
Combining Robot Control Strategies using

Genetic Algorithms with Memory.

Sushil J. Louis and Gan Li

Department of Computer Science

University of Nevada

Reno - 89557

sushil@cs.unr.edu

Abstract. We use a genetic algorithm augmented with a long term

memory to design control strategies for a simulated robot, a mobile ve-

hicle operating in a two-dimensional environment. The simulated robot

has �ve touch sensors, two sound sensors, and two motors that drive

locomotive tank tracks. A genetic algorithm trains the robot in several

specially-designed simulation environments for evolving basic behaviors

such as food approach, obstacle avoidance, and wall following. Control

strategies for a more complex environment are then designed by selecting

solutions from the stored strategies evolved for basic behaviors, ranking

them according to their performance in the new complex environment

and introducing them into a genetic algorithm's initial population. This

augmented memory-based genetic algorithm quickly combines the basic

behaviors and �nds control strategies for performing well in the more

complex environment.

1 Introduction

One of the main concerns in robotics is to plan a path for a robot system moving

purposely and safely in an environment �lled with known or unknown obstacles.

Using the sensor motion planning approach, information about obstacles is as-

sumed to be unknown or only partially known and local on-line information

is assumed to come from sensory feedback. Since no detailed model of the en-

vironment is assumed, planning is performed continuously based on whatever

partial information is available at the moment. The advantages of sensor motion

planning are twofold: (1) it can deal with unstructured environments and the

uncertainty typical of such environments, and (2) it requires much less memory

or computation because relatively little information has to be processed during

each step. On the negative side, generality is an elusive goal and optimality is

usually ruled out.

A control strategy, mapping sensory feedback into a robot's actuators, is an

essential component for a mobile robot under the sensor motion planning model.

It can be designed by a human according to both the physical structure and the

behavior requirements of the robot. However, human design of control strategies

doesn't always work well because sometimes desired behaviors are fuzzy and

di�cult to explicitly de�ne and not all useful behaviors of an autonomous robot

can be determined a-priori, or recognized by humans.

During the last decade, much work has been done to explore the evolution

of robot control strategies. A series of technical reports has been published by

Cli�, Husbands, and Harvey on using genetic algorithms (GAs) to design neural-

network control architectures for a simulated visually guided robot [1]. Koza has

used genetic programming to evolve LISP programs that control and guide a

variety of simulated robots performing navigation and other tasks [5]. Murray

and Louis used genetic algorithms to �rst design combinational circuits for basic

(low-level) behaviors, then used the genetic algorithm to design a switch to

choose between these low-level behaviors for performing more complex tasks [10].

We cast low-level robot control strategy design as a search problem in a

search space of possible strategies and use a non-traditional genetic algorithm to

computationally design control strategies, in the form of a combinational circuit

connecting sensor inputs to actuators, for a simulated robot (simbot) which can

navigate and eat food in a two-dimensional environment with rectangular ob-

stacles. At �rst, the simbot learns (and memorizes) basic behaviors such as food

approach, obstacle avoidance, and wall following in specially-designed separate

simulation environments. The best performing simbot from each environment

can be considered an expert at one speci�c behavior and its control strategies

must have some useful building blocks corresponding to this behavior. Next,

seed solutions (cases) are selected from these experts by calculating and rank-

ing their performance in a new and more complex target environment. Finally,

we inject these cases as seeds into the initial population of another GA run-

ning in the more complex target environment. Selecting the \right" number of

\appropriate" cases results in speedy design of promising control strategies for

the simbot. Our strategy therefore seeks to provide a genetic algorithm with a

long term memory in the form of a case-base, borrowing ideas from the �eld of

case-based reasoning [12].

In the next section, we introduce the traditional genetic algorithm and de-

scribe our modi�cations. In addition we provide a brief description of case-based

reasoning and the combined system. Section 4 describes the simulated robot and

its environment. We present the experimental parameters used by our system in

section 5. Experimental results are displayed and analyzed in section 6, followed

by conclusions and future work.

2 A Genetic Algorithm

Genetic algorithms (GAs) are stochastic, parallel search algorithms based on

the mechanics of natural selection, the process of evolution [4, 3]. GAs were de-

signed to e�ciently search large, non-linear, poorly-understood search spaces

where expert knowledge is scarce or di�cult to encode and where traditional

optimization techniques fail. They are
exible and robust, exhibiting the adap-

tiveness of biological systems. As such, GAs appear well-suited for searching

the large, poorly-understood spaces that arise in design problems; speci�cally

designing control strategies for mobile robots.

2.1 The CHC Genetic Algorithm

CHC, the non-traditional genetic algorithm used in this paper, di�ers from tra-

ditional GAs in a number of ways [2]:

1. For a population of size N, it guarantees the best individuals found so far

always survive by putting the children and parents together and selecting

the best N individuals for further processing. In a traditional GA, the parent

population does not survive to the next generation.

2. To avoid premature convergence, two similar individuals separated by a small

Hamming distance (this threshold is set by the user) are not allowed to mate.

3. During crossover, two parents exchange exactly oned- half of their randomly

selected non-matching bits.

4. Mutation isn't needed during normal processing.

5. Instead, an external mutation operator re-initializes the population when

the population has converged or search has stagnated.

The CHC genetic algorithm generally does well with small populations [2]. Lim-

ited resources and the computational cost of the simulations led to our use of

small populations and selection of the CHC genetic algorithm for this work.

2.2 Case-Based Reasoning

Case-based reasoning (CBR) is based on the idea that reasoning and explana-

tion can best be done with reference to prior experience, stored in memory as

cases [12]. When confronted with a problem to solve, a case-based reasoner ex-

tracts the most similar case in memory and uses information from the retrieved

case and any available domain information to tackle the current problem. This

paper uses the basic tenet of CBR | the idea of organizing information based

on \similarity" | to help augment genetic algorithm search.

3 Combining GAs and CBR

Combining genetic algorithms with a long term memory model, like case-based

reasoning, combines the strengths of both approaches. The case-base does what it

is best at | memory organization; the genetic algorithm handles what it is best

at | adaptation. The resulting combination takes advantage of both paradigms;

the genetic algorithm component delivers robustness and adaptive learning while

the case-based component speeds up the system. Furthermore, in many applica-

tion areas we confront sets of similar problems. It makes little sense to start a

problem solving search attempt from scratch with a random initial population

when previous search attempts may have yielded useful information about the

search space. Instead, seeding a genetic algorithm's initial population with so-

lutions to similar previously solved problems can provide information (a search

bias) that, hopefully, increases the e�ciency of the search. If no useful informa-

tion was obtained or obtainable, a randomly initialized population may be our

only choice. Our approach borrows ideas from case-based reasoning (CBR) in

which old problem and solution information, stored as cases in a case-base, help

solve a new problem [12]. Although we restrict ourselves to genetic algorithms

in this paper, we should be able to substitute, with minor modi�cations, any

population based search algorithm for the genetic algorithm. We believe that

evolutionary programming, genetic programming, and evolution strategies are

especially suitable. Figure 1 shows a conceptual view of a �rst version of our

system.

Case Base

Solutions

C
a

se
s

During initialization

Preprocessor Genetic
 Algorithm

Initial
Population

GA Module CBR Module

While running

Fig. 1. Conceptual view of our system

Previous work in this area includes Louis, McGraw, and Wycko�'s paper that

applied Case-Based Reasoning (CBR) to GAs as an analysis tool for the par-

ity combinational circuit design problem [7]. Ramsey and Grefensttette seeded

a genetic algorithm's initial population with cases and reported improved per-

formance on the non-stationary functions that they used [11]. More recent work

by Louis, Liu, and Xu addresses the questions of which cases are \appropriate"

and how many cases to inject [6, 9] and establishes the feasibility of the method

using the open-shop scheduling and rescheduling problem and the combinational

circuit design problem.

4 Simulation

For our problem, the environment is a bounded square area with 300 units on

a side as shown in Figure 2. There are several obstacles and food sources in the

simulation environment and obstacles are modeled by rectangular boxes. The

robot cannot enter either the boundary or the obstacles and the locations and

the amount of food are �xed in one environment. Food sources produce a sound

signal that can be detected by the simbot. A food signal can penetrate obstacles

and can be heard by the simbot only if the simbot is within the signal range.

If the distance between the robot center and a piece of food is less than or

equal to �ve units, the food is assumed to be \eaten" and disappears from the

environment.

Boundary

Obstacles

Hearing
Sensors

Central
Sensor

Simbot

Touch
Sensors

Whisker

Forward
Direction

Food
Sources

Fig. 2. Simulation environment and simbot

4.1 Simbot

Figure 2 also shows that the simbot has four touch sensors, one central touch

sensor, two hearing sensors, and two locomotive tank tracks. Each touch sensor

or hearing sensor is �xed on the end of a one-dimensional
exible whisker. The

touch sensors and hearing sensors simulate hands and ears letting the robot feel

obstacles and hear food in the environment. Each sensor has two states: 0 or 1. A

combinational logic circuit maps the sensor states into binary control commands

for each locomotive tank track. The tracks have two forward, one stop, and one

reverse speed; the four possible speeds need two bits to encode. The simbot

moves by coordinating the two tank tracks.

4.2 Encoding

In this paper, the control circuit is a 7 � 6 gate array that must be encoded

into a binary chromosome. There are (7 � 6) � 6 = 36 useful logical gates in

the gate circuit because only four out of seven outputs of the control circuit are

used for expressing the binary control commands for the two robot tracks. For

each gate, four bits are needed for expressing the 16 possible logic gates with two

inputs and one output. Therefore the chromosome length will be 36� 4 = 144.

We map a two-dimensional logic circuit to a one-dimensional chromosome by

concatenating adjacent rows [8].

The simulation process provides an evaluation of a candidate combinational

circuit for controlling the robot. The encoded chromosome of the combinational

logical gate is obtained from the GA and evaluated in the simulation environment

using a �tness function that measures how well the simbot performed its assigned

task. The �tness value is returned back to the GA.

5 Experimental Setup

In the �rst three experiments, the robot was trained to develop the three basic

behaviors of food approach, obstacle avoidance, and wall following separately in

three di�erent simulation environments. The environments are shown in Fig. 3.

The solutions found here serve as seeds for developing control strategies for a

navigation task (�nd all the food) in a complex environment that looks like an

o�ce area with rooms (open space) separated by walls (large obstacles). There

are four food sources distributed in four of the nine rooms.

Each simulation process consists of 1; 000 time steps. Both the starting po-

sition of the robot and the initial sensor values are �xed for each experiment.

The performance of the robot was evaluated using speci�c �tness parameters

comprised of seven parts calculated at each time step and summed over all time

steps for a �nal �tness value. The seven parts are listed in Table 1.

Table 1. The components of the �tness function

Parameter Description

f1 a bonus for hearing food

f2 a penalty for collision

f3 a bonus for long, straight, and forward motion

f4 a bonus for moving along an obstacle or boundary

f5 a penalty for head-on touch against an obstacle or boundary

f6 a bonus for eating all food in less than 1,000 steps

f7 a huge bonus for eating food

The �tness of a candidate circuit is a weighted sum of these seven components

and we can emphasize one or more behaviors for the simulated robot by adjusting

the weights. We ran the GA ten times for each experiment with di�erent random

seeds. In all experiments, the genetic algorithm's population size was 100 run for

100 generation. Each chromosome was 144 bits long. The crossover probability

was 1:0 and no normal mutation is needed as mentioned before.

6 Results and Analysis

6.1 Evolving Three Basic Behaviors

In the �rst three experiments, we use CHC without scaling and the entire initial

population is randomly generated. The threshold for the Hamming distance is

(length-of-chromosome=4) = 36 as is the norm for CHC. Scaled CHC is used to

overcome the possible monopoly of solutions with extremely high �tness (caused

by injection) in the complex environment. The �tness functions that were used

are shown below:

1. Food Approach (FA): f1 + f2 + f3 + f4 + f5 + f6 + f7

2. Obstacle Avoidance (OA): f1+ (5� f2)+ f3+ f4+ (5� f5)+ f6+ f7

3. Wall Following (WF): f1 + f2 + f3 + (5� f4) + f5 + (2� f6) + f7

Starting
Point

Food 1

Food 2

Food 3
Food 4

Starting
Point

Food

Food 2

Food 1

 Starting
 Point

Fig. 3. The simbot's path when learning food approach (left), obstacle avoidance (mid-

dle), and wall following (right) behavior

CHC proved to be a reasonable and e�ective method for designing basic

control strategies for a simbot. As shown in Fig 3, the simbots have successfully

evolved the expected basic behaviors of food approach, obstacle avoidance, and

wall following. This �gure depicts the paths taken by the best individual for

each of these �rst three experiments. Note that the control circuits may not be

optimal.

6.2 Designing Control Strategies in an O�ce Environment

In the next set of experiments we designed the control strategies of a simbot in a

complex o�ce environment by injecting a suitable number of appropriate cases

into the GA's initial population. First, we copied one case corresponding to the

best individual for a basic behavior from each of the �rst three experiments for a

total of three cases. Second, �ve cases were selected from the best 30 candidates

of the �rst three experiments' results according to the candidates' �tness values

in the o�ce environment. We found that injecting �ve cases produced better

performance than injecting a larger or smaller number of cases. We believe, that

injecting a larger number of cases leads to insu�cient exploration and injecting

a fewer number of cases leads to insu�cient exploitation. Five percent is a happy

medium. We call the GA injected with these cases the Target Ranked Genetic

Algorithm or TR-GA, and the GA injected with the best cases in the basic

behavior environments the Source Ranked Genetic Algorithm or SR-GA. We

also ran the GA with a randomly initialized population (RI-GA) for comparison

purposes.

The maximum performance curves over 10 runs of the genetic algorithm

are shown in Fig. 4. As we can see, the TR-GA signi�cantly out-performed its

5.00

10.00

15.00

20.00

25.00

30.00

0.00 20.00 40.00 60.00 80.00 100.00

Generation

3
Fit

ne
ss

 x
10

TR−GA

 RI−GA

SR−GA

Fig. 4. The genetic algorithm maximum performance curves

competitors. Although Fig. 4 compares a TR-GA with �ve injected individuals

to a SR-GA that used three injected individuals, the TR-GA with three injected

individuals also did better than the SR-GA, while not doing as well as the TR-

GA with �ve. Somewhat surprisingly the randomly initialized GA did better

than the SR-GA, indicating that the best control strategies for basic behaviors

may not contain building blocks that help navigation in the o�ce environment

and/or may be of low enough �tness to be eliminated during GA processing.

More evidence is presented in Table 2 which compares the �tness, in the o�ce

environment, of cases injected into the SR-GA with those injected into the TR-

GA. We also noted that solutions with high initial �tness in the target o�ce

environment may be ranked low in their source environment.

The results indicate that injecting appropriate cases into the initial popu-

lation of a genetic algorithm can not only help speed up convergence but also

provide better quality solutions. However, this will only work if injected solutions

contain useful building blocks for solving the new problem, that is, if injected

solutions are similar enough to solutions for the new problem. Assuming that

problem similarity implies solution similarity is a pre-requisite for our system

Table 2. Cases used for SR-GA and TR-GA and their �tness in the o�ce environment.

FA = food approach, WF = wall following, OA = obstacle avoidance.

Case Source Case Fitness in O�ce

Environment

Best of FA 2,807

SR-GA Best of OA 2,000

Best of WF 1,220

FA-1 15,524

WF-1 13,503

TR-GA FA-2 10,414

WF-2 6,834

OA-1 6,754

to perform well [6, 9], but when trying to combine several solutions, we had to

re-validate this assumption by evaluating and ranking candidates for injection

in the new target environment. Previous results had not indicated the need for

ranking cases in the new environment before injection [6]. However, we obtained

good agreement in our estimate of the number of individuals to inject. Earlier

work had shown that injecting only a small percentage of the population led

to good performance while injecting larger percentages led to quick convergence

to a local optimum [6]. This agreed with the experimental results reported in

this paper where we found that injecting �ve individuals (5% of the population)

provided better performance compared to experiments involving the injection of

a smaller or larger number of individuals.

In addition, we need to make sure that the injected individuals contain at

least one representative of each basic behavior. Otherwise, the missing basic

behavior may have to be evolved from scratch { from the randomly initialized

component of the population. Once we have individuals representing each of the

basic behaviors, the rest of the candidates for injection compete for the remaining

slots on the basis of their performance in the target environment. This ensures

that the population is initialized with the needed variety of high performance

building blocks.

Figure 5 presents the path of a simbot, controlled by a circuit designed by the

TR-GA, in the o�ce environment. Note that although the environment contains

many traps in the form of rooms with small doorways, the simbot does not get

trapped and manages to avoid two unpromising rooms altogether. The TR-GA

designed simbot also eats 70% of the food over ten runs compared to only 40%

for the randomly initialized GA.

7 Conclusions and Future Work

The paper demonstrates that we can evolve basic behaviors and adapt to the

environment using CHC, a non-traditional genetic algorithm. Injecting selected

staring
point

Food 4

Food 3

Food 1

Food 2

Fig. 5. Simbot path in an o�ce environment for a circuit designed by the TR-GA

solutions stored in a long term memory and corresponding to these basic be-

haviors into the GA's initial population allows us to quickly and successfully

design control strategies for a robot navigating in a complex o�ce environment.

The experimental results are promising and the simulated robot is faster and

accomplishes more of the task than the robot designed by a randomly initialized

GA. We are currently investigating parallelization of the code to handle a larger

population size in a reasonable amount of time. This will allow us to handle

more complex environments. We are also planning to transfer the evolved cir-

cuits to a real mobile robot, thus testing our work on physical hardware with all

its concomitant problems. We will be investigating the e�ect of noise on perfor-

mance { circuits evolved in the presence of noise may be more robust and better

able to handle the noise inherent in a real mobile robot operating in a complex

environment.

We have only reported on non-randomly initializing genetic algorithms in this

paper. However, the concept is extendable to other population based searches

like evolutionary programming, evolution strategies, and genetic programming.

In addition, there is no reason why injection of individuals should only take place

at initialization { we can inject individuals during the course of GA's run. We

believe that investigating the combination of population-based search algorithms

with a long term memory promises to be a fruitful area of future research. The

hope is that as the number of problems solved by the combined system grows,

the time taken to solve a new problem shrinks.

8 Acknowledgements

This material is based upon work supported by the National Science Foundation

under Grant No. 9624130.

References

1. D. Cli�, P. Husbands, and I. Harvey. Evolving visually guided robots. In Techni-

cal Report CSRP 220. School of Cognitive and Computing Science, University of

Sussex, 1992.

2. Larry J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search

When Engaging in Nontraditional Genetic Recombination. Morgan Kau�man, San

Mateo, CA, 1990.

3. D. E. Goldberg. Genetic Algorithm in Search, Optimization, and Machine Learn-

ing. Addison-Wesley, Reading, MA, 1989.

4. J. Holland. Adaptation In Natural and Arti�cial Systems. The University of Michi-

gan Press, Ann Arbor, 1975.

5. J. R. Koza. Genetic Programming. MIT Press, 1992.

6. Xiaohua Liu and Sushil J. Louis. Combining genetic algorithms and case-based

reasoning for structure design. In M. E. Cohen and D. L. Hudson, editors, Pro-

ceedings of the ISCA Eleventh International Conference on Computers and their

Applications, pages 103{106. ISCA, 1996.

7. Sushil Loius, Gary McGraw, and Rechard O. Wycko�. CBR Assisted Explanation

of GA Results. Technical Report No.361, Indiana University, 1992.

8. Sushil J. Louis and Gregory J. E. Rawlins. Designer genetic algorithms: Genetic

algorithms in structure design. In R. Belew and L. Booker, editors, Proceedings of

the Fourth International Conference on Genetic Algorithms, pages 53{60. Morgan

Kau�man, San Mateo, CA, 1991.

9. Sushil J. Louis and Zhijie Xu. Genetic algorithms for open-shop scheduling and

re-scheduling. In M. E. Cohen and D. L. Hudson, editors, Proceedings of the ISCA

Eleventh International Conference on Computers and their Applications, pages 99{

102. ISCA, 1996.

10. Andrew Murray and Sushil J. Louis. Design strategies for evolutionary robots. In

E. A. Yfantis, editor, Proceedings of the Third Golden West International Confer-

ence on Intelligent Systems, pages 609{616. Kluwer Academic Press, 1995.

11. C. Ramsey and J. Grefensttete. Case-based initialization of genetic algorithms.

In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on

Genetic Algorithms, pages 84{91, San Mateo, California, 1993. Morgan Kau�man.

12. C. K. Riesbeck and R. C. Schank. Inside Case-Based Reasoning. Lawrence Erl-

baum Associates, Cambridge, MA, 1989.

This article was processed using the L

A

T

E

X macro package with LLNCS style

