is given by the increase in average

utility factors over time.

540 540
720 720
840 5, 840 Units: kips—ft

Figure 8: The shape of moment diagram of trusses (a) - (c)

We would like to point out that genetic algorithms do not guarantee optimal solutions. Dif-
ferent populations sizes or probabilities of crossover can result in the genetic algorithm finding
other feasible solutions, some with lower weights. Using Cagan and Mitchell’s terminology, genetic
algorithms are optimally directed (Cagan and Mitchell, 1993) and can be counted on to improve
upon their initial population. Genetic algorithm results point toward good regions of the search
space and allow designers to use their knowledge and expertise to improve upon solutions generated
through genetic search. For example, if the depth of truss (a) in figure 6 at node [1,5] is changed

to 8.33 feet and the two members connecting nodes [0, 5], [1,4] and [0, 5], [1, 5], are removed, the

truss weight will be reduced to 3021 pounds. However, the GA has, as expected, quickly reduced
the size of the design space and produced some (possibly good) solutions that allow a designer to
apply design knowledge and experience to improve them. Letting the genetic algorithm take care
of identifying a promising region in the search space for post-processing by an engineer saves time
and reduces cost.

Figure 9 shows the best truss configuration weighing 3171 pounds and found in generation 74,
for another run of the genetic algorithm. Figure 10 plots its convergence behavior to highlight the
fact that the decrease in weight need not be monotonic. The GA is optimizing a function that

includes weigth as only one out of three criteria.

[14]
6.4 6.50

L] 580 [L7 609 [L [15]

.30

0 487 o1 457 2 305 Jo3] 47 62 (03]

Figure 9: The best truss configuration of another genetic algorithm run, found in generation 74.

As noted earlier, many design heuristics and constraints have been incorporated into the genetic
algorithm. These design heuristics and constraints greatly affect both the size of the design solution
space and the GA’s convergence rate. Relaxing some constraints (reducing the amount of domain
knowledge used) can lead to different, and perhaps more surprising, structures. For example,
figure 11 shows the best configuration produced in another run where we allow diagonal members

to cross two panels.

| | | | | I 1410
Decrease in weight over time

4.00
3.90
3.80
3.70

3.60

3.50

Weight in Ibs x 10°

3.40

u 3.30

3.20

1 1 | 1 1 1
0.00 20.00 40.00 60.00 80.00 100.00
Generations

Figure 10: Convergence behavior of genetic algorithm run for the truss in the previous figure, note
the non-monotonic decrease in weight.

Figure 11: The best truss configuration of a less constrained genetic algorithm run, found in
generation 63. Diagonal member were allowed to cross panels.

7 Discussion and Conclusions

Many engineering problems require both domain knowledge and search/optimization techniques for
their solution. Hybrid systems that use robust search algorithms when confronted with a problem
outside the scope of their knowledge, bring up the issue of how best to incorporate this knowledge
in guiding robust search. This paper studied the problem of incorporating domain knowledge in
genetic algorithm search for the configuration design and optimization of trusses.

We used domain knowledge to initialize the genetic algorithm’s population and to guide the
application of crossover and mutation. This substantially reduces the search space and speeds
convergence. The genetic algorithm is able to produce feasible, useful solutions in approximately
twenty minutes on a high-end workstation. Broadly speaking, the GA first settles on a topology
and geometry, and spends the rest of the time optimizing member cross sections.

This paper explores an essential aspect of interfacing genetic search with knowledge-bases. As
a next step, we plan to use case-based reasoning to store genetic algorithm solutions and use these
stored cases to initialize the population.

The representation used in this paper allows easy incorporation of design heuristics and con-
straints. This leads to a smaller search space and therefore fast convergence times. However,
relaxing the constraints and expanding the search space may lead to more exploration and perhaps
better and more innovative solutions (Louis, 1993). We are currently exploring this tradeoff. One
of the problems in our representation is that crossover can generate structures that are not viable;
in other words, structures that cannot bear the load or that are simply not realistic. This causes
the finite element analysis program to abort. Our current solution is to patch up such structures
by adding bracing members. A representation that guarantees viable offspring would be better.

Shape grammars (Stiny and Gips, 1978) offer an alternative representation and have been used by

Cagan and Mitchell.

In the future, we plan to investigate the influence of various program parameters on the results,
which include the penalty weights for overstressing and understressing, the probability of crossover
and mutation, and parameters reflecting design heuristics and constraints. We also plan to develop
different representations which are more easily manipulated by the genetic algorithm as well as
being more efflicient. Along with representations, we can try different search algorithms such as
simulated annealing or other stochastic hill-climbers and explore the encoding of domain knowledge
for these algorithms. Finally, we hope to extend the methodology to other types of structural system

design as well as system configuration design in different domains.

References

Cagan, J. and Mitchell, W. J. (1993). A grammatical approach to network flow synthesis. In Gero,
J., editor, Preprints of the IFIP WG 5.2 Workshop on Formal Design Methods for Computer-

Aided Design, pages 153-166, Tallinn, Estonia.

Gero, J. S., Louis, S. J., and Kundu, S. (1994). Evolutionary learning of novel grammars for design

improvement. Artificial Intelligence in Engineering Design, Analysis and Manufacturing, 8:83—

94.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading, MA.

Grefensttete, J. and Ramsey, C. (1993). Case-based initialization of genetic algorithms. In Forrest,
S., editor, Proceedings of the Fifth International Conference on Genetlic Algorithms, pages

84-91, San Mateo, California. Morgan Kauffman.

Holland, J. (1975). Adaptation In Natural and Artificial Systems. The University of Michigan

Press, Ann Arbour.

Jenkins, W. (1991). Towards structural optimization via the genetic algorithm. Computers and

Structures, 40(5):1321-1327.

Louis, S. J. (1993). Genetic Algorithms as a Computational Tool for Design. PhD thesis, Indiana

University, Bloomington. Department of Computer Sciences.

Merritt, F. S. (1983). Standard Handbook for Civil Engineers. McGraw-Hill, New York, NY.

Radford, A. D. and Gero, J. S. (1988). Design by Oplimization in Architecture, Building, and

Construction. Van Nostrand Reinhold Company, New York.

Rawlins, G. J. E. (1991). Introduction. In Rawlins, G. J. E., editor, Foundations of Genetic

Algorithms-1, pages 1-12. Morgan Kauffman.

Save, M. and Prager, W., editors (1985). Structural Optimization, Volume 1: Optimality Criteria.

Plenum Press, New York, NY.

Stiny, G. and Gips, J. (1978). Algorithmic Aesthetics: Computer Models for Criticism and Design

in the Arts. University of California Press, Berkeley and Los Angeles, California.

Tong, C. and Sriram, D. (1992). Introduction. In Tong, C. and Sriram, D., editors, Artificial

Intelligence in Engineering Design, pages 1-53. Academic Press, Inc.

Watabe, H. and Okino, N. (1993). A study on genetic shape design. In Forrest, S., editor, Proceed-
ings of the Fifth International Conference on Genetlic Algorithms, pages 445450, San Mateo,

California. Morgan Kauffman.

Truss | max. D | Panel Size | W | max. UF | min. UF | avg. UF’s | max. Displ
(ft) (ft) (Ibs) (in)
(a) 8.33 10.0 3214 1.02 0.01 0.47 1.2
(b) 8.33 10.0 3451 0.99 0.02 0.39 1.14
(c) 7.14 8.33 4004 0.93 0.006 0.33 1.23
(d) 7.14 7.14 4906 1.37 0.03 0.30 1.31

Table 1: The structural characteristics of the trusses

