
Improving Pareto Optimal Designs Using

Genetic Algorithms

John S. Gero Sushil J. Louis

Design Computing Unit Department of Computer Science

Department of Architectural and Design Science Mackay School of Mines

University of Sydney University of Nevada

NSW 2006 Australia Reno, NV 89557

john@archsci.arch.su.edu.au sushil@cs.unr.edu

1

Abstract

Pareto optimal designs are the best designs that can be produced for a given problem

formulation for a given set of criteria when the criteria are not combined in any way. If

the goal is to improve the performance in those criteria then it is possible to manipulate

the problem formulation to achieve an improvement. The approach adopted is to encode

the formulation in a genetic algorithm and to allow the formulation to evolve in the

direction of improving Pareto optimal designs. A set of rules (in the form of a shape

grammar), the execution of which produces a design, is encoded as the genes in a genetic

algorithm. However, the rule set is allowed to evolve, not just the order of execution

of rules. We present an example demonstrating both the approach and its utility in

improving Pareto optimal designs.

1 Introduction

Design concerns the development of the description of an artifact to satisfy a set of re-

quirements. These requirements can be cast as objectives which point toward directions

of improving behavior. When there are multiple objectives or criteria

2

to be optimized,

2

which cannot be combined to produce a single objective

1

Pareto optimality provides a principled means of choosing directions of improving behav-

ior. Pareto optimality follows the principle of non-dominance of solutions and produces a

Pareto optimal design such that there are no other designs superior in all criteria. This

paper aims to improve Pareto optimal designs.

The problem of design optimization { multi-criteria or single criterion { can be cast as

search through a state space of viable designs. A design that is optimal in one state space

may no longer be optimal in a changed state space. Changing the state space corresponds

to a change in the problem formulation and can lead to the discovery of \more"-optimal

designs. This paper improves Pareto optimal designs by allowing the state space itself, as

well as the designs subsumed by the state space, to evolve in the direction of improvement. A

genetic algorithm encodes both the problem formulation and the possible design solutions

circumscribed by the problem formulation and searches through an evolving state space

for Pareto optimal designs. Note that the Pareto optimal design found at the end of the

computation may be a \more"-optimal design than any that were circumscribed in the

original problem formulation.

We start with the genetic algorithm searching a space in which the problem formulation

is �xed. Next, the problem formulation is allowed to evolve during the search for improved

solutions. In other words the genetic algorithm searches through possible problem formula-

tions while searching for a good solution. In our sample two-criteria optimization problem,

designs that could not be described within the original problem formulation arise over the

course of the genetic algorithm's search leading to new and improved designs.

The next section discusses the di�erent kind of changes that can be made to state

spaces clarifying the concepts of additive and substitutive state space changes. We present

the sample problem used in this paper and introduce shape grammars in section three.

Genetic algorithms provide the computational framework for changing state spaces while

searching for new improved designs and are introduced in section four. The last two sections

present and discuss results and provide conclusions and directions for further research.

2

2 Optimization and Design State Spaces

The framework of design prototypes divides a state space into three subspaces corresponding

to a space of structures, a space of behaviors associated with structures and a space of

functions associated with behaviors [1, 2]. Figure 1 shows the mappings between these

subspaces. Optimizing a design can be represented as a process which changes one of the

Function Behaviour StructureF1

F2

11B S

2B 2S

Figure 1: Structure, Behavior and Function spaces and the mappings between them.

subspaces (usually the structure space is changed). There are two interesting classes of

change to state spaces: addition and substitution. Addition, which can be achieved by

adding (design) variables, results in a new state space, S

n

, that subsumes the original

space, S

0

, that is: S

0

� S

n

and S

0

T

S

n

6= � (Figure 2). Substitution, which involves the

replacement of some variables by other variables, results in a space, S

n

, that is di�erent

from the original, S

0

, such that S

0

6� S

n

(Figure 3). The notions of additive processes

S0 Sn

Figure 2: The e�ect of additive processes on a state space.

3

and substitutive processes also apply to design schemas resulting in additive schemas that

subsume the original one and substitutive schemas that only include parts of the original

and contain new elements (Gero 1992). These are depicted in �gures 4 and 5.

In this paper we model a substitutive process using a genetic algorithm to change design

variables and search for an optimal design in the changed state space. The results in section 5

indicate that designs that are better than the optimal design in the original state space can

be found.

The following sections introduce the sample problem, shape grammars, genetic algo-

rithms and show how to encode the sample problem for genetic optimization.

3 A sample optimization problem

Consider the problem of generating the optimal topology of a beam section. Our two

optimization goals are: 1) to minimize the perimeter (decrease surface area) and 2) to

maximize the moment of inertia of the beam section (second moment of area) to improve

its sti�ness. The two criteria have been chosen such that a tradeo� needs to be made. A

change for the better in one criteria usually leads to a change for the worse in the other. We

use a shape grammar (described below) to embody the set of rules used to generate possible

cross sections. Following a �xed length sequence of such rules generates a beam section.

The moment of inertia and perimeter can now be calculated and used in the optimization

process (See section 5).

S0
Sn

Figure 3: The e�ect of substitutive processes on a state space.

4

0123

Figure 4: The e�ect of additive processes on design schemas, changing from original schema, 0, to

schemas 1, 2 and 3.

0 1 2 3

Figure 5: The e�ect of substitutive processes on design schemas, changing from original schema, 0,

to schemas 1, 2 and 3.

3.1 Shape grammars

Shape grammars were introduced into the architectural literature as a formal method of

shape generation. They provide a recursive method for generating shapes and are similar

to phrase structure grammars, but de�ned over alphabets of shapes and generate languages

of shapes [3]. A set of grammatical rules map one shape into a di�erent shape. These rules

de�ne the set of possible mappings or transformations. More formally, a shape grammar is

the quadruple (V

t

; V

m

; R; I). Where V

t

is a set of terminal shapes or terminals and V

m

a

set of nonterminal shapes or markers. V

t

and V

m

provide the primitive shape elements of

a shape grammar. R is a set of rules consisting of two sides, each side of which contains

members of V

t

S

V

m

. If the left hand side of a rule matches a shape, applying the rule results

in replacing the matching shape with the right hand side of the rule. I is the initial shape,

a subset of V

t

S

V

m

and starts the shape generation process. This models a design system

where the rules embody generalized design knowledge and a sequence of rule applications

5

generates a design.

3.2 An example shape grammar

A shape grammar for generating beam sections is displayed in �gure 6. Each rule has a left

hand side (lhs) and a right hand side (rhs) separated by an arrow. When applying a rule

we replace the cell corresponding to the lhs by the rhs of that rule. For example, starting

with a cell labeled A and applying rules 0; 2; 3 in sequence would result in a beam section

that looked like the one in �gure 7.

Thus the �nite rule sequence 0; 2; 3 gives rise to a shape that can be interpreted as a

beam section with an associated moment of inertia and perimeter. Cast in this way, the

problem becomes the generation of a rule sequence that will optimize our two criteria.

With a �xed shape grammar (�gure 6) and a �xed length sequence of rule applications,

we are searching in a �nite state space. Points in the state space represent beam section

topologies, and we are searching for a topology that maximizes moment of inertia and

minimizes perimeter.

This is a search problem and as such, well suited for a genetic algorithm. The next

section describes how to encode the problem for a genetic algorithm.

4 Genetic Algorithms

Genetic algorithms (GAs), originally developed by Holland (1975), model natural selection

and the process of evolution [4]. Conceptually, GAs use the mechanisms of natural selection

in evolving individuals that, over time, adapt to an environment. They can also be consid-

ered a search process, searching for better individuals in the space of all possible individuals.

In practice, individuals represent points in a state space, while the environment provides a

measure of \�tness" that helps identify better individuals. Genetic algorithms are a robust,

parallel search process requiring little information to search e�ectively. They have been used

in function optimization since their inception, optimizing large poorly-understood problems

that arise in many areas of science and engineering [5, 6].

6

Rule 0

C D

A A A

A A A

A A B

A

B
B

C

B
B

B

B
B

B

C

D D

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Rule 7

Figure 6: These eight rules comprise the �xed shape grammar.

7

A A

Start with A

Apply rule 0
A

A A

A A
A A

Apply rule 2
B

B

A A B
Apply rule 3

BB

C C

Figure 7: Applying rules 0, 2, 3 in sequence.

As already noted, the motivational idea behind GAs is natural selection implemented

through selection and recombination operators. A population of \organisms" (usually rep-

resented as bit strings) is modi�ed by the probabilistic application of the genetic operators

from one generation to the next. The basic algorithm where P (t) is the population of strings

at generation t, is given below.

t = 0

initialize P (t)

evaluate P (t)

while (termination condition not satis�ed) do

begin

select P (t+ 1) from P (t)

recombine P (t + 1)

evaluate P (t + 1)

t = t+ 1

end

8

Evaluation of each string which corresponds to a point in a state space is based on

a �tness function that is problem dependent. This corresponds to the environmental de-

termination of survivability in natural selection. Selection is done on the basis of relative

�tness and it probabilistically culls from the population those points which have relatively

low �tness. Recombination, which consists of mutation and crossover, imitates sexual re-

production. Mutation, as in natural systems, is a very low probability operator and just

ips a speci�c bit. Crossover in contrast is applied with high probability. It is a structured

yet stochastic operator that allows information exchange between points. Simple crossover

is implemented by choosing a random point in the selected pair of strings and exchanging

the substrings de�ned by that point. Figure 8 shows how crossover mixes information from

two parent strings, producing o�spring made up of parts from both parents. We note that

this operator which does no table lookups or backtracking, is very e�cient because of its

simplicity.

Crossover Point

Parents

Children

P1 P2

C2C1

Figure 8: Crossover of the two parents A and B produces the two children C and D. Each child

consists of parts from both parents which leads to information exchange.

Holland's fundamental theorem of genetic algorithms leads to the building block hypoth-

esis which states that genetic algorithms work near-optimally by combining certain types

of building blocks corresponding to partial solutions or designs [5].

Since GAs work with binary strings, we describe an encoding used by the genetic algo-

rithm on our two criteria optimization problem.

9

Decimal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Table 1: Mapping between decimal and three bit binary numbers

Consider the grammar in Figure 6. There are four classes of composition rules, one

associated with each of the cells labeled A, B, C, D. In total there are eight rules in these

four classes. In our �rst attempt at an encoding, a �xed length sequence of these rules

forms the genotype. Thus each member of the genetic algorithm's population is a string

of (rule) numbers representing a rule application sequence. Applying the rules in sequence

from left to right, produces a topology. Since genetic algorithms prefer binary strings, we

then transform the rule application sequence into a binary string.

Consider an example in which we �x the number of rule applications at 3, then the

string

2; 3; 6

corresponds to successively applying rules 2; 3 and 6. Before we convert this into a binary

string, the question of how many binary digits, or bits, are required for each decimal number

needs to be answered. Each position in the string can have values ranging from 0 to 7

corresponding to each of the rules in the grammar (�gure 6). Therefore we use three (3)

bits to represent the 8 possible rules (2

3

= 8). The mapping of the (decimal) numbers

between 0 and 7 and the equivalent binary numbers is given below.

10

The string 2; 3; 6 which is interpreted as applying rule 2 followed by applying rule 3 and

then rule 6, would be represented as the binary string

010011110

where each group of three bits represents a rule. Thus the �rst three bits (counting left

to right) 010 = 2 in decimal represents rule 2. The next three bits 011 = 3 in decimal

represents rule 3 and the last group of three bits 110 = 6 in decimal represents rule 6. The

binary string

001010011

represents another sequence of rule applications. With these strings as parents, crossover

can now produce non-viable o�spring as shown below

Parents 0100111 j 10 0010100 j 11

+

O�spring 0100111 j 11 0010100 j 10

Here the �rst o�spring 010; 011; 111

3

is not viable because rule 111 = 7 cannot be applied

after rule 011 = 3 since the left hand side of rule 7 (D) does not match the right hand side

of rule 3 (C).

In general non-viable o�spring are produced when crossover results in individuals that

do not belong to the search space of interest. In the context of grammars, if an individual

represents a sequence of rule applications resulting in a shape, it may call for the application

of a rule that is inappropriate in the current context. There are a few approaches to tackling

problems of this kind. We choose to change the encoding to one in which non-viable o�spring

cannot occur.

In the new encoding, we let the interpretation of a number in the string depend on the

right hand side of the last applied rule. (In the following discussion we use the numbers

0 - 7 in boldface to identify the 8 rules of our shape grammar in Figure 6.) In our new

3

For the convenience of the reader, the commas have been inserted to separate the groups of three bits.

11

encoding the �rst number in the string speci�es the starting label, that is, whether the

starting cell is of type A ; B ; C or D . The remaining numbers specify an application

sequence. Consider the string 0; 2. The �rst number 0 �xes the starting cell as a cell of

type A , The second number 2, now refers to the second rule with an A on the left hand

side. Therefore, in this encoding the number 2 in the second position of the string, refers

to rule 1, that is,

A �!

 �

� A A

Thus the interpretation of the numbers as rules is context dependent. A number's inter-

pretation depends on the result of the previous rule's application. This context dependent

encoding is summarized below.

1. if an A is the match for the left hand side

� 0 and 3 (00; 11 in binary) refer to rule 2

A �!

�!

A B�

� 1 (01 in binary) refers to rule 0

A �!

�!

A A�

� 2 (10 in binary) refers to rule 1

A �!

 �

� A A

2. if a B is the match for the left hand side

� 0 and 3 (00; 11 in binary) refer to rule 3

B �!

B

C�

#

� 1 (01 in binary) refers to rule 4

B �!

B

B�

#

12

� 2 (10 in binary) refers to rule 5

B �!

B�

B

"

3. if a C is the match for the left hand side

� 0� 3 (00 to 11 in binary) all refer to rule 6

C �!

 �

� D C

4. if a D is the match for the left hand side

� 0� 3 (00 to 11 in binary) all refer to rule 7

D �!

�!

D A�

With this encoding not only do we solve the problem of non-viable o�spring we also reduce

the number of bits needed to encode a shape as we use only two bits per rule instead of

three. Figure 9 depicts the mapping from a rule application sequence to a shape using this

encoding.

5 Results

We start with �nding the topology that will optimize our two criteria for a �xed shape

grammar. The set of optimal structures for this �xed grammar de�nes a attainable criteria

set corresponding to a space of behaviors. The goal is to �nd the execution order of the

grammar rules which will optimize a set of behaviors. In this �xed scheme, additive and

substitutive processes are absent.

The grammar is given in �gure 6. Thus starting with a label and selectively applying

the rules, we can arrive at a topology for a beam section after a predetermined number

of rule applications. From this grammar, shapes of interest can be derived after nine rule

applications, we therefore �x the number of rule applications at nine. Each of the cells in

13

the grammar has unit length and unit width. Weights, associated with labels, �gure in

the calculation of the moment of inertia simulating larger cross sectional areas, or di�erent

materials and are given below:

� A) 1 unit

� B) 2 units

� C) 3 units

� D) 4 units

Using the weights and cell dimensions, we can calculate the perimeter and moment of

inertia of the shapes generated by the genetic algorithm. The problem is therefore to �nd

the topology of a beam section such that the following two criteria are optimized:

� The moment of inertia (second moment of area) of the beam section which has to be

maximized.The moment of inertia is de�ned about the center of the beam section and

is given by

MI =

X

all cells

(area of cell

i

)(weight of cell

i

)

(distance of cell

i

from center)

2

� The perimeter of the beam section which has to be minimized. Since minimizing the

perimeter corresponds to maximizing \negative-perimeter", we maximized negative-

perimeter for our second criterion.

subject to the constraint that only nine cells be used.

5.1 Optimization in a �xed state space

The genetic algorithm starts with a randomly generated initial population of size 50. We

select two random individuals in the population for mating and recombine them to produce

two o�spring. The set of two parents and two o�spring form the set of solutions from which

we �nd the non-dominated solutions (the Pareto set) through exhaustive testing. Two

individuals from this Pareto set participate in the next generation of the genetic algorithm.

14

The GA completes a generation when repeated recombination and selection �lls up the �xed

size population of 50. 100 generations are su�cient for the genetic algorithm to converge.

Since the GA is a probabilistic algorithm we report results averaged over a number of runs

of the GA with di�erent random seeds. Results from a number of runs are usually used

in studies of genetic algorithm applications since the algorithm is probabilistic in nature

and a single run may not provide a true picture. The population size was chosen based on

the computing resources available and the need to have su�cient diversity at initialization

(See [7] for details on population sizing and convergence time).

The results of the optimization by the genetic algorithm are depicted graphically in

�gure 10. The Pareto optimal boundary is the line connecting the points of the pareto

set produced at the end of computation. Similarly, the inverse Pareto optimal boundary

connects the Inverse Pareto optimal set [8]. The space described by the Pareto optimal set

and its inverse is called the attainable criteria set. This is the shaded region in the �gure.

5.2 Optimization in an evolving state space

To �nd \more"-optimal solutions, we allow the problem formulation to change by allowing

the shape grammar to evolve in the direction of improving behavior. New grammars are

generated from the original grammar through mutation and crossover of rules. That is,

rules from the original grammar can serve as a basis for the generation of new grammar

rules and are produced by cutting and splicing the original rules. Consider the two rules

labeled \parents" in �gure 11, choosing a crossover points as indicated produces the rules

labeled \o�spring". Di�erent crossover points produce di�erent \o�spring" rules leading to

a number of di�erent grammars. Those grammars that are used to produce better (according

to our two criteria) structures proliferate along with the structures. Recombination therefore

allows the restructuring of the problem formulation, playing an important part in generating

structures that were not possible with the original problem formulation and that are \more"-

optimal.

Neither the commencing grammar nor the length of the rule application sequence is sig-

15

Decimal

Binary

St
ar

t w
ith

A

A A B

Ap
pl

y r
ul

e 2
 w

ith
 A

on
 th

e l
hs

A B

Rule 2

on
 th

e l
hs

B

B
B

B

Rule 5

A B

B

on
 th

e l
hs

B

Ap
ply

 ru
le

3 w
ith

B
B

C

Rule 3
Ap

pl
y r

ul
e 1

 w
ith

A B

B

C

0 2 2 3

00 10 01 11

Figure 9: How the genetic algorithm interprets a binary string to generate a topology for the beam

section

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Pareto optim
al set boundary

Inverse Pareto optimal set boundary

Perimeter

M
om

en
t o

f I
ne

rt
ia

20.00 18.00 16.00 14.00 12.00

Figure 10: The attainable criteria set for a �xed grammar. This corresponds to optimizing with a

�xed problem formulation.

16

A A B

CBB

A

A B

CB

B

Crossover point

Crossover point

A A B

CBB

A A

B

C

BB

Parents Offspring

Parents Offspring

Figure 11: Generating new grammar rules by crossover.

ni�cant. The ability to start with any grammar and evolve new grammars is the signi�cant

concept. The insight here is that changing the problem formulation can produce \more"-

optimal solutions. We chose to use genetic algorithms to implement this insight because,

unlike other search algorithms, they allow the combination of partial solutions into more

complete solutions.

When we allow the grammar itself to evolve, we need to encode the rules within the

genotype. Once again we chose an encoding that does not allow non-viable o�spring. Mak-

ing the grammar implicit, we encode a sequence of directions (up, down, left or right) and

labels (A;B;C; or D) to specify an individual. This added
exibility means we require 6

bits to specify the next move in generating a shape, 2 bits for direction and 2 bits each for

17

a label. The rules that we use are now of the form:

X �!

"

 !

#

Y Z

where the cell label X is speci�ed by the last applied rule, while the direction and new cell

labels Y and Z are speci�ed in the current move. In our encoding, we use the numbers

from 0 to 3 to specify the four types of cells

0 �! A

1 �! B

2 �! C

3 �! D

and use the same strategy to specify directions

0 �! #

1 �! "

2 �! !

3 �!

For example the string

0; 2; 3; 1; 1; 2; : : :

speci�es the following moves: For initialization, we ignore the �rst two numbers which

specify a direction and a cell label and start o� with 3 which represents D . The next

three numbers: 1; 1; 2 tell us to go up (1) after replacing the previous cell (D) by the cell

denoted by 1 which is B . Once we have replaced the previous cell we go up (as already

indicated) and label the cell C as indicated by the number 2. We continue in this way for

a total of nine moves. The result of the �rst move is shown below.

D

)

C

B

18

With this encoding, crossover always results in a legal string and allows changing the prob-

lem formulation while optimizing the topologies according to the two criteria. Figure 12

shows a part of a typical genotype and the resulting structure.

C

D

B

D

C

BD

A

0

2

3

00

10

10

Starting label, fixed by 0 = A

Decimal equivalent

11

2

3
Second label will be 3 (D)

01

1

01

1

Direction is upwards

Replace label D with label B

The next label will be C

10

2

Starting direction is 2 (->)

Next direction is 2 (->)

Replace label C with label 3 (D)

11 0 A
The next label will be A

00

00, 10, 11, 01, 01, 10, 10, 11, 00,

Resulting rule

Resulting rule

C C A

A B

C A
...................

The genotype, a binary string

Resulting phenotype, cross-section
of a beam.

Figure 12: A typical genotype string and its resulting structure.

The genetic algorithm now optimizes both the grammar and the topologies generated

according to the two criteria. The Pareto optimal boundary and the inverse Pareto opti-

mal boundary along with the attainable criteria set is shown in �gure 13. The attainable

criteria sets resulting from optimization with the �xed grammar and the evolving grammar

are di�erent. The di�erence is apparent when we superpose the two sets as in �gure 14.

The attainable criteria set produced by the evolving grammar contains topologies that are

\more"-optimal, with reference to our two criteria, than those produced by the �xed gram-

mar.

6 Discussion

Figure 14 shows the attainable criteria set for our �xed grammar and a grammar that

is allowed to evolve. The horizontally shaded area is the attainable criteria set de�ned

19

10.00

20.00

30.00

40.00

50.00

60.00

70.00

−20.00 −18.00 −16.00 −14.00 −12.00

Pareto optim
al set boundary

Inverse Pareto optimal set boundary

Perimeter

M
om

en
t o

f I
ne

rt
ia

Feasible
solution space

Figure 13: The attainable criteria set for an evolving grammar. This corresponds to allowing the

problem formulation to change while optimizing.

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Perimeter

M
om

en
t o

f I
ne

rti
a

20.00 18.00 16.00 14.00 12.00

Pareto Optimal set boundary
Fixed problem formulation

Pareto Optimal set boundary
Evolving problem formulation

Figure 14: Comparing attainable criteria sets when the problem formulation is �xed and when it

is allowed to change.

20

by the evolving grammar and the vertical shaded area is the attainable criteria set for

the �xed grammar. The two sets are not equal and the attainable criteria set depicting

feasible solutions for the evolving grammar shows a marked improvement. Let S

0

denote

the behavior space (attainable criteria set) for the structures de�ned by our �xed grammar

(�xed problem formulation), and S

n

the attainable criteria set when the grammar is allowed

to evolve (evolving problem formulation). Figure 14 indicates that:

S

0

6� S

n

and

S

0

T

S

n

6= �

This corresponds to a substitutive process. All genetic algorithm parameters were the same

for the runs with the �xed grammar and the runs with the grammar that is allowed to

evolve. The reason for the di�erence and improvement follows from the observation that

the heaviest label D is now allowed to propagate in the vertical direction, thus increasing

the moment of inertia. Since perimeter does not depend on weight, but only on shape, the

genetic algorithm converges upon grammars that increasingly use D labeled cells, leading to

larger values for the moment of inertia. Figure 15 shows how the genetic algorithm exploits

cells labeled D by increasing their utilization at the expense of the other labeled cells.

Figure 16 shows the grammar that was learned by this evolutionary process. This grammar

is capable of producing better designs than the commencing grammar and corresponds to

a new problem formulation. Figure 17 shows some of the beam sections produced during

the learning process. These could not be produced with the original grammar.

It is well recognized that there is a nexus between problem formulation and problem solu-

tion. Optimization processes depend on a �xed problem formulation although, increasingly,

the formulation is being expanded to include more decision variables in the optimization

process. This can be seen in the area of structural optimization as an example. The early

formulations were concerned with optimizing the cross-sectional area of the component

members. This was then expanded to include not just the cross-sectional area but also the

geometry of the structure as decision variables. Then, the formulation was further expanded

21

Generations

A’s

B’s

C’s

D’s

0 20 40 60 80 100

25

30

35

40

45

50

55

20

15

P
er

ce
nt

ag
e

ut
ili

za
tio

n
of

 c
el

l l
ab

el
s

Figure 15: The increase in cells labeled D at the expense of other cells.

to include the topology of the structure as a a decision variable. The changes in formulation

all occurred manually.

What has been presented here is an approach to automatic reformulation of a design

optimization problem, a reformulation that guarantees to improve the optimal solution

set. In the example presented, neither the commencing grammar nor the length of the

rule application sequence is signi�cant. The ability to start with any grammar and evolve

new grammars is the signi�cant concept. The insight here is that changing the problem

formulation can produce \more" optimal solutions. We chose to use genetic algorithms to

implement this insight because, unlike other search algorithms, they allow the combination

of partial solutions into more complete solutions. The concept is generic and potentially

widely applicable to Pareto optimization design problems that can be cast as evolutionary

systems.

References

[1] J. S. Gero, \Prototypes: a new schema for knowledge based design." Working Paper,

22

D
B

B

Starting Cell is

A A
D

A
A
B

B

B BC

D D B

D B C

D

C
B

B B
D

Figure 16: A new problem formulation. In other words, a new grammar produced by the genetic

algorithm that results in \more"-optimal beam sections.

23

B DA C

(I)

(II)

(III) (IV)

(V)

Figure 17: Beam sections produced during optimization while changing the problem formulation

Design Computing Unit, Department of Architectural and Design Science, University

of Sydney, NSW 2006, Australia, 1987.

[2] J. S. Gero, \Design prototypes: a knowledge representation schema for design," AI

Magazine, vol. 11, no. 4, pp. 26{36, 1990.

[3] G. Stiny and J. Gips, Algorithm Aesthetics: Computer Models for Criticism and Design

in the Arts. The Univ. of California Press, Berkeley and Los Angeles, California, 1978.

[4] J. H. Holland, Adaptation in Natural and Arti�cial Systems. The University of Michigan

Press, Ann Arbour, MI, 1975.

[5] D. E. Goldberg, Genetic Algorithms in Search,Optimization, and Machine Learning.

Addison-Wesley, Reading, MA, 1989.

24

[6] H. Adeli and N. T. Cheng, \Integrated genetic algorithm for optimization of space

structures," ASCE Journal of Aerospace Engineering, vol. 6, no. 4, pp. 315{328, 1994.

[7] S. J. Louis and G. J. E. Rawlins, \Syntactic analysis of crossover in genetic algorithms,"

in Foundations of Genetic Algorithms - 2 (D. Whitley, ed.), pp. 141{152, Morgan Kau�-

man, San Mateo, CA, 1992.

[8] A. D. Radford and J. S. Gero, Design by Optimization in Architecture, Building and

Construction. Van Nostrand Reinhold, New York, 1988.

25

