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When confronted by a problem, human designers often work forward from

similar previously solved problems to solve the current problem. Based

on this principle, we propose a new learning system especially suited for

design using case-based reasoning principles to augment genetic algorithm

search. When confronted with a problem we seed a genetic algorithm's

initial population with solutions to similar, previously solved problems and

the genetic algorithm then adapts its seeded population toward solving

the current problem. Preliminary results on open-shop scheduling and re-

scheduling indicate the feasibility of this approach.
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1 Introduction

Genetic algorithms (GAs) are randomized parallel search algorithms that search

from a population of points [Holland, 1975]. We typically randomly initialize

the starting population so that a genetic algorithm can proceed from an un-

biased sample of the search space. However in many application areas we con-

front sets of similar problems. It makes little sense to start a problem solving

search attempt from scratch with a random initial population when previous

search attempts may have yielded useful information about the search space.

Instead, seeding a genetic algorithm's initial population with solutions to sim-

ilar previously solved problems can provide information (a search bias) that,

hopefully, increases the e�ciency of the search. Our approach borrows ideas

from case-based reasoning (CBR) in which old problem and solution informa-

tion, stored as cases in a case-base, help solve a new problem [Riesbeck and Schank, 1989].

The approach outlined in this paper has many application areas in engineering

design [Tong and Sriram, 1992] and we use example problems from open shop
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scheduling and re-scheduling as a test-bed for the work reported in this paper.

Although we only consider genetic algorithms, the basic ideas can be extended

to other evolutionary computation methods, and with some modi�cations, to

other heuristic search methods.

The next two sub-sections provide short introductions to case-based reasoning

and genetic algorithms. For researchers familiar with the topics these subsec-

tions may be skipped without loss of continuity. Section 2 outlines the issues

in combining GAs and CBR and discusses previous work in this area. The

open-shop scheduling and re-scheduling problems and our methodology and

experimental results on the test problems are presented in subsequent sec-

tions. The last section presents conclusions and directions for future work.

1.1 Case-Based Reasoning

Case-based reasoning (CBR) is based on the idea that reasoning and explan-

ation can best be done with reference to prior experience, stored in memory

as cases [Riesbeck and Schank, 1989,Bareiss, 1991]. When confronted with a

problem to solve, a case-based reasoner extracts the most similar case in

memory and uses information from the retrieved case and any available do-

main information to tackle the current problem. The strategy is �rst to collect

and index a large and varied collection of examples, and then, when presented

with a new situation, to fetch and possibly manipulate or adapt the stored

example that most closely resembles the new situation.

1.2 Genetic Algorithms

Genetic algorithms are stochastic, parallel search algorithms based on the

mechanics of natural selection, the process of evolution [Holland, 1975,Goldberg, 1989].

GAs were designed to search large, non-linear search spaces where expert

knowledge is lacking or di�cult to encode and where traditional optimization

techniques fall short. They are exible and robust, exhibiting the adaptiveness

and graceful degradation of biological systems.

Genetic algorithms, like other search algorithms, balance the need for explora-

tion | to avoid local optima, with exploitation | to converge on the optima.

GAs dynamically balance exploration versus exploitation through the recom-

bination (crossover and mutation) and selection operators respectively. When

we seed a genetic algorithm's initial population with cases we alter this balance,

subsequently a�ecting the search bias and thus the kind of solutions generated.

We propose using a kind of associative memory | organizing information

based on \similarity" | to help augment genetic algorithm search.
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2 Combining GAs and CBR

Genetic algorithms provide an e�cient tool for searching large, poorly under-

stood spaces often encountered in function optimization and machine learn-

ing [Holland, 1975]. The probabilistic nature of GA search allows GAs to be

successfully applied to a variety of NP-hard problems

[Goldberg, 1989,Powell et al., 1989,Caldwell and Johnston, 1991]. The population-

based, emergent nature of computation in GAs lends them a degree of robust-

ness and exibility that is often unobtainable using other approaches.

A genetic algorithm explores a subset of the search space during a problem

solving attempt and its population serves as an implicit memory guiding the

search. Every individual generated during a search de�nes a point in the search

space and the individual's evaluation provides a �tness. This information when

stored, organized, and analyzed can be used to explain the solution, that is,

tell which parts of the genotype are important, and allow a sensitivity analysis

[Louis et al., 1993]. However, this information is usually discarded at the end

of a GA's run and the resources spent in gaining this information are wasted. If

we store this information (explicit memory) and use it in a subsequent problem

solving attempt on a related problem we can tune the GA to a particular space

and thus increase performance in this space.

One early attempt at reuse can be found in Ackley'swork with SIGH [Ackley, 1987].

Ackley periodically restarts a search in an attempt to avoid local optima and

increase the quality of solutions. Eshelman's CHC algorithm, a genetic al-

gorithm with elitist selection and cataclysmic mutation, also restarts search

when the population diversity drops below a threshold [Eshelman, 1991]. Both

approaches only attack a single problem not a related set of problems. Ramsey

and Grefenstette come closest to our approach and use previously stored solu-

tions to initialize the genetic algorithm's initial population and thus increase a

genetic algorithm's performance in an environment that periodically changes

with time [Ramsey and Grefensttete, 1993]. They report encouraging results

in such environments (better performance). Our work however, tackles sets of

similar problems and addresses the issues of which and how many cases to

inject into the population. To our knowledge, the earliest work in combining

genetic algorithms and case-based reasoning was done by Louis, McGraw, and

Wycko� who used case-based reasoning principles to explain solutions found

by genetic algorithm search [Louis et al., 1993].

Figure 1 shows a conceptual view of a simple version of our system. There are

two basic modules, the search module and the CBRmodule. The search module

in this paper consists of a genetic algorithm and the CBR module for this work

only contains a few cases relevant to the problem we are going to solve. When

confronted with a problem, the CBR module looks in its case base for similar
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problems and their associated solutions. If any similar problems are found

their solutions are injected into the initial population (a small percentage of

the population is initialized this way) of the genetic (or other search) algorithm

and the GA searches from this population.

Case Base

Solutions

C
ases

During initialization

Preprocessor   Genetic
 Algorithm

Initial
Population

GA Module CBR Module

While  running

Fig. 1. Conceptual view of our system

The case-base does what it is best at | memory organization; the genetic

algorithm handles what it is best at | adaptation. The resulting combination

takes advantage of both paradigms; the genetic algorithm component delivers

robustness and adaptive learning while the case-based component speeds up

the system.

The genetic algorithm also provides a ready-made case generating mechanism

as each individual generated during a GA search can be thought of as part

of a case. However, even a population size of a 100 run for a 100 generations

can generate up to 100� 100 = 10; 000 cases leading to problems with storage

and indexing. CBR systems usually have di�cult in �nding enough cases; our

problem is the opposite. We need to sift through a large number of cases

to �nd potential seeds for the initial population. CBR systems often include

principled mechanisms for generalization and abstraction of cases because it

may be impractical to store all prior experience in detail. For our system,

generalized individuals correspond to schemas (subsets of the search space)

and can be stored as cases. This is described in [Louis et al., 1993]. Since

genetic algorithms should be used in poorly-understood domains, one side-

e�ect of this approach is that the generalizations and abstractions may in fact

induce a useful domain model.

There are at least three points of view to consider when combining genetic

algorithms and case-based reasoning.

{ From the case-based reasoning point of view, genetic algorithms provide

a robust mechanism for adapting cases in poorly understood domains con-

ducive to a case-based representation of domain knowledge. In addition, the

individuals produced by the GA furnish a basis for generating new cases to

be stored in the case-base.

{ From the point of view of genetic algorithms, case-based reasoning provides
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a long term memory store in its case-base. A combined GA-CBR system

does not require a case-base to start with and can bootstrap itself by learn-

ing new cases from the genetic algorithm's attempts at solving a problem.

This paper stresses the genetic algorithm point of view and addresses the

following questions.

(i) What cases are relevant, or, which previously found solutions do we use

to seed a genetic algorithm's population? Selecting appropriate cases is

important since it directly relates to speed and e�ciency of a search. If

the \right" cases are injected, a GA does not have to waste time exploring

unpromising subspaces because these cases provide partial, near-optimal,

or optimal solutions. In other words, they provide good building blocks

for solutions to the current problem. This is crucial if the size of a search

space is extremely large since injecting appropriate cases will provide the

genetic algorithm with better starting points and thus speed up search and

improve performance.

(ii) How many cases should we inject into the initial population? Search al-

gorithms must balance exploitation with exploration for two reasons: 1) too

much exploitation in less promising areas may cause the loss of crucial in-

formation on correct solutions and convergence to a local optimum, and 2)

speed and e�ciency will su�er if the algorithmwastes time in exploring un-

promising areas. A randomly initialized population has maximumdiversity

and thus maximumcapacity for exploration [Louis and Rawlins, 1993]. We

expect injected individuals (cases) to have a higher �tness than randomly

generated individuals. Since a GA focuses search in the areas de�ned by

high �tness individuals, we expect large numbers of high �tness individuals

in an initial population to increase exploitation. This increased concentra-

tion or exploitation of a particular area can cause the GA to get stuck

on a local optimum. Balancing exploitation with exploration now means

balancing the number of randomly generated individuals with the number

of injected individuals in the initial population.

{ From themachine learning pointing of view, using cases instead of rules to

store information provides an alternative to Holland classi�er systems [Holland, 1975,Goldberg, 1989]

which use simple string rules for long term storage and genetic algorithms

as their learning or adaptive mechanism. In our system, the case-base of

problems and their solutions supplies the genetic problem solver with a long

term memory. The combination takes advantage of both paradigms but we

have to be careful and ensure that the combined system does not inherit the

de�ciencies of both.

Our results on the open shop scheduling (OSSP) and re-scheduling problems

(OSRP) establish the feasibility of this approach and shed light on some of

the issues above and raise others to explore. In the next section, we describe

a simple system to test the feasibility of combining genetic algorithms and

case-based reasoning on OSSP and OSRP problems.
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3 Methodology and Results

In our experiments, a genetic algorithm �nds and saves solutions to an open

shop scheduling problem P

old

, the problem is changed slightly to P

new

, and

appropriate solutions to P

old

are injected into the initial population of the

genetic algorithm that is trying to solve the new problem P

new

. If the cases from

P

old

contain good building blocks or partial solutions, the genetic algorithm can

use these building blocks or schemas and quickly approach the solution to P

new

.

The results show that compared to a genetic algorithm that starts from scratch

(from a randomly initialized population), the genetic algorithm with injected

solutions very quickly �nds good solutions to P

new

and that the quality of

solutions after convergence is usually better.

3.1 Open Shop Scheduling and Re-Scheduling

The open-shop scheduling problem is an important practical scheduling prob-

lem, but is known to be very hard to solve in a reasonable amount of time.

Re-scheduling is also an important aspect of the problem in the real world.

It involves modifying a schedule in the process of execution in order to take

account of a changing environment. In the general j�m open-shop scheduling

problem, there are j jobs and m machines. Each job contains a set of tasks

which must be done on a di�erent machine for a di�erent amount of time, with

no a-priori ordering on the tasks within a job. The problem is to minimize the

makespan, the total time between the beginning of the �rst task till the end of

the last task. A valid schedule is a schedule of job sequences on each machine

such that a machine is not processing two di�erent tasks at the same time, and

di�erent tasks of the same job are not simultaneously being processed on di�er-

ent machines. We must take into account both resources and time constraints

with the aim of �nding a valid schedule with a minimummakespan. The OSSP

di�ers from the job-shop scheduling problem in that there is no a-priori order-

ing on the tasks within a job. This leads to an extremely large search space.

For example on a 5 � 5 OSSP, there are 25! di�erent task orderings which is

approximately equal to 1:5� 10

25

di�erent valid schedules.

In open-shop re-scheduling (OSRP), we need to be able to handle changing

conditions on the shop oor. For example, jobs may be canceled, machines

may fail, or we may run low on inventory. If the work has not yet begun

on the current schedule, then a simple way of re-scheduling is to rerun the

GA for this scheduling problem in the changed environment. We need quick

and e�cient methods of re-scheduling to tackle the problems of frequently

changing environments. In this paper we handle the case of a machine breaking

down and being replaced with a new, faster machine. P

old

is the problem with

6



the old machine while P

new

is the problem with the new machine, where the

processing times of all tasks on the new machine have been decreased by 10

time units; note that we have made sure that P

new

is similar to P

old

. We use

individuals from a GA's run on P

old

as cases for the re-scheduling problem,

P

new

. After using a variety of criteria to pick individuals for cases and to

choose how many individuals to inject into the initial population of size 200

run for 300 generations, we obtained good performance under the following

conditions (More details on the encoding and genetic operators are available

in [Xu and Louis, 1996]).

(i) We inject only 8 cases into the initial population. Injecting between 5%

and 10% of the population usually produced good results across the set of

population sizes that we tried. Injecting a small percentage of the popu-

lation establishes a good balance between exploration and exploitation of

the search space. The injected individuals, if chosen well, represent good

schema and help the GA quickly �nd promising solutions.

(ii) The individuals chosen as cases were:

{ The best individuals in the �rst and the last generations (Since we used

a kind of elitist selection, the best individual in the last generation was

the best ever).

{ Six good individuals in the generations between the �rst and last. For

example, if we ran for 300 generations, then we pick the best individuals

in generations which are a multiple of 300=6 = 50 .

We mutated these six individuals picked from intermediate generations and

inject all eight individuals into the initial population of the GA for the OSRP.

Figure 2 compares the average performance of a genetic algorithm initialized

with these cases with a randomly initialized GA on two di�erent 5� 5 OSRP

problems. We call the the GA that uses cases a Case Initialized Genetic

AlgoRithm or CIGAR, and the Randomly Initialized GA, RIGA in the rest

of this paper. The graphs in this section display the best makespan averaged

over 10 runs with di�erent random seeds. We can see that the CIGAR starts

with a much lower (better) initial best makespan and that even after 300 gen-

erations CIGAR solutions are better than solutions from a randomly initialized

GA. Table 1 compares starting and ending makespans for eight di�erent 5� 5

OSSP benchmark problems.

1

The last column speci�es the machine that was

changed (picked randomly). Notice that CIGAR does comparatively well in

early generations and provides good schedules more quickly than the randomly

initialized GA.

We get similar results on a set of �ve 7 � 7 OSRP benchmark problems.

Figure 3 displays average best makespans over ten runs with di�erent random

1

All problems in this paper were obtained from the OR-library on the world wide

web at the location: http://mscmga.ms.ic.ac.uk/info.html.
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Fig. 2. Comparing performance of a RIGA with a CIGAR for 5x5 OSRP problems.

seeds on two of the problems. We increase the population size to 300 and run

for 400 generations on the 7�7 problems. Once again the CIGAR does better,

especially in early generations.

4 Discussion

In early experiments, we were not very successful in using case-based reasoning

principles. First, when the environment was changed by deleting a whole job,

the results were not good enough to show the advantages of using CIGARs.

We found that it was hard for the GA with CBR to tackle problems where
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Table 1

Performance comparison of average makespan on 5x5 OSRP problems

Problem No. CIGAR RIGA Machine Change

Start End Start End

1 318 302 412 309 Change M2

2 281 271 369 269 Change M5

3 356 338 453 343 Change M4

4 337 326 438 328 Change M2

5 363 343 466 348 Change M1

6 342 328 436 333 Change M2

7 383 370 499 369 Change M5

8 357 346 475 347 Change M5

the environment changes signi�cantly. CBR is based on the idea that stored

cases resemble a new situation. Since a job contains a series of di�erent tasks,

after deleting a whole job, good schedules for the current problem may be very

di�erent from the previous one for our encoding.

We also failed to get good results when we tried to save all, half, or a quarter of

the best individuals in the previous run (P

old

) and insert them into the initial

population for P

new

. Saving and re-using too many good individuals makes

the GA quickly converge to local optima. In other words, too many injected

individuals tipped the balance towards exploitation of the search space with

not enough exploration. We obtain enough exploration when we seed a small

percentage of the population, that is, use only the two best strings and mutate

the other six good intermediate strings from P

old

.

We can explain these results if we think of solutions as forming the leaves of a

tree. Adapting one solution into another now means backing up to a common

parent and then moving down the second solution's branch. Injecting cases

closer to a common parent on the tree shortens the path to a similar problem's

solution since less backtracking is involved. The individuals generated by a

genetic algorithm form such a tree with increasing schema order toward the

leaves [Louis et al., 1993]. This �rst simple model thus indicates that increas-

ing problem dissimilarity implies injecting cases of lower �tness corresponding

to when the GA has �xed fewer positions in its population's genotypes (lower

order schemas). Lower �tness correlates with time (generation number) and

with a position closer to the root of our solution tree. Thus, if we don't have a

good measure of problem similarity, we can inject a set of cases with di�erent

similarities (saved at di�erent times during the search attempt on P

old

) and

let selection cull those cases that are not useful. This also explains why our
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Fig. 3. Comparing performance of a RIGA with a CIGAR for 7x7 OSRP problems

method of choosing individuals to be injected works well. Since, we expect �t-

ness to increase with time, choosing individuals from intermediate generations

allows us to inject individuals with varying �tnesses into the the initial pop-

ulation. If P

new

is very similar to P

old

injected high �tness individuals (high

�tness with respect to P

old

) corresponding to those saved during later gener-

ations will probably augment genetic search. Other injected individuals will

quickly die o�. On the other hand if P

new

is not very similar to P

old

individuals

saved from earlier generations will proliferate and help the search while others

don't contribute as much.

The genetic algorithm's robustness lets us use a much coarser speci�cation of

problem distance. We only need to know that P

old

is within a certain threshold

distance from P

new

, we do not need a more precise estimate. This threshold is
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problem dependent but an approximate distance measure is usually easier to

obtain than an exact measure. In any case, if none of the injected individuals

turn out to be useful, we would only have lost some time in evaluating these

individuals before they die out, and would not expect to be worse o� than

starting with a completely random population.

These results broadly show that there is a tradeo� between performance, both

in terms of speed and quality of solutions, and problem similarity. When more

interested in quality, we should inject a small number of cases of varying qual-

ity into the initial population leading to a better balance between exploration

and exploitation of the search space by the genetic algorithm. The CIGAR sys-

tem always starts o� better but the di�erence in performance usually decreases

over time. The combined system should also be able to handle the injection

of inappropriate cases | selection will quickly cull these from the population.

We believe that injecting a large number of cases of varying similarity may

prove counter-productive. The randomly initialized component of the popula-

tion provides a much need diversity which, if diluted, will probably lead to

quick convergence to local optima. More work needs to be done to resolve this

issue.

5 Conclusions and Future Work

Our results demonstrate the feasibility of combining genetic algorithms with

case-based reasoning principles to augment search. Instead of discarding in-

formation gleaned from previous problem solving attempts through search, we

save and inject solutions to similar problems into the initial population of a ge-

netic algorithm to increase performance. Our preliminary results indicate the

feasibility and usefulness of this approach and show that choosing the right

quantity and quality of cases plays a large part in determining performance.

We obtained consistently better performance in terms of both speed and qual-

ity on the the open-shop re-scheduling problem.

Injecting a large number of high �tness individuals into the population usually

does not produce good quality solutions over the long run as there is too much

exploitation in the area de�ned by these injected individuals. Injecting too few,

low �tness individuals also does not produce an advantage versus running the

GA with a randomly initialized population. The \right" quality and quantity

of individuals must be injected to realize performance gains. We �nd that the

�tness of individuals to be injected depends on the distance between the old

problem, to which we have solutions, and the current one. Problem size and

the structure of the search space also play an important part in this issue.

The results indicate an inverse relationship between problem distance and

the �tness of injected individuals. Finally, although we can inject a larger
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number of individuals for larger problems, injecting a number of individuals

between 5 to 15 percent of the population size provides good results over our

problem sets. In the absence of information, these results suggest injection

of a small percentage (depending on how quickly we want results) of cases

of di�erent �tnesses to cover the various possibilities in problem distance,

solution distance, and search space structure.

We are currently working on implementing a pilot system that will gradually

decrease the time taken to solve problems within a domain using genetic search

and an expanding case base. As the system adds to the case base while at-

tempting to solve problems the probability of �nding similar solutions in the

case base will increase and lead to a decrease in the time taken to solve a

new problem. We will be forced to confront problems in indexing, storage, and

retrieval of cases; important issues in designing CBR systems.

Although the approach has promise, much work remains to be done. We need

to consider the e�ect of di�erent selection schemes, recombination operators,

and niching operators, for genetic search, as well di�erent search algorithms.

Deriving more re�ned estimates on the quality and quantity of individuals

to inject will broaden applicability. Individuals need not be injected solely

into the initial population. We can keep track of the performance of injected

individuals and their progeny and use this information to design and inject

individuals in intermediate generations. Finally, the tradeo�s between speed

and solution quality needs to be explored in more detail.
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