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Abstract

This paper describes a system for explaining solutions generated by ge-
netic algorithms (GAs) using tools developed for case-based reasoning (CBR).
In addition, our work empirically supports the building block hypothesis
(BBH) which states that genetic algorithms work by combining good sub-
solutions called building blocks into complete solutions. Since the space of
possible building blocks and their combinations is extremely large, solutions
found by GAs are often opaque and cannot be easily explained. Ironically,
much of the knowledge required to explain such solutions is implicit in the
processing done by the GA. Our system extracts and processes historical in-
formation from the GA using knowledge acquisition and analysis tools devel-
oped for case-based reasoning. If properly analyzed, the resulting knowledge
base can be used: to shed light on the nature of the search space, to explain
how a solution evolved, to discover its building blocks, and to justify why it
works. Such knowledge about the search space can be used to tune the GA in
various ways. As well as being a useful explanatory tool for GA researchers,
our system serves as an empirical test of the building block hypothesis. The
fact that it works so well lends credence to the theory that GAs work by
exploiting common genetic building blocks.



1 Introduction

This paper describes a system for explaining solutions generated by genetic
algorithms (GAs) using tools developed for case-based reasoning (CBR). In
order to make this paper accessible to researchers who may not know about
both CBR and GAs, we have included two introductory subsections explain-
ing each in basic terms. Subsections 1.1 and 1.2 may be skipped without loss
of continuity.

1.1 Genetic algorithms

A genetic algorithm (GA) is a randomized parallel search method based on
evolution. GAs have been applied to a variety of problems and are an impor-
tant tool in machine learning and function optimization. David Goldberg’s
book gives a thorough introduction to GAs and provides a list of possible
application areas (Goldberg 1989). The beauty of GAs lies in their ability to
model the robustness and flexibility of natural selection.

In a classical GA, each of a problem’s parameters is represented as a bi-
nary string. Borrowing from biology, an encoded parameter can be thought
of as a gene, where the parameter’s values are the gene’s alleles. The string
produced by the concatenation of all the encoded parameters forms a geno-
type. Each genotype specifies an individual which is in turn a member of
a population. An initial population of individuals, each represented by a
randomly generated genotype, is created. The GA starts to evolve good
solutions from this initial population. The three basic genetic operators: se-
lection, crossover, and mutation carry out the search. Genotypic strings can
be thought of as points in a search space of possible solutions. They spec-
ify a phenotype which can be assigned a fitness value. Fitness values affect
selection and in this way guide the search.

Selection of a string, depends on its fitness relative to that of other strings
in the population. The genetic search process is iterative: evaluating, select-
ing, and recombining strings in the population during each iteration (genera-
tion) until reaching some termination condition. The basic algorithm, where
P(t) is the population of strings at generation ¢, is:



initialize P(t)
evaluate P(t)
while (termination condition not satisfied) do
select P(t + 1) from P(t)
recombine P(¢ + 1)
evaluate P(t + 1)
t=t+1

Evaluation of each string (individual) is based on a fitness function that
is problem dependent. This corresponds to the environmental determination
of survivability in natural selection. Selection is done on the basis of rela-
tive fitness. It probabilistically culls from the population individuals having
relatively low fitness. Mutation flips a bit with very low probability and
insures against permanent loss of alleles. Crossover fills the role played by
sexual reproduction in nature. One type of simple crossover is implemented
by choosing a random point in a selected pair of strings (encoding a pair
of solutions) and exchanging the substrings defined by that point. Figure 1
shows how crossover mixes information from two parent strings, producing
offspring made up of parts from both parents. This operator which does no
table lookups or backtracking, is very efficient because of its simplicity. One-
point crossover, where A and B are the two parents, producing two offspring
C and D, is shown in figure 1.
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Figure 1: Single-point crossover of the two parents A and B produces the two
children C and D. Each child consists of parts from both parents leading to infor-
mation exchange.

The individuals in the population act as a primitive memory for the GA.



Genetic operators manipulate the population, usually leading the GA away
from unpromising areas of the search space and towards promising ones,
without the GA having to ezplicitly remember its trail through the search
space (Rawlins 1991).

It 1s easiest to understand GAs in terms of function optimization. In such
cases, the mapping from genotype (string) to phenotype (point in search
space) is usually trivial. For example, in order to optimize the function
f(z) = z, individuals can be represented as binary numbers encoded in
normal fashion. In this case, fitness values would be assigned by decoding
the binary numbers. As crossover and mutation manipulate the strings in
the population thereby exploring the space, selection probabilistically filters
out strings with low fitness, exploiting the areas defined by strings with high
fitness.

Since crossover causes genotypes to be cut and spliced, it is impractical to
consider or track individual strings in analyzing a genetic algorithm. Instead,
the analysis must focus on substrings which define regions of the search space
and are called schemas. The schema theorem will be discussed in subsection

1.3.

1.2 Case-based reasoning

Case-based reasoning (CBR) embraces the idea that reasoning and explana-
tion can best be done with reference to prior experience, stored in memory
as cases. The approach de-emphasizes reasoning from first principles. The
strategy is first to amass and index a large and varied collection of examples,
then, when presented with a new situation, to fetch and possibly manipulate
the stored example which most closely resembles the new situation. Each
stored case may be considered a previously evaluated data point, the nature
and location of which is problem dependent. If the distance metrics have
been well designed and the case-base includes sufficient variety, retrieved
cases reveal useful conclusions from previous analysis. Because it may be
impractical to store all prior experience in detail, CBR systems often include
principled mechanisms for generalization and abstraction of cases. Note that
except when comparing distinct cases, a CBR system need not include any
notion of an underlying model, and that even during comparison one can
make do without much of one. A great strength of the approach is that the
generalizations and abstractions may in fact induce a useful domain model.



1.3 Applying CBR to GAs

Genetic algorithms (GAs), invented by John Holland in the early seventies,
provide an efficient tool for searching large, poorly understood spaces often
encountered in function optimization and machine learning (Holland 1975).
GAs model natural selection, implemented through selection, recombination
and mutation operators.

The probabilistic nature of GA search allows GAs to be successfully ap-
plied to a variety of NP-hard problems (Goldberg 1989; DeJong and Spears
1989; Jones and Beltramo 1991). The population-based, emergent nature of
computation in GAs lends them a degree of robustness and flexibility that
is often unobtainable using vanilla expert systems approaches. This fact
has encouraged researchers to apply GAs to creative design tasks such as
the design of semiconductor layout, aircraft engine design, and circuit de-
sign (Shahookar and Mazumder 1990; Bramlette and Cusic 1989; Louis and
Rawlins 1991). This is not to say that GAs currently hold the answer to
machine learning! The scarcity of GA theory is an alarming stumbling block
in the way of progress.

Holland’s schema theorem is fundamental to the theory of genetic al-
gorithms. A schema is a template that identifies a subset of strings with
similarities at certain string positions. For example, consider binary strings
of length 6. The schema 1**0*1 describes the set of all strings of length 6
with 1’s at positions 1 and 6 and a 0 at position 4. The “x” is a “don’t care”
symbol which means that positions 2, 3 and 5 can have a value of either 1
or 0. The order of a schema is defined as the number of fixed positions in
the template, while the defining length is the distance between the first and
last specific positions. The order of 1**0*1 is 3 and its defining length is
5. The fitness of a schema is the average fitness of all strings matching the
schema. Remember that the fitness of a string is a measure of the value of
the encoded problem solution, as computed by a problem-specific evaluation
function. With the genetic operators as defined above, the schema theo-
rem states that short, low-order, schemas with above average fitness increase
exponentially in successive generations. Expressed as an equation:

mi(h, 1) (h)
Tt

Here m(h,t) is the number of schemas h at generation ¢, f(h) is the fitness

m(h,t+1) > 1 — (probability of disruption
(h,t+1) [1—(p y ption)]
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of schema h and f, is the average fitness at generation ¢. The probability
of disruption is the probability that crossover or mutation will destroy the
schema h.

The building block hypothesis (BBH), which follows from the schema

theorem, can be stated as follows:

A genetic algorithm seeks near-optimal performance through the
juxtaposition of short, low-order, high performance schemas or

building blocks (Goldberg 1989).

Since both the order and defining length are syntactic measures, the BBH
implies that syntactically-similar (short and low-order), high-performance
individuals bias genetic search. This bias is achieved through the proliferation
of specific nontrivial features of strong individuals.

Unfortunately, GA theory tells us little about the actual path a given
GA will take through a space on its way to an answer. Because of the
stochastic nature of GA operators, a solution’s optimality is often suspect
and its building blocks unknown.

Information about the building blocks is implicit in the processing done
by a GA but is not documented explicitly or available to the user. At conver-
gence, solutions may therefore be opaque, diluting confidence in the results
and making analysis difficult. Keeping track of historical regularities and
trends is key to acquiring the knowledge needed to explain post facto what
sort of solution evolved, why it works, and where it came from. Discovery of
building blocks allows principled partitioning of the search space. Empirical
regularities can be formalized and possibly put to use. As noted in the GA
introduction, genetic algorithms by their very nature trade the use of ex-
plicit memory for the speed and simplicity won by its omission. We use the
methods and tools developed for case-based reasoning (Bareiss 1991; Ries-
beck and Schank 1989) to extract, store, index and later retrieve information
generated by a GA.

Case-based reasoning (CBR) provides a method of gathering knowledge
in the form of cases (usually built from examples), indexing it in a mean-
ingful fashion, and adapting it to hypothesize about the world. Individuals
created by the GA provide a set of initial cases from which a well-structured
case-base can be constructed. The BBH points to the use of fitness and
genotype as metrics for indexing the case-base. These measures provide the
key to indexing the cases and conveniently solve one of the hardest of CBR



problems. For our system to work properly, the assumptions of the BBH
must be true. Our working system provides empirical evidence in support of
the building block hypothesis.

We apply CBR to GAs as an analysis tool in order to track the history
of a search. The CBR system creates a case for each individual that the GA
has evaluated. These cases are indexed on syntactic similarity and fitness.
When properly formed and analyzed, this case-base can contribute to the
understanding of how a solution was reached, why a solution works, and
what the search space looks like. At the interruption (or termination) of a
GA run, the case-base allows the interpretation and subsequent modification
of discovered solutions.

If the system digests enough information during a run, it may be able to
generate hypotheses about the space that are largely correct. Given proper
hypothesis formation, the CBR module can guide the evolution more directly
towards convergence. The existence of false hypotheses provides supporting
evidence of deception in the current search space.

1.4 Motivation

Our prime motivation is to be able to explain (in an automatic way) the why
of an evolved phenotype. Such a tool can be used to attack the following
problems:

1. The utility of GAs as machine learning tools is attenuated by
their inability to provide easily explained solutions. If GAs pro-
duce superior solutions which we do not fully understand, we
may not gain much insight into their strengths or critical com-
ponents. This problem is especially apparent in Koza’s Genetic
Programming work (Koza 1992).

2. Tt 1s common for a GA to search a space and find a solution
without shedding any light on the nature of the search space itself.
Such information would be very valuable in tuning GA search,
and could be used to design highly tailored search strategies for
future use in the current space or spaces thought to be similar.

3. When a GA converges to a sub-optimal solution, the post-processing
which can be done to improve upon it is at present extremely lim-



ited.

4. GAs may become side-tracked into sub-optimal regions of the
space. One cause of this behavior is known as deception (Gold-
berg 1989), in which the absolute best solution is hidden as an ex-
ception in an area which is generally inferior and would therefore
be selected against. Side-tracking may also occur with premature
convergence, where the domination of an early-discovered build-
ing block carries with it coincident suboptimal features of the
earliest individuals which included it. In essence, the detracting
features “hitch-hike” and gain popularity as parasites might.

2 The System

Our system is made up of a GA module which runs in tandem with a CBR
analysis module [see figure 2].

Genetic mtid [ Clustering
Algorithm CaePool | Module
e o adder
oadd " Case Adder i—h
Hypothesis CaseBase
Generator ¢
1 Test new cases
. and create new
Explainer | indeces as needed

Figure 2: Schematic diagram of our system. The Case Adder is still under con-
struction.

The GA module records data for each individual in the population as it
is created and evaluated. This data includes a fitness measure, the genotype,
generation data, as well as some information on the individual’s parents. We
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call this collection of data the wnitial case data. Though normally discarded
by the time an individual is replaced, all of the case data we collect is usually
contained in any GA at some point and is easy to extract.

We generally employed very basic operators and standard parameter
settings in our GA experiments. However, we do use uniform crossover
(Syswerda 1989) in lieu of one-point crossover. Unlike the latter, this com-
mon variant is insensitive to the defining length of a schema. The order of
the schema remains important.

After creating a sufficient number of individuals over a number of gen-
erations, the initial case data are sent on to a clustering program. We use
a standard hierarchical clustering program which clusters the individuals
based on both the fitness and the alleles of the genotype. This clustering
constructs a binary tree in which each leaf includes the data of a specific
individual. The binary tree structure provides an index for the initial case-
base. Figure 3 shows a small part of one such tree. The numbers at the leaves
of the tree correspond to the case number (an identification number) of an
individual created by the GA. Internal nodes are denoted with a “x”. An
abstract case is computed for each internal node based on the information
contained in the leaves and nodes beneath it. The final case-base includes:
1) cases corresponding directly to GA individuals (at the leaves) and 2) more
abstract cases made up of information generalized from the leaves.

After investigating a number of clustering techniques and clustering sets
(e.g., fitness and genotype data versus fitness alone) we found that standard
hierarchical clustering on fitness and genotype data produces a coherent ini-
tial index for the case-base. The fact that fitness and genotype matter the
most is predicted by the BBH and is borne out by our experiments. After
creating an index, several easy computations are recursively performed to
flesh out the abstract cases (these computations are explained in §3).

The current version of the hypothesis generator is still fairly preliminary,
and many of the initial tests of the system reported in this article were run
without it. The hypothesis generator runs in tandem with the GA. Using
information from the the case-base, it engineers individuals for injection into
the population. In a later version, information about the measured perfor-
mance of such individuals, relative to the remainder of the population, will
be fed back into the hypothesis module for analysis. The success or failure of
generated hypotheses can be used in decisions regarding the validity of the
current case-base.
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nodes where abstract cases go are denoted with a . The binary tree provides

an index for the case-base.

In order to support incremental updating of the case-base, we plan to
install a case-adder module. The case-adder will become active only after
the initial case-base is indexed. As the GA runs and new initial cases are
created, an attempt will be made to fit these initial cases into the existing
case-base by finding a place for them in the index tree. Periodically it may
be necessary to reorganize at least parts of the case-base, but at all times
it would be suitable for use by the hypothesis generator. This is discussed
further in §7.3.

At the end of a run, a well-developed case-base can be used to explain
how the GA came up with its answer, and why that answer is strong. Also
available is knowledge about the problem space. The system can explain
something about where the winning answer came from, which of its building
blocks are the strongest, and which the weakest. This sort of data allows any
future search of the space to be fine-tuned. It also allows for a sophisticated
post facto analysis. Much of the knowledge that is usually discarded by a
GA is made available in processed form for future manipulation.



3 The Case-Base

After clustering the first few hundred individuals using genotype and fitness

values, a case-base is created. As explained above, clustering determines the

indexing scheme of the case-base. All abstract cases, which are indexed at

the internal nodes of the tree, must be recursively computed from the leaves

up. Although much of the initial case data saved during the GA run is not

used by the clustering algorithm, it is added to the cases in the case-base.
Cases include the following information:

Case number

Distance from the root of the tree to the level of the case
Schema for the case (see discussion in §1)

Schema order

Average fitness

Weight: Number of leaves (individuals) below

Generation information: the earliest and latest leaf occurrence as well
as the average in the subtree

o Additive schema: Bitwise sum of alleles of the genotypes of all the
leaves below

Using the information supplied in the case-base, our system produces a
report regarding the GA run so far. Using fitness as a metric, computing the
top or bottom ranked n cases is easy, as is finding the top or bottom ranked
n case schemas. These schemas can be combined to make new schemas by
applying standard schema creation rules. For example, the two schemas
**¥110**10 and **100***0 combine to the new schema **1*0***0. The re-
sulting schemas show (among other things) which alleles are important in
the genotype and which ones are not. Since order, longevity, and weight
information is available, it is straightforward to find the top few cases with
given sets of these characteristics.

We find it useful to calculate not only the schema which includes the
subset of leaf cases, but one which records in a more democratic fashion the
relative frequency of allele settings for the positions which are not absolutely
fixed. Since the normal schema-producing rules result in a “x” wherever
there is disagreement about an allele among leaves, schemas near the top
of the tree tend to be filled with “x”s. To avoid this information loss, we
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compute an additive schema by computing the bitwise sum of the genotypes
associated with the leaves below.

An elected schema can be computed by dividing the additive schema by
the weight and squashing the results to 0, 1, or “x” using thresholds that
can be changed. Elected schema information provides a more informative
way of looking at upper-level schemas. Elected schemas play a large role in
hypothesis generation discussed in §7.

A schema actually describes a convex hull for the leaves from which it
was computed. That is, it describes a portion of the space within which
the unaltered leaves fit. Since the normal schema-producing rules result in
top-level schemas with a large number of “¥”s and the hull tends to span
too large a portion of the entire space, we prefer to describe a smaller hull,
one for which the average hamming distance from an actual leaf to the hull
surface is less than some predetermined constant. In other words, the leaves
deviate from their closest encompassed relative by only a small amount on
average. The elected schema describes this smaller hull.

Generation information can be used to determine when each part of the
search space covered by the GA was considered. This information is very
useful in detecting premature convergence, finding local minima, and com-
puting the relative longevity of a subspace. The search space itself can be
carved into approximately equally populated subsections by chopping the
tree at nodes having a certain maximum weight. Analysis of these subsec-
tions across dimensions of fitness and longevity sheds light on the search
space.

All of this processed information is available to the user of our system
on-line. If desired, any case can be displayed. Also available is the tree
information in graphical form with case numbers in their proper locations.
The graphics are zoomable so that subtrees can be thoroughly investigated.
The “report” is meant for user consumption and usually raises some questions
which can be answered by pulling more information from the system.

It is important to emphasize that our system is an interactive tool for use
in explaining GAs. Although it automates the information extraction and
processing to some extent, human perception is a critical ingredient in the
final analysis. However, without reasonable organization and pre-processing
which our system provides, the large amount of data created during a GA
run is impossible to digest even for an experienced GA researcher.
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4 Results

Several experiments in function optimization and circuit design show that
clustering techniques, if properly applied, provide a strong case-base, yielding
useful data about the GA run. A list of problems on which we successfully
tested our system is shown in table 1. We also ran a few experiments with
the hypothesis module in place.

¢ is a constant (control)
number of ones in genotype

8

8
I
S O
S
m
»
—~
8
~—

signed, genotype length 10
signed, g-length 10

signed, g-length 10

signed, g-length 20

all positive, g-length 10

8
[¥)

|
w

8

N
~—
Il
8

'

8

I

N
8

N BN A vﬁ/vvv
Il
8 8 8

ThIRITR TR TR IR T S S e s
8

z) = log(z) all positive, g-length 10
z,y) =z? —y? all positive, g-length 20
;) =Y:x? DelJong F1, (—5.12..5.12)
z;) = 100(z? — z,)* | DeJong F2 (—2.048..2.048)

f(z;) = 30 integer(z;) | DeJong F3 (—5.12..5.12)

A pair of complicated deceptive functions.

Table 1: Test Problems.

The tree structure resulting from clustering defines a schema hierarchy
[figures 4 and 5]. Schema of lower order are found near the top of the tree.
Schema order gets higher and higher towards the leaves, which, with all alleles
fixed, have the maximum possible order. Figure 4 depicts the index tree of
an entire case-base for a simple function. Some salient features of the space
are immediately recognizable on the graph (when one can zoom in and look
at cases). We have marked these features in figure 4.

Figure 5 shows an enlargement of the small boxed area in figure 4 (labeled
“Area of Detail”). In this figure, the positions of both initial cases (individ-
uals) to the right of the figure and abstract cases at the internal nodes are
represented by their schemas. Schemas closer to the root of the tree are more
general (i.e., of lower order) than those towards the leaves.
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A Simple Example: f(z) ==z

Figure 4 shows the shape of the case-base index for a GA which maximizes
the simple function: f(z) = z. The case-base was created by clustering
the 400 GA individuals from the first 20 generations (which resulted in a
binary tree) and then computing the abstract cases at the internal nodes.
The resulting case-base had 799 cases, 400 of which came directly from the
GA. By using the report mentioned above in conjunction with the index-tree
graph we were able to find the salient features of the search space. We have
marked these interesting features on the graph.

Clustering nicely partitions the individuals into sets sharing common fea-
tures, namely specific allele values (syntactic similarity) and similar fitness.
In this case, all the low fitness cases are clumped together toward the top of
the graph. The high fitness cases are at the bottom. We included a sign bit in
the genotype (values ranged from [—511..511]). The sign-bit branching point
is shown in figure 4 as well. Not surprisingly, all the negative numbers are
clustered together above the sign-bit branchpoint, and very little time was
spent in that portion (half!) of the search space by the GA. This information
was discovered by zooming in on the subsections of the graph and noting the
obvious common features while consulting the on-line case-base.

Case zero is located at the root of the tree. Actual output from a query
shows case-information:

> (show-case 0)

| Case: O | Distance: O Weight: 400 Fitness: 8441.44

|=====m—- + Order: O Schema: *kkkkkkkkk |
| Additive schema: (396 333 170 283 338 330 20 72 332 392) |
| Longevity: 19 (lo:1 avg:10.5 hi:20) |
| Left subtree: 1 Right subtree: 396 |

Since case 0 is located at the root of the tree, its distance from the root is
0. There are 400 leaves below it, making its weight 400. Fitness is calculated
by averaging the fitnesses of the cases below. The case schema is filled with
“x”s, showing once again why the additive schema information is important.
Leaves under case 0 spanned all generations from 1 to 20 resulting in a
longevity value of 19. Case 0 has two pointers, one to case 1 and another to
case 396. This reflects the binary nature of the index. Had the case been a

leaf it would not have pointed to further cases.
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We tested several very simple functions in order to discover just how
much information the case-base can provide about the problem space. Salient
features are apparent from the structure of the graph. This tendency could
prove to be important in understanding black box fitness functions.

5 Methodology

We have found in some experiments that a useful high-level description of
the case-base and the search recorded within it can be generated as follows:

1. Select a subset of the internal nodes which implicitly include all of the
leaves, have no overlap, and are of fixed maximum size.

2. Sort these nodes by increasing average birth generation (age).

3. Report the available generational, weight, fitness, order, and elected
case-schema information.

One can quickly see evidence of the GA’s path through the search space.
Many of the earlier subtrees may have low average fitness and low order,
whereas later subtrees will have higher order if convergence was approached.
Typically, later nodes have higher fitness, but as clustering is sensitive to
genotype, it is possible to have a weak but young subtree.

Very low-order long-lived subtrees with poor fitness are often associated
with crippled individuals formed by mutation or unfortunate crossover. If
there are many weak subtrees one can infer a stronger focus on ezploration
of new parts of the space as opposed to ezploitation of strong, higher-order
schema.

High-order short-lived subtrees offer evidence of temporary concentration
of search effort, which often follows discovery of a beneficial building block.
Once a building block has been incorporated into the population (exploited),
the search effort may move on to further exploration.

In problems where there is deception (that is, where most of the gradient
in the space draws the GA away from the absolute global maximum but
toward some broader, more obvious local maximum) one would expect to see
the GA focus first on the local maximum. If the GA manages to discover
points near enough to the global maximum that they are favorably evaluated,
a paradigm shift may occur. This has been evident in our case-bases.
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If one notices that a small but strong subtree was discovered but quickly
lost and not surpassed, one might be well advised to alter the GA parameters
in favor of a more elitist selection strategy (e.g., rank selection). Note that
“Crowding” operators have been shown to be powerful in this regard, but
they add overhead and are often unnecessary. When there is suspicion of
deception, it may be confirmed or discredited by looking at the lower levels
of the quickly lost cluster. If one discovers that within the cluster the later
and stronger subclusters had schema changes which appear to cause relative
decline in other contemporary clusters then one should continue to suspect
deception. At this point one may wish to more thoroughly investigate that
part of the search space without much competition.

6 Circuit Design

We tested our system on the combinational circuit design problem. This
problem’s search space is poorly understood, discontinuous, and highly non-
linear. The problem can be stated as follows: given a set of logic gates to work
with, design a circuit that performs a desired function. One instantiation of
this problem is a parity checker, a circuit that returns the parity of a fixed
number of bits (Louis and Rawlins 1991). When encoded for the GA, a 5-
bit parity checking problem results in a 28 sized search space having the
troublesome properties listed above. We used a genotype of length 80, a
population size of 20 and ran the GA for 25 generations. A candidate design
is evaluated for fitness by testing a simulation on all possible inputs.

The GA does not solve the problem in 25 generations. In our experi-
ments, a case-base was created by clustering the 500 individuals created by
the GA and computing the 499 abstract cases. After examining the report
and following the steps outlined in the methodology section, we examined
the disjoint subtree list. The strongest such subtree (H) was also heavily
weighted and spanned many generations. In addition, the best partial so-
lutions all fell within H. We therefore suspected that a complete solution
would fit H’s schema. Since the order of the schema was appreciable (53 of
80), we could constrain the search to that schema and still hope to find a
solution. The solution was in fact contained in H’s schema.

Figure 6 shows the circuit indicated by our analysis of H. By decoding
H, we were able to discern the general structure of a solution and determine
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Figure 6: Parity circuit indicated by H, and the correct instantiation of choices.

which parts of it were important. The unlabeled boxes represent unimportant
dimensions of the search space which can be safely ignored. Labeled boxes
represent one of the logic gates eXclusive-or, And, Or, Not, and Wire. Since
we are drawing the circuit represented by a schema, multiple labels on the
boxes show its possible instantiations. Labels above boxes represent a correct
instantiation found near the 50** generation of an unconstrained run. The
top row should be considered adjacent to the bottom.

7 Hypothesis Generation

Preliminary work on hypothesis generation focuses on use of the heuristics
sketched in the Methodology section (§5). The convex hull of each subtree
selected by the method outlined there contains a very large number of pos-
sible individuals which have never been evaluated. The hypothesis module
picks some specific individuals from within the hull of the most promising
subtree and instantiates them for participation and evaluation within the GA
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population. Only a small number of generated individuals are injected in a
given generation.

Since individuals which fit in the reduced hull of the elected schema (dis-
cussed in §5) may be considered more prototypical of the subtree than those
which do not, the elected schema provides a better template for the generator
than does the regular schema. As will be explained, hypotheses are in fact
chosen from this reduced hull.

Our motivations for including a hypothesis generator are multifold. If
hypothesis-produced individuals prove to be better on average than GA-
produced individuals, the GA will be accelerated. They also provide evidence
that produced solutions are reasonably well understood. Further support is
furnished by the identification of building blocks.

Finally, consider cases where a small but strong cluster is discovered but
quickly swamped out by outside evolutionary pressures. Injection of some
new members of the “lost” subspace into the population would seem wise, as
the undersampled space may deserve further investigation.

7.1 Experiments

To assess the ability of the hypothesis generation module to enhance the
system, we compared the overall performance of the GA without hypothesis
injection against the performance of a GA with hypothesis injection, both
averaged over ten runs. The baseline case was a GA running with a 25%
generation gap, where only 25% of the population is replaced each generation
by new individuals. In a GA system with a generation gap, individuals
may survive in the population for many generations, possibly being used
for crossover more than once. Note that cases are only constructed for new
individuals.

Since the case-adder module is not yet implemented, it was not possible to
incrementally maintain the case-base, so injections in the experiments were
perforce punctuated. In the first experiment, 1200 individuals were evalu-
ated in total, with case-bases created in the same manner as before, but for
three disjoint sets of 400 individuals each. The first case-base was created
as soon as the first 400 initial cases were accumulated. Instead of allow-
ing crossover and mutation to provide the partial population replacement in
the immediately following generation, however, the hypothesis generator was
employed. Following the application of our set of heuristics, which identify
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the most promising subspace, individuals from within the reduced hull (of
elected schema) were generated at random and injected into the population.
This procedure was repeated for the second set of 400 initial cases when they
became available, and a final case-base for user interaction was created at
the end of the run.

The second experiment had the same structure as the first, but for the hy-
pothesis generation copies of previously evaluated individuals that fit within
the reqular schema of the subspace were selected at random and drawn into
the reduced hull by flipping all rogue alleles. These massaged individuals re-
tain the free alleles (those not fixed in the elected schema) of their originals
and so include less variation than those produced for the first experiment.
In the first experiment, the free alleles are set at random.

7.2 Results

In each of the solution spaces searched by the GA, hypothesis injection on
average provided detectable and reproducible improvements. Even though
injection was performed only twice per experiment, hamming distance to the
optimal solution was decreased by more than ten percent of the problem
size over the baseline case. In several instances, the solution was discovered
within one generation of the injection. A GA converges when the average
hamming distance between individuals in a population stabilizes. In both
experiments the GA converged more quickly and to better solutions when
hypothesis injection was used.

The speed improvement was most pronounced in the second experiment,
though there was also a smaller variance in the injected individuals, and the
final solution was not as notably improved.

Overall, the best solutions after 1200 fitness evaluations were products
of the first experiment. There, injected individuals sampled promising sub-
spaces with sufficient breadth to eventually locate superior solutions. Note
that the abstract case defining the chosen subspace may include data from
previous generations. As the injected individuals were prototypical of that
case (from which the population may have since wandered) they may markedly
increase the population’s diversity. This diversity prevents convergence only
temporarily. Following exploration, the superior individuals proliferate.
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7.3 Future work

Clearly, hypothesis generation can be implemented in a more reasonable way
once the case-adder module is in place. Much cleaner experimentation could
be run given a continuously maintained case-base. Injection of hypotheses
could be done in smoothly varying rates better tailored to the state of the
search.

The hypothesis module should track the performance of its injected in-
dividuals and adjust its hypotheses accordingly. The successes and failures
of a genetically engineered individuals can be used to make decisions regard-
ing the validity of recent hypotheses and the rate at which they are to be
injected.

If a selected promising subspace were in fact small, the generator could
relax the constraint that injection candidates be drawn into a reduced hull.
In such cases, the generator could choose to inject some individuals from
some distance outside the hull.

The hypothesis generator should also take into account other promising
areas of the search space. By discovering the important building blocks in
a space (perhaps in different subtrees) and combining them, the hypothesis
module could speed the search considerably. Though higher level abstract
case schema are unlikely to have fixed bits, our elected schema may have
quite a few. By adjusting the thresholds used to compute the elected schema
we may be better able to identify building blocks. After producing a hy-
pothesis as in the initial experiments, we could then alter it to include the
hypothesized building block of some other strong subtree, which may have
been explored at a different time.

As very strong but suboptimal building blocks may have swamped the
population quickly, any final solution containing building blocks which were
evident particularly early in the evolution could be genetically engineered to
check for parasitic alleles.

Concerning the case-adder itself, we propose placing new cases in the case-
base as special children of the closest subtree identified by our methodology.
The initial classification task could therefore be performed by a variety of
existing algorithms. When the weight of a subtree became excessive, we
would invoke the clustering algorithm only on the leaves of this subtree. This
limits the cost of reorganization and allows continuous use of the first-level
classifier. When a new case was assigned to the reclustered tree, an additional
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level of classification would be performed. To save space, we could discard
some of the lower level parts of a subtree since the abstractions being used
have already been computed.

8 Conclusions

We have tested the model on a series of problems including the DeJong
functions, a pair of home-brewed deceptive problems, and the circuit design
problem. Results show that our CBR tools are useful for understanding GA
solutions in many different kinds of spaces as exemplified by our choice of
test problems.

We have also tested a preliminary version of the hypothesis generator.
Hypotheses generated by CBR tools can provide principled direction to oth-
erwise less-productive GA search as well as help in the avoidance of deception.
Although it i1s possible to damage the search through hypothesis injection,
this risk can be reduced by meta-level application of CBR techniques. In
the future, the hypothesis generator should track the progress of genetically
engineered individuals and update its knowledge base. Even without meta-
level knowledge, cautious injection of hypotheses proves profitable in some
cases.

Combining GAs with CBR allows us to successfully attack the four prob-
lems listed in §1.1. Our system provides a tool with which GA researchers
can explain discovered solutions while simultaneously discovering important
aspects of the search space. The CBR module is able to make explicit the
building blocks used by a GA. Analysis of the building blocks and the path
taken by a GA through a search space provides a powerful explanatory mech-
anism. Results of the explanation can be used to guide post-processing in
order to improve results in case of premature convergence or no convergence.
The system also addresses some aspects of GA deception. The hypothesis
module provides a mechanism by which deception can be avoided. If a space
is found to be too deceptive for GA search, other search methods can be
suggested based on the analysis of the space provided by the CBR module.

As well as providing a system for GA explanation and search space analy-
sis, our system provides empirical evidence that the building block hypothesis
is correct. As mentioned above, the hierarchical clustering of a set of GA
individuals (distributed over several generations) according to fitness and
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genotype leads to nested schemas. Analysis shows that the subtrees with
the most fit schemas receive the most reproductive energy while the least
fit schemas are culled from the population. Although we knew that cluster-
ing on fitness and genotype should yield nested schemas (as a result of the
BBH), we nonetheless tested several other clustering possibilities, including
more generational information and parental information. Clustering on fit-
ness and genotype was by far the most successful technique. The nested
schemas that result from such a clustering provide a coherent index for the
case-base.

The general ability to gain insight into a problem and the path a GA
took while searching for its solution may widen the applicability of genetic
algorithms to problems which were previously inappropriate by virtue of hav-
ing relatively expensive evaluation functions. Because principled constraints
can be applied to the search periodically, fewer fitness evaluations need be
computed. Following confirmation that the case-base accurately models the
space through testing, we can avoid expensive fitness function evaluation in
favor of case-based estimation.
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