Genetic Algorithms for Open Shop Scheduling and Re-Scheduling

Sushil J. Louis

Zhijie Xu

Department of Computer Science
University of Nevada
Reno - 89557
email: sushil@cs.unr.edu

Abstract

We combine genetic algorithms and case-based rea-
soning principles to find optimally directed solutions
to open shop scheduling and open shop re-scheduling
problems. Appropriate solutions to open shop schedul-
ing problems are injected into the genetic algorithm’s
population to speed up and augment genetic search
on a related open shop re-scheduling problem. Pre-
liminary results indicate that the combined genetic al-
gorithm — case-based reasoning system quickly finds
better solutions than the genetic algorithm alone.
Keywords: Genetic Algorithms, Case-Based Reason-
ing, Open Shop Scheduling.

1 Introduction

Genetic algorithms (GAs) are stochastic, parallel
search algorithms based on the mechanics of natural
selection, the process of evolution [3, 2]. GAs were
designed to efficiently search large, non-linear search
spaces where expert knowledge is lacking or difficult to
encode and where traditional optimization techniques
fail. They are flexible and robust, exhibiting the adap-
tiveness and graceful degradation of biological systems
and we use them as the search method of choice for
this research.

However, problems of interest usually have ex-
tremely large search spaces leading to slow progress
during search. Furthermore, every time a genetic al-
gorithm is given a new problem, it does not have access
to, and cannot use, any knowledge gleaned from pre-
vious problem solving attempts to help speed up the
current search.

We would like to extract and use knowledge gained
during a problem solving attempt to help solve re-
lated problems. Case-based reasoning (CBR) systems
use past experience, stored in memory as cases, to

help solve a current problem[6]. This paper indi-
cates the feasibility of combining genetic algorithm
and case-based reasoning principles to attack open-
shop scheduling and re-scheduling problems.

We use open shop scheduling (OSSP) and re-
scheduling problems as a test-bed for our system. A
genetic algorithm finds and saves solutions to an open
shop scheduling problem P,;4, the problem is changed
slightly (to Ppew), and the old solutions are injected
into the initial population of the genetic algorithm that
is trying to solve the new problem. Preliminary re-
sults indicate that compared to a genetic algorithm
that starts from scratch, the genetic algorithm with
injected solutions very quickly finds good solutions to
P,y and that the quality of solutions after conver-
gence is usually better.

Genetic algorithms have been used to solve schedul-
ing problems in [1, 4, 7]. Ramsey uses case-based ini-
tialization to improve genetic algorithm performance
in dynamic environments [5]. We do not know of any
research that combines GAs and CBR for solving open
shop scheduling.

The next section introduces the open shop schedul-
ing problem. A short section on case-based reasoning
is included for completeness and can be skipped by
readers already familiar with the material. Section 4
introduces genetic algorithms and describes our encod-
ing for open shop scheduling problems. Section 5 pro-
vides preliminary results and outlines issues in com-
bining genetic algorithms with case-based reasoning
systems. The last section furnishes conclusions and
indicates future directions.

2 Open Shop Scheduling Problems

The open-shop scheduling problem is an important
practical scheduling problem, but is known to be very

hard to solve in a reasonable amount of time. Re-
scheduling is also an important aspect of the problem
in the real world. It involves modifying a schedule in
the process of execution in order to take account of a
changing environment. In the general j x m open-shop
scheduling problem, there are j jobs and m machines.
Each job contains a set of tasks which must be done
on a different machine for a different amount of time,
with no a-priori ordering on the tasks within a job.
The problem is to minimize the makespan, the total
time between the beginning of the first task till the
end of the last task. A valid schedule is a schedule of
job sequences on each machine such that a machine is
not processing two different tasks at the same time,
and different tasks of the same job are not simulta-
neously being processed on different machines. We
must take into account both resources and time con-
straints with the aim of finding a valid schedule with a
minimum makespan. The OSSP differs from the job-
shop scheduling problem in that there is no a-priori
ordering on the tasks within a job. This leads to an
extremely large search space. For example on a 5 x 5
OSSP, there are 25! different task orderings which is
approximately equal to 1.5 x 10?5 different valid sched-
ules.

In open-shop re-scheduling (OSRP), we need to be
able to handle changing conditions on the shop floor.
For example, jobs may be canceled, machines may fail,
or we may run low on inventory. If the work has not
yet begun on the current schedule, then a simple way
of re-scheduling is to rerun the GA for this schedul-
ing problem in the changed environment. We need
quick and efficient methods of re-scheduling to tackle
the problems of frequently changing environments. In
this paper we handle the case of a machine breaking
down and being replaced with a new, faster machine.
P4 is the problem with the old machine while P, is
the problem with the new machine, where the process-
ing times of all tasks on the new machine have been
decreased by 10 time units; note that we have made
sure that P, is similar to P,;4. We use individuals
from a GA’s run on P,y as cases for the re-scheduling
problem, P,cqp.

3 Case-Based Reasoning

Case-based reasoning (CBR) is based on the idea
that reasoning and explanation can best be done with
reference to prior experience. This experience is stored
in memory as cases [6]. When confronted with a prob-
lem to solve, a case-based reasoner extracts the most

similar case in memory and uses information from the
retrieved case and any available domain knowledge to
tackle the current problem. The idea is first to collect
and index a large collection of examples; then, when
presented with a new situation, to fetch and adapt the
stored example that most closely resembles the new
situation and this solve the current problem. This
paper uses the basic tenet of CBR — the idea of or-
ganizing information based on “similarity” — to help
solve open-shop re-scheduling problems.

4 Genetic Algorithms

Conceptually, GAs use the mechanisms of natural
selection in evolving individuals that, over time, adapt
to an environment. In our case, the individuals were
candidate schedules and the genetic algorithm mini-
mized the makespan.

The genetic algorithm works with a population of
schedules encoded as strings of integers (genotypes),
evaluating and modifying them by probabilistically
applying the genetic operators of selection, crossover,
and mutation from one generation to the next. The
initial population is usually generated randomly; the
GA starts from scratch. Selection chooses relatively
fitter individuals for crossover and mutation, concen-
trating search in the area specified by fitter individ-
uals. Mutation insures against the permanent loss
of genetic material and with low probability flips a
bit in the genotype. Crossover is a structured yet
stochastic operator that allows information exchange
between candidate solutions. One point crossover is
implemented by choosing a random point in the se-
lected pair of strings and exchanging complementary
substrings defined by the chosen point. Figure 1
shows how crossover mixes information from two par-
ent strings, producing offspring made up of parts from
both parents.

Crossover Point ~
Parents
* L]

Children

_
L] \

Figure 1: One point crossover.

We represent a schedule as a string of integer pairs.
The string (chromosome) contains the information re-
quired to construct a candidate solution. In the OSSP,

a chromosome contains a series of tasks which repre-
sents a schedule. With j jobs, and m machines, there
are 7 x m tasks. One task is represented by two digits.
The second digit represents a job and the first digit
represents a task within that job. The total number
of digits for a 5 x 5 problem is 2 x (5 x 5) = 50. For
example, consider the chromosome:

5543123244 111524 ...

The chromosome contains 25 different tasks with 5
tasks per job and can be decoded from left to right as:
5th task of job 5 will be done first, 4th task of job 3
will be done first, 1st task of job 2 will be done first,
3rd task of job 2 will be done second because task 32
comes after task 12 in the chromosome, and so on.

One-point crossover creates problems when used
with our representation because crossover of two
parents can produce offspring that encode illegal
schedules[2]. To overcome this problem we modify
crossover so that although it still mixes information
from both parents, it only produces legal offspring.

In PMX [2] a crossing site is randomly selected
and the string is divided into two parts. We swap the
digits at corresponding positions on the left part of
the crossover point under the condition that the same
values can be found on the right part of the crossover
point.

A = 231594867
B = 38247|1956

We exchange 5 and 4, and 9 and 7. We can not ex-
change 2 and 3, 3 and 8, and 1 and 2 because the
same values cannot be found on the right part of the
crossover point. After crossover, we get the two off-
spring A’ and B’

A’ = 231475869
B' = 38259|1746

Strings A’ and B’ contain ordering information par-
tially determined by their parents without any repeat-
ing digits. We essentially use the same algorithm but
swap integer pairs (our representation uses an integer
pair to represent a task)

5 Results

After using a variety of criteria to pick individuals
for cases and to choose how many individuals to in-
ject into the initial population of size 200 run for 300
generations, we obtained good performance under the
following conditions.

1. We inject only 8 cases into the initial population.
Injecting between 5% and 10% of the population
usually produced good results across the set of
population sizes that we tried. Higher injection
percentages did not increase performance and of-
ten caused the search to converge too quickly.

2. The individuals chosen as cases were:

o The best individuals in the first and the
last generations (Since we used a kind of
elitist selection, the best individual in the
last generation was the best ever).

¢ Six good individuals in the generations be-
tween the first and last. For example, if we
ran for 300 generations, then we pick the
best individuals in generations which are a
multiple of 300/6 = 50 .

We mutate these six individuals picked from inter-
mediate generations and inject all eight individuals
into the initial population of the GA for the OSRP.
Figure 2 compares the average performance of a ge-
netic algorithm initialized with these cases against a
randomly initialized GA on one 5x 5 OSRP problems.
We call the the GA that uses cases, a CAse Genetic
Algorithm or CAGA, and the Randomly Initialized
GA, RIGA, in the rest of this paper. The graphs in
this section display the best makespan averaged over
10 runs with different random seeds.

T T
380.00

RIGA
370.00

340.0p
330.0¢
320.0p
310.00_
300.00_
290.0p

28000 =\ |
CI

270.00

Figure 2: Comparing performance of a RIGA with a
CAGA for 5x5 OSRP problem 1

We can see that the CAGA starts with a much lower
(better) initial best makespan and that even after 300
generations CAGA solutions are better than solutions
from a randomly initialized GA. In our experiments
we note that CAGA does comparatively well in early
generations and provides good schedules more quickly

700.

RIGA

500.00
CAGA

450.0p_) | | | R
0.00 100:00 00-00 00,00 40000

Generations

Figure 3: Comparing performance of a RIGA with a
CAGA for 7x7 OSRP problem 2.

than the randomly initialized GA. Out of the set of
eight benchmark problems, the Case-GA usually pro-
duces schedules that are better, except on two prob-
lems, where the makespans at generation 300 differ by
three time units.

We get similar results on a set of five 7 x 7 OSRP
benchmark problems. Figure 3 displays average best
makespans over ten runs with different random seeds
on one of the problems. Once again the CAGA does
better, especially in early generations.

In early experiments, we were not very successful
in combining GAs with CBR principles. First, when
the environment was changed by deleting a whole job,
the results were not good. We found that it was hard
for the GA with CBR to tackle problems where the
environment changes significantly. CBR is based on
the idea that stored cases resemble a new situation.
Since a job contains a series of different tasks, after
deleting a whole job, good schedules for the current
problem may be very different from the previous one,
for our encoding.

We also failed to get good results when we tried
to save all, half, or a quarter of the best individuals
in the previous run (P,4) and insert them into the
initial population for P,.,. Saving and re-using too
many good individuals makes the GA quickly converge
to local optima. We obtain enough exploration when
we seed a small percentage of the population.

6 Conclusions and Future Work

When combining genetic algorithms and case-based
reasoning, the results broadly show that there is a
tradeoff between performance, both in terms of speed
and quality of solutions, and problem similarity. When

more interested in quality, we should inject a small
number of cases of varying quality into the initial
population leading to a better balance between ex-
ploration and exploitation of the search space by the
genetic algorithm.

Currently, we are researching the quality and quan-
tity of cases to inject. We believe this combination
of paradigms has promise and will be applicable in a
wide variety of domains.

References

[1] Hsiao-Lan Fang, Peter Ross, and Dave Corne. A
promising genetic algorithm approach to job-shop
scheduling, re-scheduling, and open-shop schedul-
ing problems. In Stephanie Forrest, editor, Pro-
ceedings of Fifth International Conference on Ge-
netic Algorithms, pages 375-382. Morgan Kauff-
man, San Mateo, 1993.

[2] David E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, 1989.

[3] John Holland. Adaptation In Natural and Artificial
Systems. The University of Michigan Press, Ann
Arbour, 1975.

[4] R. Nakano and T. Yamada. Conventional genetic
algorithms for job-shop problems. In R. Belew and
L. Booker, editors, Proceedings of Fourth Inter-
national Conference on Genetic Algorithms, pages
474-479. Morgan Kauffman, San Mateo, 1991.

[5] C. L. Ramsey and J. J. Grefenstette. Case-based
initialization of genetic algorithms. In Stephanie
Forrest, editor, Proceedings of Fifth International
Conference on Genetic Algorithms, pages 84-91.
Morgan Kauffman, San Mateo, 1993.

[6] C. K. Riesbeck and R. C. Schank. Inside Case-
Based Reasoning. Lawrence Erlbaum Associates,
Cambridge, MA, 1989.

[7] D. Whitley, T. Starkweather, and D. Fuquay.
Scheduling problems and traveling salesman: The
genetic edge recombination operator. In D. Schaf-
fer, editor, Proceedings of Third International Con-
ference on Genetic Algorithms, pages 133-140.
Morgan Kauffman, San Mateo, 1989.

