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Abstract

This paper focusses on that form of learning which relates to explo-

ration, rather than generalization. It uses the notion of exploration as

the modi�cation of state spaces within which search and decision making

occur. It demonstrates that the genetic algorithm formalism provides a

computational construct to carry out this learning. The process is exem-

pli�ed using a shape grammar for a beam section. A new shape grammar

is learned which produces a new state space for the problem. This new

state space has improved characteristics.

1 Introduction

Design can be considered a purposeful, constrained, decision making, explo-

ration and learning activity. Decision making implies a set of variables, the

values of which have to be decided. Search is the common process used in de-

cision making. Exploration here is akin to changing the problem spaces within

which decision making occurs. Learning implies a restructuring of knowledge

as opposed to restructuring of facts. Searching in design is concerned with re-

structuring of facts while exploration is a learning process which restructures

the knowledge used in searching. The designer operates within a context which

partially depends on the designers perception of purposes, constraints and re-

lated contexts. These perceptions change as the designer explores the emerging

relationships between putative designs and the context as the designer learns

more about possible designs (Gero 1992).

One useful framework for design uses the concept of design prototypes (Gero

1987,1990). This divides a design state space into three subspaces corresponding

to a space of structures, a space of behaviors associated with structures and

functions and a space of functions associated with behaviors. Figure 1 shows the

mappings between these subspaces. Generating new designs can be represented

as a process which changes one of the subspaces (usually the structure space is

changed). There are two interesting classes of change to state spaces: addition

and substitution. Addition, which can be achieved by adding variables, results

in a new state space, S

n

, that subsumes the original space, S

0

, that is: S

0

� S

n

1
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Figure 1: Structure, Behavior and Function spaces and the mappings between them.

and S

0

T

S

n

6= � (Figure 2). Substitution, which involves the replacement of

some variables by other variables, results in a space, S

n

, that is di�erent from

the original, S

0

, such that S

0

6� S

n

(Figure 3). The notions of additive

S
n

S
0

Original state space New additive state space

Figure 2: The e�ect of additive processes on a state space.

processes and substitutive processes also apply to design schemas resulting in

additive schemas that subsume the original one and substitutive schemas that

only include parts of the original and contain new elements (Gero 1992). These

are depicted in Figures 4 and 5.

In this paper we concentrate on the learning aspect of design, focussing

on that form of learning which relates to exploration, that is, modifying the

problem spaces within which decision making occurs.
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Figure 3: The e�ect of substitutive processes on a state space.
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Figure 4: The e�ect of additive processes on design schemas, changing from original

schema, 0, to schemas 1, 2 and 3.
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Figure 5: The e�ect of substitutive processes on design schemas, changing from original

schema, 0, to schemas 1, 2 and 3.

3



2 Machine Learning

2.1 A Di�erent View

Machine learning is comprised of principally four paradigms (Carbonell 1990,

Mitchell et al 1986): the inductive paradigm, the analytic paradigm, the genetic

paradigm, and the connectionist paradigm. These can be broadly categorized

as \learning to perform old tasks better using available tools". Thus, the main

emphasis is on improving previous task schedules and routines to achieve certain

given goals. Inductive learning is a good example of this. The system is provided

with a set of instances and it produces generalizations of those instances grouped

under broad concepts that explain the instances. Two main types of inputs are:

examples and observations. Examples are instances that are classi�ed by the

teacher as positive or negative instances. Observations are instances that are

not classi�ed by the teacher. Thus if some conceptual examples are given to the

learning program, it learns rules that could produce such examples. Quinlan's

ID3 (Quinlan 1979,1986) and Reich's Bridger (Reich 1991) are examples of this

category of machine learning.

We propose a second view of learning which can be summarised as:

learning to restructure knowledge to produce novel results that could

not be achieved using the current knowledge.

Learning is always concerned with improving the quality of knowledge, tra-

ditionally from examples. A number of di�erent teleologies drive machine learn-

ing not all of which are applicable in design. The foci in machine learning in

design include concept formation ( Maher and Li 1992, 1993) learning high level

relationships (Rao et al 1991, Gunaratnam and Gero 1993), and increasing the

e�cacy of available knowledge (Arciszewski et al 1987). The teleology of the

learning approach adopted here is to improve the quality of the knowledge to

produce improved designs. It is concerend with restructuring of the design

knowledge which is already in the form of generalizations.

Grammar induction (Mackenzie 1989,1991) is an approach which can be

characterized in these terms. An important di�erence between the grammar

induction technique and the one we are proposing here, is that, the state space

of structures produced by the induced grammar always has the example set

as its proper subset. This matches the the notion of \additive state spaces"

which can also be achieved by the introduction of new variables in the design

(Gero and Kumar 1993). The view of learning that we present here can be

mapped onto the notion of \substitutive state spaces". The implication of this

substitutive view is that some existing variables are deleted and some new ones

are added. There is no nexus between the number of existing variables deleted

and the number of new ones added. In the existing notion of learning in design

the purpose of the learning activity is to predict a class into which a given

example can be classi�ed so as to produce designs conceptually the same as

the examples used to learn (McLaughlin and Gero 1987, Mackenzie and Gero

1987). Thus the state spaces are very much �xed by the jurisdiction of the

given examples.
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The class of learning we are presenting here restructures the design knowl-

edge so as to produce new points in design spaces which lie outside the realm

of the state spaces de�ned by the given examples. These points are discovered

during an evolutionary process by the creation and exploration of possibly novel

state spaces using the restructured knowledge. The learning program is not pre-

sented with examples, rather it is presented with a set of rules in a grammar

which, when executed, produces examples. The state spaces are not de�ned

by the given examples but by the grammar that produces those examples. As

a new grammar is learned the state spaces change, perhaps drastically. This

type of system can be seen as more of a generative or formation system rather

than a classi�cation system. Thus the system tries to achieve better designs by

learning to restructure knowledge which is capable of producing novel designs

which could not be produced with the original knowledge. We give a short

introduction to shape grammars and genetic algorithms which we use in our

learning process.

2.2 Shape Grammars

Shape grammars were introduced into the architectural literature as a formal

method of shape generation. They provide a recursive method for generating

shapes and are similar to phrase structure grammars, but de�ned over alphabets

of shapes and generate languages of shapes (Stiny and Gips 1978). A set of

grammatical rules map one shape into a di�erent shape. These rules de�ne the

set of possible mappings or transformations. More formally, a shape grammar

is the quadruple (V

t

; V

m

; R; I). Where V

t

is a set of terminal shapes or terminals

and V

m

a set of nonterminal shapes or markers. V

t

and V

m

provide the primitive

shape elements of a shape grammar. R is a set of rules consisting of two sides,

each side of which contains members of V

t

S

V

m

. If the left hand side of a rule

matches a shape, applying the rule results in replacing the matching shape with

the right hand side of the rule. I is the initial shape, a subset of V

t

S

V

m

and

starts the shape generation process. This models a design system where the

rules embody generalized design knowledge and a sequence of rule applications

generates a design.

2.3 Genetic Algorithms

Genetic algorithms (GAs), originally developed by Holland (1975), model nat-

ural selection and the process of evolution. Conceptually, GAs use the mecha-

nisms of natural selection in evolving individuals that, over time, adapt to an

environment. They can also be considered a search process, searching for bet-

ter individuals in the space of all possible individuals. In practice, individuals

represent points in a state space, while the environment provides a measure

of \�tness" that helps identify better individuals. Genetic algorithms are a

robust, parallel search process requiring little information to search e�ectively.

As such they are well suited to the task of exploring and learning about large

and complex design spaces.
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2.4 Description of the Problem

We model routine design with a �xed set of shape grammar rules and encode the

possible execution order (application sequence) of these rules for manipulation

by the genetic algorithm. The set of optimal structures for this �xed grammar

de�nes a space of feasible solutions corresponding to a space of behaviors. The

goal is to �nd the execution order of the grammar rules which will optimize

a set of behaviors. In this �xed scheme, additive and substitutive processes

are absent. However, when in addition to the application sequence, we allow

the grammar itself to be encoded for manipulation by the genetic algorithm,

we learn new grammars and associated rule application sequences to improve

on the best possible designs that could be generated by the �xed grammar.

That is, instead of optimizing a plan of application of some �xed set of rules,

the computational model learns new rules and optimizes application sequences

for those new rules to generate novel and `more optimal' solutions. By more

optimal we mean that the optimal behaviors produced by the application of the

new rules are better than those produced by the application of the original rules.

To understand how the genetic algorithm learns new grammars we provide a

brief introduction to genetic algorithms.

3 Genetic Algorithms

3.1 Introduction to Genetic Algorithms

The motivational idea behind GAs is natural selection implemented through

selection and recombination operators. A population of \organisms" (usually

represented as bit strings) is modi�ed by the probabilistic application of the

genetic operators from one generation to the next. The basic algorithm where

P (t) is the population of strings at generation t, is given below.

t = 0

initialize P (t)

evaluate P (t)

while (termination condition not satis�ed) do

begin

select P (t + 1) from P (t)

recombine P (t + 1)

evaluate P (t + 1)

t = t + 1

end

Evaluation of each string which corresponds to a point in a state space is

based on a �tness function that is problem dependent. This corresponds to

the environmental determination of survivability in natural selection. Selection

is done on the basis of relative �tness and it probabilistically culls from the

population those points which have relatively low �tness. Recombination, which

consists of mutation and crossover, imitates sexual reproduction. Mutation, as

in natural systems, is a very low probability operator and just 
ips a speci�c
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bit. Crossover in contrast is applied with high probability. It is a structured yet

stochastic operator that allows information exchange between points. Simple

crossover is implemented by choosing a random point in the selected pair of

strings and exchanging the substrings de�ned by that point. Figure 6 shows

how crossover mixes information from two parent strings, producing o�spring

made up of parts from both parents. We note that this operator which does no

table lookups or backtracking, is very e�cient because of its simplicity.

3.2 Genetic Algorithm Encodings

Understanding how to represent a problem and any domain knowledge of the

problem in a genetic algorithm requires 1) knowing which properties of a search

space GAs use to guide their exploration and 2) the need to produce viable

o�spring during crossover. A smidgeon of GA theory clears the way.

C

A

D

B

Crossover Points

Parents

Offspring

Figure 6: Crossover of the two parents A and B produces the two children C and D.

Each child consists of parts from both parents which leads to information exchange.

Crossover causes genotypes (an encoded individual) to be cut and spliced.

This means that instead of considering the fate of individual strings in analyzing

a genetic algorithm, we must consider the substrings created and manipulated

by crossover. These substrings de�ne regions of the search space and are called

schemas

2

. More formally, a schema is a template that identi�es a subset of

strings with similarities at certain string positions. Holland's schema theorem

is fundamental to the theory of genetic algorithms. For example consider binary

strings of length 6. The schema 1**0*1 describes the set of all strings of length

6 with 1s at positions 1 and 6 and a 0 at position 4. The \*" denotes a

\don't care" symbol which means that positions 2, 3 and 5 can be either a

1 or a 0. Although we only consider a binary alphabet this notation can be

easily extended to non-binary alphabets. The order of a schema is de�ned as

the number of �xed positions in the template, while the de�ning length is the

distance between the �rst and last speci�c positions. The order of 1**0*1 is 3

and its de�ning length is 5. The �tness of a schema is the average �tness of all

strings matching the schema.

2

Di�erent from design schemas
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The genetic algorithm therefore implicitly processes schemas. Because of

the bias introduced by selection and crossover, certain types of schemas rapidly

increase their proportions in a population. Not only does the rate of increase

depend on their �tness, it also depends on the syntactic properties of order

and de�ning length. This is of great importance when incorporating domain

knowledge into the bit strings that a GA manipulates. The schema theorem

proves that relatively short, low-order, above average schemas get an expo-

nentially increasing number of copies in subsequent generations. This leads to

the building block hypothesis which states that genetic algorithms work near-

optimally by combining short, low-order, high �tness schemas called building

blocks (Goldberg 1989). Thus when encoding domain knowledge, we should

choose an encoding that re
ects a GA's bias toward short, low-order building

blocks. This bias is critically a�ected by the crossover operator. The plethora

of crossover operators, each with its own bias, implies analyzing and carefully

matching an operator's bias in the encoded representation of domain knowl-

edge. In practice, many encodings work well because of the large number of

schemas and a GA's reliance on �tness information.

Non-viable o�spring are produced when crossover results in individuals that

do not belong to the search space of interest. In the context of grammars, if

an individual represents a sequence of rule applications resulting in a shape, it

may call for the application of a rule that does not exist in the grammar. An

example clari�es the problem.

Consider the grammar in Figure 7. There are four classes of composition

rules, one associated with each of the cells labeled A, B, C, D. In total there are

eight rules in these four classes. If we encode the rules of class 1 as the numbers

from 0� 2, the rules of class 2 as the numbers from 3� 5, the rule of class 3 as

6 and the rule of class 4 as 7, then it is easy to produce a binary string for the

genetic algorithm to work on. Fixing the number of rule applications results

in a �xed length binary string. As explained in section 3.1, genetic algorithms

normally use binary representations/encodings of �xed length. Consider an

example in which we �x the number of rule applications at 3, then the string

2; 3; 6

corresponds to successively applying rules 2; 3 and 6. Before we convert this into

a binary string, the question of how many binary digits, or bits, are required

for each decimal number needs to be answered. Each position in the string

can have values ranging from 0 to 7 corresponding to each of the rules in the

grammar (Figure 7). Therefore we use three (3) bits to represent the 8 possible

rules. The string 2; 3; 6 would then be represented as the binary string

010; 011; 110

for the genetic algorithm. The least signi�cant bit is on the right and the

commas are for clarity only and would not appear in the actual string that the

genetic algorithm manipulates. The binary string

001; 010; 011
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C

B

B

D

C

B

B

B

B

B

B

A A B

AA

AAA

A

D

C

D A

RULE : 0  -

RULE : 1  -

RULE : 2  -

RULE : 3  -

RULE : 4  -

RULE : 5  -

RULE : 6  -

RULE : 7  -

Figure 7: These eight rules comprise the �xed shape grammar.

9



represents another sequence of rule applications. With these strings as parents,

crossover can now produce non-viable o�spring as shown below

Parents 0100111 j 10 0010100 j 11

+

O�spring 0100111 j 11 0010100 j 10

Here the �rst o�spring 010; 011; 111 is not viable because rule 111 = 7 cannot

be applied after rule 011 = 3 since the left hand side of rule 7 ( D ) does not

match the right hand side of rule 2 ( C ). There are a few approaches to tackling

problems of this kind:

� Assign a penalty for such transgressions thereby lowering the �tness of

the individual. This brings up the question of which penalty function to

use.

� Kill the individual, not allowing it to continue. However, we lose any

potentially good building blocks encoded by the individual.

� Modify the crossover operator to only produce viable o�spring, potentially

changing the search bias in unpredictable ways.

� Modify the encoding so that non-viable o�spring cannot occur. This is

the best and most elegant solution but may be di�cult to implement.

� Change the algorithm.

In practice a host of factors a�ect which method is chosen including the

nature of the problem, convenience and time available to create an encoding.

We describe the learning of new grammars and the encoding used in the next

section.

4 Learning Novel Grammars

4.1 Generating New Grammars

When modeling a design process using a (shape) grammar and its associated

language, we are restricted by the choice of grammar. The design task in this

situation is a planning task: to plan a sequence of rule applications that will

generate a desired behavior from the resultant shape. In this case the structure

and behavior spaces are �xed and de�ned by the grammar. We can encode the

task for the GA by numbering the rules and representing an individual as a �-

nite length string of these numbers as shown in the previous section. To attack

the problem of learning to produce better designs, we allow the grammar itself

to evolve while generating a sequence of rule applications. This is the crux of

the learning process - the restructuring of the knowledge represented by the

grammar. Since every grammar de�nes a state space, the GA now explores a

number of structure spaces with a single behavior space in parallel. This ex-

pands the number of possible designs and in the case of our system, produces
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better, more optimal designs and associated behaviors that were not possible

before, through the application of this learned grammar. Most learning tech-

niques are concerned with producing a structure which best �ts, according to

one or more criteria, the examples presented. The learning process here uses

this same idea but the the examples are not presented to the learning process

directly. The examples appear as a result of the structure of the knowledge en-

coded in the grammar. The behaviors of the examples through the evolutionary

process pressure the structure to change itself so as to produce examples with

improved behaviors. As a result of this evolutionary process new grammars are

learned.

New grammars are generated from the original grammar, through mutation

and crossover of rules. That is, rules from the original grammar serve as a

basis for the generation of new grammar rules and are produced by cutting and

splicing the original rules. Consider the two rules labeled \parents" in Figure 8,

choosing the crossover point as indicated produces the new rules labeled \o�-

spring." Di�erent crossover points produce di�erent \o�spring" rules leading to

a number of di�erent grammars. Recombination therefore plays an important

part in the process of learning, helping to generate di�erent grammars and thus

di�erent structure spaces to explore.

4.2 An Example - Designing a Beam Section

Using a shape grammar, our goal is to learn new grammars capable of producing

new topologies of a beam section which give us optimal values of two speci�c

properties of the section. To generate di�erent beam sections to choose from,

we have a set of square building blocks, called cells to distinguish them from

building block in GAs, which build up a section when juxtaposed with one

another. There is also a set of rules that govern this juxtaposition. Each cell

has a label which is referred to by the composition rules of our grammar and

which has a weight associated with it. Thus a certain con�guration of the cells

will have a beam section topology which will have two criteria to be optimized.

The two properties have been chosen in such a way that a tradeo� needs to be

made. A change for the better in one criterion usually leads to a change for the

worse in the other.

The two properties are :

� The moment of inertia (second moment of area) of the beam section which

has to be maximized (in order to improve its sti�ness).

� The perimeter of the beam section which has to be minimized (in order

to minimize the surface area).

We are trying to learn new grammars that, when executed, produce di�erent

con�gurations of the cells which have improved �tness values for both the above

criteria. The moment of inertia of the beam section, when maximized, will tend

to con�gure the cells in a way that will produce poor values for minimizing the

perimeter of the beam section, and vice-versa. We arbitrarily commence with

the eight rules shown in Figure 7. The number of rules is not signi�cant in

demonstrating the ideas in the learning process.
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A A B

CBB

A C

B B

A

B

A A B

CBB

A B C

B A B

Crossover point

Crossover point

Parents Offspring

OffspringParents

Figure 8: Generating new grammar rules by crossover, di�erent crossover points pro-

duce di�erent o�spring rules.

Thus starting with an arbitrary label and selectively applying the rules,

we can arrive at a topology for a beam section after a predetermined number

of rule applications. From this grammar, shapes of interest can be derived

after nine rule applications, we therefore �x the number of rule applications at

nine. Similarly, the number of rule applications (or cells) is not signi�cant in

demontrating the ideas.

Weights, associated with labels, �gure in the calculation of the moment of

inertia simulating larger cross sectional areas, or di�erent materials and are

given below:

� A) 1 unit

� B ) 2 units

� C ) 3 units

� D) 4 units

These weights eventually give us a di�erent pair of values for the two be-

haviors of the beam section topology that we derive with the rule applications.

Thus every structure has such a pair of behavior values, and is mapped onto a

two dimensional vector space with these two behaviors as the two co-ordinates.

We can therefore de�ne a set of Pareto optimal solutions from each set of new

structures that we generate.
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We start with the �xed grammar de�ned in Section 3.2. The genetic al-

gorithm only encodes the rule application sequence in each individual. We

describe the encoding chosen to solve the problem of non-viable o�spring be-

low.

We could let the numbers from 0� 7 represent the rules of the grammar in

Figure 7. Such a representation of the problem however, results in non-viable

o�spring as shown in Section 3.2. To avoid the problem of non-viable o�spring

we change the representation/encoding of the problem for the genetic algorithm.

In the new encoding, we let the interpretation of a number depend on the

right hand side of the last applied rule. (In the following discussion we use

the numbers 0 - 7 in boldface to identify the 8 rules of our shape grammar in

Figure 7.) In our encoding, a string of nine numbers speci�es a shape (recall that

nine rule applications are su�cient to generate interesting shapes). The �rst

number in the string speci�es the starting label, that is, whether the starting

cell is of type A ; B ; C or D . The eight remaining numbers specify an

application sequence. Consider the string

0; 2; 1; 3; 0; 2; 1; 3; 1

The �rst number 0 �xes the starting cell as a cell of type A , The second number

2, now refers to the second rule with an A on the left hand side. Therefore, in

this encoding the number 2 in the second position of the string, refers to rule

1, that is,

A �!

 �

� A A

Once again only the rules with an A on the left hand side can be applied and

the next number, 1, refers to the �rst rule with an A on he left hand side |

rule 0. The number 3 at the fourth position in the string, refers to the third

rule with an A on the left hand side. This is rule 2:

A �!

�!

A B�

which results in the �rst appearance of a B . The next number 0 now refers to

only those rules with a B on the left hand side. In this case, 0 refers to the

�rst rule with a B on the left hand side which is rule 3,

B �!

B

C�

#

Since there is only one rule with a C on the left hand side, all numbers from

0� 3 refer to this one rule. Therefore 2 refers to rule 6

C �!

 �

� D C

Similarly since there is only one rule with a D on the left hand side all numbers

from 0� 3 refer to this rule and 1 refers to rule 7.

D �!

�!

D A�
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We end up with an A on the left hand side, so 3 refers to rule 2 again, and the

last number 1 refers to rule 4 and we are done.

In summary:

� if there is an A on the left hand side

{ 0 and 3 (00; 11 in binary) refer to rule 2

A �!

�!

A B�

{ 1 (01 in binary) refers to rule 0

A �!

�!

A A�

{ 2 (10 in binary) refers to rule 1

A �!

 �

� A A

� if there is a B on the left hand side

{ 0 and 3 (00; 11 in binary) refer to rule 3

B �!

B

C�

#

{ 1 (01 in binary) refers to rule 4

B �!

B

B�

#

{ 2 (10 in binary) refers to rule 5

B �!

B�

B

"

� if there is a C on the left hand side

{ 0� 3 (00 to 11 in binary) all refer to rule 6

C �!

 �

� D C

� if there is a D on the left hand side

{ 0� 3 (00 to 11 in binary) all refer to rule 7

D �!

�!

D A�
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With this encoding not only do we solve the problem of non-viable o�spring

we also reduce the number of bits needed to encode a shape as we use only two

bits per rule instead of three.

When we allow the grammar itself to evolve, we need to encode the rules

within the genotype. Once again we choose an encoding that does not allow

non-viable o�spring. Making the grammar implicit, we encode a sequence of

directions (up, down, left or right) and labels (A, B, C, or D) to specify an

individual. This added 
exibility means we require 6 bits to specify the next

move in generating a shape, 2 bits for direction and 2 bits each for a label. The

rules that we use are now of the form

X �!

"

 !

#

Y Z

where X is speci�ed by the last applied rule, while the direction and new labels

Y and Z are speci�ed in the current move. In our encoding

0 �! A

1 �! B

2 �! C

3 �! D

and similarly for directions

0 �! #

1 �! "

2 �! !

3 �!  

For example the string

0; 2; 3; 1; 1; 2; : : :

speci�es the following moves: For initialization, we ignore the �rst two numbers

which specify a direction and a label and start o� with 3 which speci�es the

second label, which represents D . The next two numbers tell us to go up (1)

after replacing the previous label ( D ) by the label denoted by 1 which is B .

Once we have replaced the previous label we go up (as already indicated) and

label the cell C as indicated by the number 2. We continue in this way for a

total of nine moves. The result of the �rst move is shown below.

D

)

C

B

With this encoding, crossover always results in a legal string and allows the

generation of new grammars and application sequences. Thus, over time, the

algorithm learns improved grammars and searches for application sequences

leading to the generation and exploration of new design spaces. Figure 9 shows

a part of a typical genotype and the resulting structure or phenotype.
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C

D

B

D

C

BD

A

0

2

3

00

10

10

Starting label, fixed by 0 = A

Decimal equivalent

11

2

3
Second label will be 3 (D)

01

1

01

1

Direction is upwards

Replace label D with label B

The next label will be C

10

2

Starting direction is 2  ( -> )

Next direction is 2 ( -> )

Replace label  C  with label 3 ( D )

11 0 A
The next label will be A

00

00, 10, 11, 01, 01, 10, 10, 11, 00, ...........

Resulting rule

Resulting rule

C C A

A B

C A ...................

The genotype, a binary string

Resulting phenotype, cross-section
of a beam.

Figure 9: A typical genotype string and its resulting structure.
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As indicated earlier, we de�ne a two criteria �tness function for the genetic

algorithm. Individuals for mating are chosen randomly and recombined. The

two parents and two children form the set of solutions from which we extract the

Pareto optimal set using these criteria through exhaustive generate and test.

Those individuals that belong in the Pareto optimal set participate in the next

generation of the the genetic algorithm. The GA completes a generation when

repeated application of the above procedure �lls up the �xed size population

of 50. The population size of 50 was chosen experimentally as sizes larger

than that had very little e�ect on the performance of the system. The initial

population is generated randomly. We use the Pareto optimal set and its inverse

(Radford and Gero 1988), over 11 runs of the GA with di�erent random seeds

to compare results and solutions. The space described by the Pareto set and its

inverse is called the space of feasible solutions. Each run of the GA terminates

after 100 generations/iterations. Results from a number of runs are usually used

in comparative studies of genetic algorithm applications since the algorithm is

probabilistic in nature and a single run may not provide a true comparison. 11

runs provides a su�ciently large sample for our experiments. 100 generations

was experimentally determined to be enough for the GA to converge. The

population size was chosen based on the computing resources available and the

need to have su�cient diversity at initialization (see Louis and Rawlins (1992)

for details on population sizing and convergence time).

4.3 Results

Figure 10 shows the feasible solution spaces for our �xed grammar and the

learned grammar. The two feasible spaces are not equal and the space depicting

feasible solutions for the learned grammar shows a marked improvement in

performances. Let S

0

denote the behavior space for the structures de�ned by

our �xed grammar, and S

n

the space when the grammar is allowed to evolve.

Figure 10 indicates that:

S

0

6� S

n

and

S

0

T

S

n

6= �

This corresponds to a substitutive process. All genetic algorithm parameters

were the same for the runs with the �xed grammar and the runs with the gram-

mar that is allowed to evolve. The reason for the di�erence and improvement

follows from the observation that the heaviest label D is now allowed to prop-

agate in the vertical direction, thus increasing the moment of inertia. Since

perimeter does not depend on weight, but only on shape, the genetic algorithm

learns grammars that increasingly use D labeled cells, leading to larger values

for the moment of inertia. Figure 11 shows how the genetic algorithm exploits

cells labeled D by increasing their utilization at the expense of the other la-

belled cells. Figure 12 shows a grammar that was learned by this evolutionary

process. This grammar is capable of producing better designs than the com-

mencing grammar. Figure 13 shows some of the beam sections produced during

the learning process. These could not be produced with the original grammar.
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Figure 10: The spaces of feasible solutions produced when using the �xed grammar

and when allowing the system to learn a new grammar.
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Figure 11: The number of cells labeled D increases with time (generations) while the

numbers of the other cells decrease as the system learns new grammars.
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B

Figure 12: A learned shape grammar.
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(I)

(II)

(III)

(IV)

BA C D

Figure 13: Some beam sections produced during the learning process.

5 Discussion

Much of machine learning in design is focussed on learning to perform old tasks

more e�ciently. The emphasis is on generalizing from examples. In design

this generalization forms the basis of routine design. Its application results in

designs of the same kind as the examples. Its utility is founded on one of three

bases:

� Complex casual theoretical models which are computationally expensive

are replaced by more abstract phenomenological models which are com-

putationally inexpensive.

� Weak casual models are replaced by strong phenomenological models

which are founded on cases (examples).

� Where no casual models exist the phenomenological model provides a

supportable computational approach.

All of these work well within a conception of design as problem solving

and search. The generalizations provide alternative approaches to searching

(or generating) the states in the state space.

However, we wish to treat design not simply as the processing of searching

amongst pre-existing solutions, ie, within a �xed state space, but as a process
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of search and exploration via learning. By exploration we mean the creation

of alternative state spaces that can then be searched to produce more useful

solutions. What we have demonstrated is that, the genetic algorithm formula-

tion can provide a computational construct to carry out the learning process.

We used the function-behavior-structure + knowledge framework of design pro-

totypes and utilized the shape grammar formalism as the genetic basis of the

genetic algorithm. Two aspects of shape grammars were encoded at the geno-

type level: the order of execution of the rules of the shape grammar and the

rules themselves. This provided the opportunity for both the order of execution

and the rules themselves to change. The former manifests itself as a means of

searching a �xed state space for a given set of rules in the grammar. The latter

manifests itself as a means of exploration by creating new state spaces through

the evolution of new rules. Such a system learns new grammars through the

use of an evolutionary process underpinning both search and exploration.

In the example we commenced with a simple eight rule shape grammar and

limited its use to nine rule applications. We then let the system learn new

shape grammars which improved the design of a beam section for moment of

inertia and for perimeter. The system demontrated substitutive characteristics

as exempli�ed in Figure 10 where the state spaces of behaviors produced by

the learned grammars both overlapped and was partially disjoint with the state

spaces of behaviors produced by the original grammar.

This form of exploration uses an evolutionary learning process. It demon-

strates that learning need not be case based in design; that learning can occur

at a more abstract level than from cases and that learning can form the basis

of exploration in design.
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