
Designer Genetic Algorithms:

Genetic Algorithms in Structure Design

Sushil J. Louis

Department of Computer Science

Indiana University, Bloomington, IN 47405

louis@iuvax.cs.indiana.edu

Gregory J. E. Rawlins

Department of Computer Science

Indiana University, Bloomington, IN 47405

rawlins@iuvax.cs.indiana.edu

Abstract

This paper considers the problem of using ge-

netic algorithms to design structures. We re-

lax one constraint on classical genetic algo-

rithms and describe a genetic algorithm that

uses di�erential information about search di-

rection to design structures. This di�eren-

tial information is captured by a masked

crossover operator which also removes the

bias toward short schemas. We analyze per-

formance and present some preliminary re-

sults. Further, consideration of this problem

suggests a partial solution to the identi�ca-

tion of the deception problem.

1 INTRODUCTION

The problem of designing structures is pervasive in

science and engineering. The problem is:

Given a function and some materials to work

with, design a structure that performs this

function subject to certain constraints.

As an example of the design problem, consider the

combinational circuit design problem: Given a set of

logic gates, design a circuit that performs a desired

function. Two instantiations of this problem are the

parity problem and the adder problem. A solution to

these two problems is given in most introductory text-

books on digital design (see �gures 1 and 2). Both

problems are well-de�ned, unambiguous, easy to eval-

uate, and can be scaled in di�culty. In addition, we

can change the number of solutions (the footprint) in

the search space of a particular instantiation by vary-

ing the types of gates available. We therefore use them

as a testbed and as a basis for performance comparison

of various design strategies.

Design is traditionally considered a creative process

and so di�cult to automate. Expert systems that seek

to codify knowledge are currently too brittle and not

Output.

Inputs. A Parity Checker.

I0

I1

I2

In

XOR

XOR

XOR

Figure 1: An n-bit parity checker.

Sum

Carry

XOR

A

B

OR

A

B

C

Carry

Carry
Carry

Sum

A Half Adder

A Full Adder

An "n" bit Adder
C 0

A0
B0

A1

C1

S0

S1

An

Bn

Sn

Cn

S

U

M

.

.

.

Sum

B1

Full

Adder

Full

Adder

Half
Adder

Half
Adder

AND

Figure 2: An n-bit adder.

applicable across a broad range of domains. However,

natural selection has been spectacularly successful in

producing a broad range of robust structures that are

e�cient at performing a broad range of functions. Its

success is evident from the abundance and diversity of

life on this planet.

Genetic Algorithms (GAs), based on natural selection

should enjoy similar success in solving the problem of

design. However when naively applied, their perfor-

mance is less than encouraging. The di�culties lie in

the enormous size of the problem, the interdependence

among parts in the structure, and the biases inherent

in current GAs. This interdependence is called epista-

sis and is an important aspect of well-designed struc-

tures. For example, if we use the elements of a two-

dimensional array to represent gates in the textbook

solution to the parity problem, the XOR gates must

lie on the diagonal. Such interdependence is crucial in

the design of a correct circuit [16].

The problem of structure design points out the major

problem of choosing a good representation for GAs. A

classical GA will do well, only if we artfully choose just

the right encoding (non-epistatic), in essence, helping

the search process. We solve this problem by using the

�tness di�erence between parents and children to in-

dicate good directions to bias search. Such directional

information is easily available but cannot be explicitly

stored and used in nature. Classical GAs mimicking

nature also do not use this information. We however,

can and do explicitly use this directional information

to bias search toward high-performance schemas of ar-

bitrary length thus reducing the dependence on encod-

ing. In addition, we may identify deception by using

this information alone or in conjunction with other

methods and take remedial action. This approach is

further developed in section three.

The next section de�nes a classical genetic algorithm

and presents problems with using it for design. This

leads to what we call a Designer Genetic Algorithm

(DGA) described in section three. Preliminary results,

presented in the fourth section, indicate the usefulness

of DGAs. The last section covers conclusions and di-

rections for future research.

2 CLASSICAL GAs

A genetic algorithm, �rst de�ned by Holland, is a ran-

domized parallel search method modeled on evolution

[15]. GAs are being applied to a variety of problems

and are becoming an important tool in machine learn-

ing and function optimization [10]. Their beauty lies

in their ability to model the robustness,
exibility and

graceful degradation of biological systems. However,

there has been little research on their applicability to

design problems; much of the GA literature concerns

function optimization. Any reference to design invari-

ably means optimization of design parameters. In such

problems the initial structure is �xed and the object

is to optimize some associated cost [1, 17]. For exam-

ple, in Goldberg and Samtani [9] a GA minimizes the

weight of a 10-member plane truss, subject to maxi-

mum and minimum stress constraints on each mem-

ber. Although such design parameter optimization is

important, our problem is to design the initial struc-

ture itself.

A GA encodes each of a problem's parameters as a

binary string. An encoded parameter can be thought

of as a gene, the parameter's values, the gene's alle-

les. The string produced by the concatenation of all

the encoded parameters forms a genotype. The basic

algorithm, where P (t) is the population of strings at

generation t, is given below.

t = 0

initialize P (t)

evaluate P (t)

Crossover Point

BA

C D

Parents

Children

Figure 3: Crossover of the two parents A and B pro-

ducing children C and D.

while termination condition false do

select P (t+ 1) from P (t)

recombine P (t+ 1)

evaluate P (t+ 1)

t = t + 1

Selection is done on the basis of relative �tness and

it probabilistically culls from the population those

points which have relatively low �tness. Recombina-

tion, which consists of mutation and crossover, imi-

tates sexual reproduction. Mutation probabilistically

chooses a bit and
ips it. Crossover (CX) is a struc-

tured yet randomized operator that allows information

exchange between points. It is implemented by choos-

ing a random point in the selected pair of strings and

exchanging the substrings de�ned by that point. Fig-

ure 3 shows how crossover mixes information from two

parent strings A and B, producing o�spring C and D

made up of parts from both parents. We note that this

operator which does no table lookups or backtracking,

is very e�cient because of its simplicity.

Holland's schema theorem is fundamental to the theory

of genetic algorithms [15]. A schema is a template that

identi�es a subset of strings with similarities at certain

string positions. For example consider binary strings

of length 6. The schema 1**0*1 describes the set of

all strings of length 6 with 1s at positions 1 and 6 and

a 0 at position 4. The *" is a \don't care" symbol;

positions 2, 3 and 5 can be either a 1 or a 0. The order

of a schema is the number of �xed positions in the

schema, while the length is the distance between the

�rst and last speci�c positions. The order of 1**0*1

is 3 and its length is 5. The �tness of a schema is the

average �tness of all strings matching the schema.

The schema theorem proves that relatively short, low-

order, above-average schemas get an exponentially in-

creasing number of trials in subsequent generations.

Long, low-order, high-performance schema do not play

a signi�cant role in biasing genetic search.

2.1 GAs for STRUCTURE DESIGN

Using a genetic algorithm to design a structure is like

playing with a child's construction kit. Given some

low level building blocks, we have to put them together

so that they perform a certain function. A GA used

for design manipulates low-level \tools," or building

blocks, playing with their arrangements, until it �nds

the required structure. But there are three problems:

First, a necessary condition for a GA to build a struc-

ture is that there should be at least one and prefer-

ably many evolutionary paths leading to the desired

structure. A GA (or any search method) will perform

poorly in optimizing a function that is zero at all points

but one [3].

Second, the mapping from genotype to phenotype is

now much more complex. We can compare the struc-

ture of an eye (a structure phenotype) with a point

in the search space (a phenotype in function optimiza-

tion) to get an idea of this complexity. Epistasis in

phenotypic structures plays an important part in de-

termining the suitability of classical genetic algorithms

to structure design. Phenotypic epistasis may not be

re
ected in the genotype (unless it is very carefully en-

coded) and so will seriously degrade GA performance.

Finally, since we are working with structures, we often

work in more than one dimension. Physical structures

exist in three dimensions and may often be made up

of many kinds of lower level building blocks. Higher

dimensionality and a large alphabet increase the search

space tremendously.

2.2 CROSSOVER BIAS

Long schemas tend to be disrupted by CX more often

than shorter ones. Let H be a schema, �(H) its length

and O(H) its order. Then the probability that the

crossover point falls within the schema is �(H)=(l �

1) where l is the length of the string containing the

schema. However, in epistatic domains, schemas of

arbitrary length need to be preserved. If the encoding

does not ensure that low-order schemas are short the

GA will not make progress.

One way out of this is to use inversion. Inversion re-

arranges the bits in a string allowing linked bits to

move close together. Inversion-like reordering opera-

tors have been implemented by Goldberg and others

[8, 21] with some success. The problem with using in-

version and inversion-like operators is the decrease in

computational feasibility. If l is the length of a string,

inversion increases the search space from 2

l

to 2

l

!. Nat-

ural selection has geological time scales to work with

and therefore inversion is su�cient to generate tight

linkage. We do not have this amount of time nor the

resources available to nature.

Another approach is to use a new crossover operator

like punctuated crossover or uniform crossover. Punc-

tuated crossover (PX) relies on a binary mask, carried

along as part of the genotype, in which a 1 identi�es

a crossover point. Masks, being part of the genotypic

string, change through crossover and mutation. Ex-

1 1 110 0 01

First Child : Dominant Parent A. Second Child : Dominant Parent B

1 0Mask1 Mask2

A BParents

ChildrenC D

Figure 4: Masked crossover.

perimental results with punctuated crossover did not

conclusively prove the usefulness of this operator or

whether these masks adapt to an encoding [18, 19].

Uniform crossover (UX) exchanges corresponding bits

with a probability of 0:5. The probability of disrup-

tion of a schema is now proportional to the order of the

schema and independent of its length. Experimental

results with uniform crossover suggest that this prop-

erty is useful in some problems [20]. However, in de-

sign problems we would like not to disrupt highly �t

schemas whatever their length.

None of these operators uses directional information.

In the next section, we de�ne a masked crossover op-

erator that removes the bias toward short schemas by

using directional information to e�ciently bias search.

3 MASKED CROSSOVER

We de�ne an operator that uses the relative �tness

of the children with respect to their parents, to guide

crossover. The relative �tness of the children indicates

the desirability of proceeding in a particular search

direction. The use of this information is not limited

to our operator, and can be used in classical GAs with

minor modi�cations [16].

Masked crossover (MX) uses binary masks to direct

crossover. Let A and B be the two parent strings, and

let C and D be the two children produced. Mask1

and Mask2 are a binary mask pair, where Mask1 is

associated with A and Mask2 with B. A subscript

indicates a bit position in a string. Masked crossover

is shown in �gure 4 and de�ned below:

copy A to C and B to D

for i from 1 to string-length

if Mask2

i

= 1 and Mask1

i

= 0

copy the i

th

bit from B to C

if Mask1

i

= 1 and Mask2

i

= 0

copy the i

th

bit from A to D

MX tries to preserve schemas identi�ed by the masks.

Call A the dominant parent with respect to C; C in-

herits A's bits unless B feels strongly (Mask2

i

= 1)

and A does not (Mask1

i

= 0). The traditional way

of analyzing a crossover operator is in terms of disrup-

tion. The probability of disruption P

d

, of a schema H

due to masked crossover is dependent on the masks.

Assuming a random initialization of masks this prob-

ability is given by the number of ways that the bit po-

sitions in both parent masks corresponding to H can

be combined to disrupt H in the following generation.

The total number of ways of combining the mask bits

corresponding to H is:

T

c

= 2

2�O(H)

The number of ways of disrupting H is T

c

minus the

number of ways of preserving H, P

H

. For each bit

position in H, there are three ways of preserving it,

therefore:

P

H

= 3

O(H)

So the probability of disruption is:

P

d

=

T

c

� P

H

T

c

= 1� (

3

4

)

O(H)

This probability of disruption does not depend on

�(H). Intuitively, 1's in the mask signify bits par-

ticipating in schemas. MX preserves A's schemas in

C while adding some schemas from B at those po-

sitions that A has not �xed. A similar process pro-

duces D. In addition, MX can combine overlapping

schemas with less disruption than UX. This allows cre-

ation of schemas that would be impossible with one

point crossover.

1

To ensure that the semantic inter-

pretation of mask bits is correct, we modify masks in

subsequent generations. Modifying masks will change

the probability of disruption. Using �tness informa-

tion to guide mask modi�cation in subsequent gen-

erations, we would like to decrease the probability of

disruption of highly-�t schemas independent of length.

Instead of using genetic operators on masks, we use a

set of rules that operate bitwise on parent masks to

control future mask settings. Since crossover is con-

trolled by masks, using meta-masks to control mask

string crossover then leads to meta-meta masks and

so on. To avoid this problem we use rules for mask

propagation. Choosing the rule to be used depends on

the �tness of the child relative to that of its parents.

We de�ne three types of children:

Good child: more �t than best parent.

Average child: �tness between that of the parents.

Bad child: less (or equally) �t than worst parent.

With two children produced by each crossover, and

three types of children there are a six cases, with as-

sociated interpretations and possible actions on the

masks (see �gure 5).

1

A simple example: the string 111 cannot be produced

from 101 and 010 by one point crossover

Case Rule

Both good MF

gg

Both bad MF

bb

Both average MF

aa

One good, one bad MF

gb

One good, one average MF

ga

One average, one bad MF

ab

Figure 5: Mask rules for the six ways of pairing chil-

dren.

Before

1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1
PM1 PM2

AfterPM1 PM2

CM1 CM2

0

1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0

1 1 1 1 1 # 1 # # 1 #

1

1 1 1 1 1 # 1 # # 1 #

Rule MFgg

Figure 6: Mask rule MF

gg

: Example of mask propa-

gation when both C1 and C2 are good

3.1 MASK RULES

This section speci�es rules for mask propagation. In

each case a child's mask is a copy of the dominant

parent's except for the changes the rules allow. The

underlying premise guiding the rules is that when a

child is less �t than its dominant parent, the reces-

sive parent contributed bits deleterious to its �tness.

We want to encourage search in the convex subspace

de�ned by these loci. The idea is to search in areas

close to one parent with information from the other

parent providing some guidance. Note that in MX,

this is done without regard to length. A mask muta-

tion operator that
ips a mask bit with low proba-

bility acts during mask propagation. We provide two

representative mask functions rather than all, to give

an intuitive understanding of their form. These are

MF

gg

, used when both children are good and MF

bb

used when both children are bad (for more details see

Louis and Rawlins [16]).

Let P1 and P2 be the two parents, PM1 and PM2

their respective masks. Similarly, C1 and C2 are the

two children with masks CM1 and CM2. The modi-

�cations to masks depend on the relative ordering of

P1, P2, C1 and C2. For the �gures in this section, the

\#" represents positions decided by tossing a coin.

1. MF

gg

: Both children are good.

Summary: Encouraging behavior. Parents'

masks are OR'd to produce the children's masks,

ensuring preservation of the contributions from

both parents (see �gure 6).

Action:

� CM1 and CM2: OR the masks of PM1 and

PM2. If there are any 0's left in CM1, toss

Before

1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0
PM1 PM2

AfterPM1 PM2

CM1 CM2

##1 1 1 0 1 0 0 0 1 1 # # 1 0 1 0 0 # 0

Assume P2 > P1

1 # 0 # 0 0 0 1 1 1 1 0 1 0 0 1 00 0

Rule MFbb

0

Figure 7: Mask rule MF

bb

: Example of mask propa-

gation when both C1 and C2 are bad.

a coin to decide their value.

� PM1 and PM2: No changes except for those

produced by mutation.

2. MF

bb

: Both children are bad.

Summary: Discouraging behavior that must be

guarded against in future. Each parent con-

tributed bits that were detrimental to the chil-

dren's �tness. MX has not set up the parents

masks correctly. Changes are given below and

shown in �gure 7.

Action:

� CM1: This mask should re
ect the undesir-

ability of the current search direction. Con-

tributions from P2 were detrimental, there-

fore CM1 should search in the area of P2's

contribution which is speci�ed by the loci

where PM1

i

is 0 and PM2

i

is 1. Set these

loci in CM1

i

to 0. If P2 > P1 in �tness,

toss a coin to set the bits of CM1 at those

locations where both PM1

i

and PM2

i

are 1.

� CM2: A similar rule applies to CM2.

� PM1: P2's contribution to C1 led to a bad

child. The C1 positions copied from P2 need

to be explored in P1. These loci are those for

which PM1

i

was 0 and PM2

i

was 1. There-

fore set these loci in PM1

i

by tossing a coin.

In addition, PM1 speci�ed loci that were

detrimental to C2. Therefore when PM1

i

is 1 and PM2

i

is 0, set these locations by

tossing a coin.

� PM2: A similar rule applies for PM2.

With mask propagation through mask rules, direc-

tional information is explicitly stored in the masks and

used by the crossover operator to bias search. Using

the �tness of children relative to that of their parents

we preserve and recombine high performance schema

and disrupt low-performance schema, independent of

schema length. The main features of MX are, storage

and use of directional information, and independence

from length of schemas. We think of masked crossover

as a golden mean between the disruptiveness of UX

and the bias toward short schemas of CX. Compared

to the size of the search space when using inversion,

2

l

!, a genetic algorithm using MX searches only 2

2l

.

Many sets of mask propagation rules can be de�ned.

In fact a GA can search the space of mask rules to

�nd a suitable set. This may be overkill, since the

number of rules is usually quite small, simpler meth-

ods will su�ce. Results, outlined in the next section,

indicate that a signi�cant performance increase is ob-

tained from even the simple set of rules above.

MX presents a problem when using classical selection

procedures. The classical strategy replaces the original

population with the new children produced, but does

not allow a genetic algorithm using masked crossover

to converge. Masks will tend to disrupt the best indi-

viduals while searching for promising directions to ex-

plore because of the nature of the rules guiding mask

propagation. Therefore our selection procedure is a

modi�cation of the CHC selection strategy [6]. If the

population size is N , the children produced double the

population to 2N . From this, the N best individuals

are chosen for further consideration. We use this elitist

selection strategy to guarantee convergence. Another

problem which may occur is that although MX pre-

serves schemas of arbitrary length, the �tness infor-

mation itself may be misleading. Such problems are

called deceptive [10]. When �tness information is mis-

leading we expect a GA using MX to perform worse

than a GA using crossover operators that do not use

such information. This is borne out by results from

the adder problem. A Designer Genetic Algorithm

(DGA) therefore di�ers from a Classical GA (CGA)

in the crossover operator (MX) and in the selection

strategy (elitist) used.

Identifying and overcoming deception, is an important

area of research. Theoretically, deception is identi�-

able by mathematical analysis. However, from a prac-

tical standpoint, this analysis is prohibitively expen-

sive. Messy genetic algorithms (MGAs), developed by

Goldberg to handle deception, need to identify decep-

tive schemas to be applicable [13, 14]. We suggest an

approach satisfying both criteria, using designer ge-

netic algorithms.

Deception can be statically identi�ed using the AN-

ODE algorithm suggested by Goldberg [11, 12]. Re-

cent results indicate that the Nonuniform Walsh-

Schema Transform (NWST) [2] can dynamically an-

alyze a GA. Using the NWST in concert with the nor-

mal operation of a GA, we can collect runtime statis-

tics needed to identify deception. Furthermore, we can

improve e�ciency by removing some of the determin-

ism in the ANODE algorithm. This will not signi�-

cantly alter e�ectiveness as long as the probability of

correctly identifying deception is greater than that of

incorrectly identifying it. In other words, we propose

to let a DGA collect runtime statistics on encoding

(through the NWST) and use these statistics to set

masks. Whenever the DGA detects deception either

through a periodic check of these statistics and/or a

decrease in rate of progress, the algorithm identi�es

deceptive schema with the help of the statistics col-

lected and the masks. It then allows an MGA to work

on just these schema and solve the deception at this

level. The DGA then continues, appropriately seeded

with the optimal schema produced by the MGA. Our

current research follows this approach.

4 RESULTS

We compare a designer genetic algorithm's perfor-

mance with that of a classical GA on the adder and

parity problems. In all experiments, the population is

made up of 30 genotypes. The probability of crossover

is 0:7 and the probability of mutation for masks and

genotypes is 0:04. These numbers were found to be

optimal through a series of experiments using various

population sizes and probabilities. The graphs in this

section plot average �tness over ten runs.

Each genotype is a bit string that maps to a two-

dimensional structure (phenotype) embodying a cir-

cuit. We need 3 bits to represent 8 possible gates. A

gate has two inputs and one output. If we consider

the phenotype as a two dimensional array of gates S,

a gate S

ij

, gets its �rst input from S

i;j�1

and its sec-

ond from one of S

i+1;j�1

or S

i�1;j�1

. An additional

bit associated with each gate encodes this choice. If

the gate is in the �rst or last rows, the row number

for the second input is calculated modulo the number

of rows. The gates in the �rst column, S

i;0

receive

the input to the circuit. Connecting wires are simply

gates that transfer their �rst input to their output.

The other gates are AND, OR (inclusive OR), NOT

and XOR (exclusive OR). We determine the �tness

of a genotype by evaluating the associated phenotypic

structure that speci�es a circuit. If the number of bits

is n, the circuit is tested on the 2

n

possible combina-

tions of n bits. The GA maximizes the sum of correct

responses (For more detail see Louis and Rawlins [16]).

It is also possible to use only a subset of the possible

inputs, reverting to the complete set only when the

population converges prematurely. This results in sig-

ni�cant savings in time.

We compare the performance of a classical GA using

elitist selection with a DGA on a 2-bit adder problem.

The graph in �gure 8 shows that the classical GA does

better, although the di�erence is not great. This is not

very encouraging. However, if we look at the solution

space we see that solutions to the adder problem in-

volve deception. As explained earlier, since MX uses

�tness information to bias search, it is more easily mis-

lead than traditional crossover. Even if a problem is

deceptive, it does not mean that no solutions can be

found. Figures 9 and 10 show solutions to the 2-bit

adder problem found be a designer genetic algorithm

and classical genetic algorithm. As wire gates ignore

their second input, only one input is shown for such

gates. The gate at position S

33

is shown unconnected

2-bit Adder
DGA

CGA

Fitness

Generations

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

0.00 10.00 20.00 30.00 40.00 50.00

CGA

DGA

Figure 8: Performance comparison of average �tness

per generation of a classical GA versus a DGA on a

2-bit adder.

XOR

AND

OR

XOR

A0

A1

INPUTS

AND

XOR

XOR

XOR

XOR

WIRE

WIRE WIRE

WIRE

WIRE

AND

AND

X0

X1

X2

B0

B1

OUTPUTS

Figure 9: A 2-bit adder designed by a designer genetic

algorithm.

because it does not a�ect the output. Although we

have not done a rigorous study of the types of solu-

tions found by both algorithms, we see that the circuit

designed by the DGA depends on long schemas. For

example S

03

gets its input from S

32

which is 11 units

away, where 11 is large when compared with 16, the

length of the genotype. This is in marked contrast to

the CGA circuit.

We now consider the parity problem. The encoding

described above will violate the \principle of meaning-

ful building blocks" with regard to the solution to the

parity problem as shown in �gure 1 [10]. Since diag-

onal elements of S (the phenotype) are further apart

in the string, any good subsolutions (highly �t, low-

order schemas) found will tend to be disrupted by tra-

ditional crossover. MX however, will �nd and preserve

these subsolutions as its performance is independent

of length. To observe performance under these condi-

tions, we restrict the number of gate types available

to the GA to three and do not allow a choice of input

(the second input is now always from the next row,

XOR

AND

A0

A1

INPUTS

AND

WIRE

WIRE

WIRE

XOR

XOR

XOR

XOR

AND

WIRE WIRE

WIRE

WIRE

WIRE

B0

B1

X0

X1

X2

OUTPUTS

Figure 10: A 2-bit adder designed by a classical genetic

algorithm.

4-bit Parity Checker
DGA

CGA

Fitness

Generations

8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.50

12.00

12.50

13.00

13.50

0.00 10.00 20.00 30.00 40.00 50.00

DGA

CGA

Figure 11: Performance comparison of average �tness

per generation of a classical GA versus a DGA on a

4-bit parity checker.

5-bit Parity Checker
DGA

CGA

Fitness

Generations

16.00

17.00

18.00

19.00

20.00

21.00

22.00

23.00

24.00

0.00 10.00 20.00 30.00 40.00 50.00

DGA

CGA

Figure 12: Performance comparison of average �tness

per generation of a classical GA versus a DGA on a

5-bit parity checker.

modulo the number of rows). Although this reduces

the size of the search space, CX disrupts low-order

schemas and therefore performs worse than the DGA.

Figure 11 shows this for a 4-bit parity checker. The

di�erence in performance gets larger as the problem is

scaled in size. Figure 12 compares the average �tness

performance on a 5-bit problem. In the 5-bit exper-

iments the choice of gates was still restricted to the

same three as in the previous example. However, input

choice was allowed, increasing the number of solutions

in the search space. When allowed all possible gates,

the performance di�erence is less, and is due to the

large increase in the number of possible solutions and

therefore a lesser degree of violation of the meaning-

ful building block principle (see �gure 13). However,

as the problem becomes more epistatic, MX does bet-

ter than CX. Hypothesis testing using the student's t

test on our experimental data proves that MX is sig-

ni�cantly better than CX at a con�dence level greater

than 95% [7].

In the comparisons above we ignored the e�ect of se-

lection. Figure 13 compares the performance of: 1) a

GA using traditional crossover and selection, 2) a GA

using traditional crossover and elitist selection, and 3)

a DGA on a 5-bit parity problem. The same parameter

set as in the previous examples is used although we set

the number of gate types to six, increasing the num-

ber of possible solutions. This was done in the hope of

coaxing better performance from the GA using tradi-

tional selection and crossover. The �gure clearly shows

the importance of selection strategy. Finally, �gure 14

5-bit Parity Checker
DGA

GA traditional

GA elitist

Fitness

Generations

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 50.00 100.00 150.00 200.00

DGA

CGA elitist

CGA traditional

Figure 13: Performance comparison of average �tness

per generation of a traditional CGA, an elitist CGA,

and a DGA.

XOR

XOR

AND

XOR

OR

AND

OR

XOR

XOR

OR

OR

OR

A0

A1

A2

A3

INPUTS OUTPUT

O

Figure 14: A Circuit designed by a DGA that solves

the 4-bit parity problem.

shows a 4-bit parity checker produced by the DGA.

5 CONCLUSIONS

We have shown that a designer genetic algorithm re-

laxes the emphasis on schema of short length. This

increases the domain of successful GA applications

since a GA programmer no longer needs to follow the

principle of meaningful building blocks. Using masked

crossover mitigates the problem of epistasis while eli-

tist selection is crucial to good performance on design

problems. The increase in cost in using a DGA is by

at most a constant factor per generation. This comes

from the cost of sorting a population of size n (n logn),

and a constant cost for mask propagation. Compar-

ing the performance of the two GAs on a problem also

gives signi�cant insights about properties of the search

space.

Selection plays the largest part in biasing genetic

search. We can think of a genetic algorithmas a search

process at two levels. At the selection level, search is

biased by �tness information. However, at the recom-

bination level, search is essentially random (in classical

GAs). Using �tness information to bias search at the

recombination level allows a DGA to do better as is

indicated by our results. However, if the �tness infor-

mation is misleading, a GA will be led astray. The

DGA will be misled at both levels, in contrast to the

the CGA which will be mislead only at the selection

level.

Experiments with the standard test suite of �ve func-

tions �rst used by DeJong show no signi�cant di�er-

ence in performance [4]. In the experiments we used

the same elitist selection strategy for both the DGA

and the classical GA. These results were to be expected

as DeJong's criteria for choosing his functions were not

based on the epistatic or deceptive properties of these

functions.

This paper uses a simple representation and only con-

siders binary masks which piggyback on their associ-

ated strings. Mathematical analysis of the e�ects of

mask rules on these simple masks is being done. We

are also looking at more general representations and

non-binary masks. Finally, identifying and handling

deception dynamically, forms the thrust of our current

research.

References

[1] Bramlette, Mark F., and Cusic, Rod., \A Com-

parative Evaluation of Search Methods Applied

to Parametric Design of Aircraft." In Proceedings

of the Third International Conference on Genetic

Algorithms. Morgan Kau�man, 1989, 213-218.

[2] Bridges, Clayton L. and Goldberg, David E.,

\The Nonuniform Walsh-Schema Transform", in

Workshop on the Foundations of Genetic Algo-

rithms and Classi�er Systems Morgan Kau�man,

(to appear) 1991.

[3] Culberson, Joseph C., and Rawlins, Gregory J.

E., \Genetic Algorithms as Function Optimizers."

Unpublished Manuscript, Indiana University, De-

partment of Computer Science. 1990.

[4] De Jong, K. A., \An Analysis of a the Behavior

of a class of Genetic Adaptive Systems." Doctoral

Dissertation, Dept. of Computer and Communi-

cation Sciences, University of Michigan, Ann Ar-

bor.

[5] Eshelman, Larry J., Carauna, A. and Scha�er,

J David. \Biases in the Crossover Landscape" In

Proceedings of the Third International Conference

on Genetic Algorithms. Morgan Kau�man, 1989,

10-19.

[6] Eshelman. L. J., \The CHC Adaptive Search Al-

gorithm: How to have Safe Search When Engag-

ing in Nontraditional Genetic Recombination." in

Workshop on the Foundations of Genetic Algo-

rithms and Classi�er Systems Morgan Kau�man,

(to appear) 1991.

[7] Freund. John. E., Statistics A First Course,

Prentice-Hall, 1981.

[8] Goldberg, D. E., and Lingle, R., \Alleles, loci and

the Traveling Salesman problem." in Proceedings

of the an International Conference on Genetic Al-

gorithms and their Applications, 1985. 154-159.

[9] Goldberg, David E., and Samtani, M. P., \Engi-

neering Optimization via Genetic Algorithm." in

Proceedings of the Ninth Conference in Electronic

Computation, 1986, 471-482.

[10] Goldberg, David E., Genetic Algorithms in

Search, Optimization, and Machine Learning

Addison-Wesley, 1989.

[11] Goldberg, David E., \Genetic Algorithms and

Walsh Functions: Part I, A Gentle Introduction",

in Complex Systems, 3, 1989, 129-152.

[12] Goldberg, David E., \Genetic Algorithms and

Walsh Functions: Part II, Deception and its Anal-

ysis, in Complex Systems, 3, 1989, 153-171.

[13] Goldberg, David E., Korb, Bradley., and Deb,

Kalyanmoy. \Messy Genetic Algorithms: Motiva-

tion, Analysis, and First Results", TCGA Report

No. 89002, Tuscaloosa: University of Alabama,

The Clearinghouse for Genetic Algorithms, 1989.

[14] Goldberg, David E., Deb, Kalyanmoy, and Korb,

Bradley. \An Investigation of Messy Genetic Al-

gorithms," TCGA Report No. 90005, Tuscaloosa:

University of Alabama, The Clearinghouse for

Genetic Algorithms, 1990.

[15] Holland, John. H., Adaptation In Natural and Ar-

ti�cial Systems. Ann Arbor: The University of

Michigan Press. 1975.

[16] Louis, Sushil. J., and Rawlins, Gregory J. E. \Us-

ing Genetic Algorithms to Design Structures,"

Technical Report No. 326, Department of Com-

puter Science, Indiana University, 1990.

[17] Powell, D. J., Tong, S. S., and Skolnik, M.

M., \EnGENEous Domain Independent, Machine

Learning for Design Optimization." in Proceed-

ings of the Third International Conference on

Genetic Algorithms and their Applications, 1989,

151-159.

[18] Scha�er, David. J., and Morishima, Amy., \An

Adaptive Crossover Distribution Mechanism for

Genetic Algorithms" in Proceedings of the Second

International Conference on Genetic Algorithms.

Lawrence Erlbaum Associates, 1987, 36-40.

[19] Scha�er, J. David, and Morishima, Amy. \Adap-

tive Knowledge Representation: A Content Sen-

sitive Recombination Mechanism for Genetic Al-

gorithms" In International Journal of Intelligent

Systems John Wiley & Sons Inc., 1988, Vol 3, 229-

246

[20] Syswerda, Gilbert., \Uniform Crossover in Ge-

netic Algorithms" In Proceedings of the Third

International Conference on Genetic Algorithms.

Morgan Kau�man, 1989, 2-8.

[21] Smith. D., \Bin Packing with Adaptive Search."

in Proceedings of an International Conference on

Genetic Algorithms and Their Applications. 1985.

202-206.

