Augmenting Genetic Algorithms with Memory to Solve Traveling
Salesman Problems

Sushil J. Louis

Gong Li

Dept. of Computer Science
University of Nevada,
Reno, NV 89557
sushil@cs.unr.edu
li_g@cs.unr.edu

Abstract

This paper explores the feasibility of augmenting ge-
netic algorithms with a long term memory. During a
genetic algorithm run, we periodically store individu-
als in a database. When confronted with a new prob-
lem, instead of starting from scratch, we inject the
solutions to previously solved similar problems (from
the database) into the initial population of the ge-
netic algorithm. We evaluate the performance of the
genetic algorithm with such a long term memory on
a set of benchmark traveling salesman problems. In
addition, we compare the performance of these aug-
mented genetic algorithms when trained on traveling
salesman problems of varying similarity. Preliminary
results indicate that we can always get better perfor-
mance with injection of previous solutions to similar
problems.

1 Introduction

Genetic algorithms (GAs) are randomized parallel
search algorithms that search from a population of
points [6]. We typically randomly initialize the start-
ing population so that a genetic algorithm can pro-
ceed from an unbiased sample of the search space.
However in many application areas we confront sets
of similar problems. It makes little sense to start
a problem solving search attempt from scratch with
a random initial population when previous search at-
tempts may have yielded useful information about the
search space. Instead, seeding a genetic algorithm’s
initial population with solutions to similar previously
solved problems can provide information (a search
bias) that, hopefully, increases the efficiency of the
search.

Genetic algorithms have been used to solve large

TSPs and can get good solutions quickly [3, 6, 7]. The
first efforts to find near optimal solutions to TSPs
by using GAs were those of Goldberg using Partial
Mapped Crossover [4] and Grefenstette using Greedy
Crossover [5]. Davis, Smith, Suh and Van Gucht
also tried to solve TSPs with various crossover oper-
ators [1, 10, 11]. In this paper, we present evidence
to show that augmenting genetic algorithms with a
memory of solutions to previously solved similar trav-
eling salesman problems results in better performance
than running a genetic algorithm with random initial-
ization. Ramsey and Grefenstette come closest to our
approach and use case-based initialization to increase
a genetic algorithm’s performance in an environment
that changes with time [8]. Although they report en-
couraging results on non-stationary functions, their
work does not address the effect of similarity on per-
formance that is addressed in this paper. In the next
few sections we describe the genetic operators, our
methodology, and results.

2 The Traveling Salesman

Problem

The traveling salesman problem(TSP) is: given N
cities, if a salesman starting from his home city is to
visit each city exactly once and then return home,
find the order of a tour such that the total distance
traveled is minimum. The TSP is a classical NP-
complete problem which has extremely large search
spaces and is very difficult to solve. People have tried
to use both exact and heuristic or probabilistic meth-
ods to solve the TSP.

The objective function for the N cities two dimen-
sional Euclidean TSP is the sum of Euclidean dis-
tances between every pair of cities in the tour. That

is:

i=N
Fitness = Z V(@i —2i-1)? + (Y5 — yi—1)?
i=1

Where, x;, y; are the coordinates of city ¢ and zy,
yn equals xg, yo. We also make some changes to the
encoding, selection, and recombination.

2.1 Recombination

Our sequential path representation (a ordered list of
cities to visit) means that traditional crossover and
mutation operators are not suitable for TSPs. In-
stead we use Greedy Crossover [5]. Greedy crossover
selects the first city of one parent, compares the cities
leaving that city in both parents, and chooses the
closer one to extend the tour. If one city has already
appeared in the tour, we choose the other city. If
both cities have already appeared, we randomly se-
lect a non-selected city. Mutation is implemented by
swapping two randomly chosen sites.

2.2 Selection

When using traditional roulette wheel selection, the
best individual has the highest probability of survival
but does not necessarily survive. We use CHC selec-
tion to guarantee that the best individual will always
survive in the next generation [2]. In CHC selection if
the population size is N, we generate N children by
using roulette wheel selection, then combine the N
parents with the N children, sort these 2/V individu-
als according to their fitness value and choose the best
N individuals to propagate to the next generation.
We found that with CHC selection the population
converges quickly compared to roulette wheel selec-
tion and the performance is also better. To prevent
convergence to a local optimum, when the population
has converged we save the best 10% of the individuals
and re-initialize the rest of the population randomly.
This results in slightly better performance.

3 Methodology

We construct similar problems from our benchmark
TSP [9] problems by modifying the benchmarks in
five different ways. Table 1 lists the five kinds of
modifications that were used. Since we know the cur-
rent best solution to the TSP benchmarks, we train
the genetic algorithm on the modified problem P4
saving and using the solutions to P4 to help solve
the original problem. We compare the performance

Problem Size
same same
changing one city same
changing two cities same
adding one city one more
deleting one city one less

Table 1: Different ways of modifying TSPs

No. of cities | Population size | No. of generations
52 200 300
76 250 400
105 300 400
127 300 500

Table 2: Population and generation size for different
problems

of the Non-Randomly initialized GA (NRGA) with a
Randomly initialized GA (RGA) and the known op-
timal solution. For all the problems, we use the same
crossover and mutation probabilities of 0.85 and 0.05
respectively but use different population sizes and
various number of generations for different problems.
Table 2 shows the population sizes and the number
of generations we use. For each modified problem, we
run the RGA 10 times with 10 different random seeds
and periodically save the best individual. We inject
these chosen individuals (eight total) into the initial
population of the NRGA to help solve the original
problem.

4 Results and Analysis

4.1 Results

Table 3 shows the average performance across dif-

Problem | Start perc. | End perc.
random 491.64% 111.19%
same 109.58% 104.97%
diff1 112.55% 106.49%
diff2 119.39% 106.05%
addl 109.48% 105.36%
dell 116.49% 107.65%

Table 3: Average distance from optimal for all prob-
lems

ferent sized problems for running the NRGA with
different degrees of similarity. Column one shows
the modified problem, while column two and three
show the percentage distance of the first and the last
generation tour length from the optimal tour length.
From this table, we can see that after injecting indi-
viduals and running GAs with previous information,
we can always get better results than when running
GAs with random initialization on our problems. We
provide details on each modified problem below:

1. Same problem (same): We do not change the
problem letting P,,,q be the original problem
and solve the original problem twice. Figure 1
shows the optimal solution, the average perfor-
mance from running the RGA 10 times and the
average performance from running the NRGA
10 times for the 76 cities TSP. As expected,
injecting solutions from the same problem can
help NRGAs get better performance especially
in early generations.!

tour length + 10°
randominit.

oo o0 Zoho ey 0

generations

Figure 1: Performance on 76 cities problem with in-
jection from solutions to the same problem

2. Change one city (diff1): We slightly change
the original problem by randomly selecting one
city and changing its location by randomly
changing its z and y coordinates by 10% to
25%. Note that the problem size remains the
same. Now, since P,,q and the original prob-
lem are different, the performance during early
generations is not as good as the performance
when injecting solutions from the same problem
but the performance is still better than with
random initialization.

3. Change two cities (diff2): We randomly se-
lect two cities and change their locations by
randomly changing their z and y coordinates
by 10% to 25%. The performance graph (not

'We do not show the performance graphs for other TSP
benchmarks due to space constraints.

shown here) indicates that the performance is
still better than that of an RGA. When chang-
ing two cities instead of changing one, the two
problems are less similar which leads to the dif-
ference in performance between diff1 and diff2.
During earlier generations, the performance of
diff1 is always better than that of diff2. How-
ever, during later generations, this is not always
true and diff2 actually results in better perfor-
mance on some of our benchmarks.

4. Add one city (add?): To modify the origi-
nal problem, we not only change the location
of cities, we also change the size of the prob-
lems. We do this by adding or deleting one
city. When adding one city, we generate a new
city and let its coordinates be (randomly) be-
tween the maximal and minimal coordinates of
all cities. We run the RGA to solve the modified
problem and save the best individuals. For each
of these individuals, we delete the added city so
the changed individuals are legal tours for the
original problem. Then we inject these changed
individuals to solve the original problem. The
average performance graphs show that adding
one city can help GAs get performance similar
to that obtained when injecting solutions from
the same problem.

5. Delete one city (dell): We also randomly
delete one city, run GAs to solve the modi-
fied problem and save the best individuals. For
each one of these individuals, we randomly se-
lect one site and insert the deleted city, so that
the changed individuals become legal tours for
the original problem. We then inject these new
individuals to solve the original problem. Be-
cause we randomly insert the deleted city, the
performance during the first few generations is
not as good as when injecting solutions from
other similar problems but the performance is
better than an RGA.

4.2 Analysis

As Table 3 shows, after injecting solutions of previ-
ous similar problems, the performance is always bet-
ter than running the GA with random initialization.
This may imply that injecting individuals from previ-
ous solved similar problems is a good way to help the
GA get better results for TSPs. This may also mean
that if most cities of the two TSPs are the same, we
can use solutions from one TSP to solve the other
one.

Short, highly fit subsets of strings (building
blocks) play an important role in the action of ge-
netic algorithms because they combine to form bet-
ter strings [3]. We believe edges are the building
blocks for traveling salesman problems. After we in-
ject individuals containing good edges from similar
problems, the NRGA can combine these good edges
and get good performance quickly.

Our results show that injecting individuals from
the same problem and the add! problem can help the
NRGA get better performance than when injecting
individuals from other problems. In these two cases,
we use information from all cities and the length of
each edge is still the same. This implies that problems
can be similar enough to be useful even if they are of
different size. In other words, different sized problem
with information from all cities and all edges can help
the NRGA get better performance than a same sized
problem with some different edges.

5 Conclusions

This paper demonstrates that running a genetic al-
gorithm with injection of individuals from solutions
to similar problems can get better performance than
running a genetic algorithm with random initializa-
tion. We also find that running GAs with information
from the original problem or the adding one city prob-
lem can get better performance than running GAs
with information from other kinds of modified prob-
lems. We believe this is because the same problem
and the add! problem contain all cities of the original
problem and do not change the length of the edges
and are therefore more similar to the original prob-
lems.

Although the approach has promise, much work
remains to be done. We need to consider the effect of
different selection schemes, recombination operators,
and niching operators, for genetic search, as well dif-
ferent search algorithms. Deriving more refined es-
timates on the quality and quantity of individuals
to inject will broaden applicability. Individuals need
not be injected solely into the initial population. We
can keep track of the performance of injected indi-
viduals and their progeny and use this information
to design and inject individuals in intermediate gen-
erations. Finally, the tradeoffs between speed and
solution quality needs to be explored in more detail.

6 Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant No.
9624130.

References

[1] L. Davis. Job shop scheduling with Genetic Algo-
rithms. Lawrence Eribaum Associates, Mahwah,
NJ, 1985.

[2] Larry J. Eshelman. The CHC Adaptive Search
Algorithm: How to Have Safe Search When
Engaging in Nontraditional Genetic Recombina-
tion. Morgan Kauffman, San Mateo, CA, 1990.

[3] D. E. Goldberg. Genetic Algorithms in Serach,
Optimization, and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

[4] D.E. Goldberg and R. Lingle. Alleles, Loci and
the traveling salesman problem. Lawrence Erib-
aum Associates, Mahwah, NJ, 1985.

[5] J.J Grefenstette, R. Gopal, R. Rosmaita, and
D.V. Gucht. Genetic Algorithms for the travel-
ing salesman problem. Lawrence Eribaum Asso-
ciates, Mahwah, NJ, 1985.

[6] J. Holland. Adaptation In Natural and Artificial
Systems. The University of Michigan Press, Ann
Arbour, 1975.

[7] Heinz Muhlenbein. Evolution in Time and Space
— The Parallel Genetic Algorithm. Morgan
Kauffman, San Mateo, CA, 1990.

[8] C. Ramsey and J. Grefensttete. Case-based ini-
tialization of genetic algorithms. In Stephanie
Forrest, editor, Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, pages
84-91, San Mateo, California, 1993. Morgan

Kauffman.
[9] Gerhard Reinelt. TSPLIB. University of Hei-
delberg, http://www.iwr.uni-

heidelberg.de/iwr /comopt/soft /TSPLIB95/TSPLIB.html,

1996.

D. Smith. Bin packing with adaptive search.
Lawrence Eribaum Associates, Mahwah, NJ,
1985.

J.Y. Suh and D. Van Gucht. Incorporat-
ing heuristic information into genetic search.
Lawrence Eribaum Associates, Mahwah, NJ,
1985.

