
-- --

For CISST’98 Conference Proceedings

(Bebis et. al.)



-- --

Using Genetic Algorithms for Model-Based Object Recognition

George Bebis, Sushil Louis and Yaakov Varol

Department of Computer Science
University of Nevada

Reno, NV 89557
bebis@cs.unr.edu

Abstract

We investigate the application of genetic algorithms for
recognizing real, planar, objects from two-dimensional
intensity images, assuming that the viewpoint is arbi-
trary. Given an object and an unknown scene, the goal of
object recognition is to find a geometric transformation
that brings subsets of features, making up the object, and
subsets of features, comprising the scene, into alignment.
In general, this problem can be solved through an
exhaustive search in one of the following two spaces: the
space of all possible matches between model feature and
scene features ("image space") or the space of all possi-
ble transformations ("transformation space"). In this
paper, we propose using genetic algorithms for searching
these spaces efficiently. Genetic algorithms are search
procedures which are known to perform quite well when
dealing with large search spaces, such as the ones
encountered in object recognition. A set of increasingly
complex scenes is used to demonstrate the performance
of the genetic search approaches. Our results are promis-
ing with exact and near-exact matches being found reli-
ably and quickly.

Ke ywords: object recognition, affine transformations,
genetic algorithms

1. Introduction
The problem of object recognition is a funda-

mental one in computer vision. During the last two
decades, a variety of approaches have been pro-
posed to tackle the problem of object recognition.
The most successful approach is in the context of
model-based object recognition, where the environ-
ment is rather constrained and recognition relies
upon the existence of a set of predefined set of
objects (models) [1]. Given an unknown scene,
recognition implies: (i) the identification of a set of
features from the unknown scene which approxi-
mately match a set of features from a known view
of a model object, and (ii) the recovery of the geo-

metric transformation that the model object has
undergone (pose recovering). In general, recogni-
tion is considerably more difficult because (i) due to
occlusions, certain model features will have no cor-
responding image features and, (ii) due to unknown
objects present in the scene, certain image features
will have no corresponding model features.

In general, object recognition approaches
operate in one of the following two spaces: the
image space [2] or the transformation space [3].
Image space techniques compute the geometric
transformation which aligns the model with the
scene by first matching a set of model features to a
set of scene features. The main problem with this
approach is that the number of model-scene feature
matches becomes exponential as the number of
scene features increases. On the other hand, trans-
formation space techniques search the space of the
parameters of the transformation directly, without
needing to match model features to scene features
first. Although this approach avoids matching
model features to scene features, searching the
transformation space is also very computationally
expensive due to the large number of possible trans-
formations. We elaborate more on these two
approaches in Section 2.

In this paper, we propose using Genetic Algo-
rithms (GAs) for recognizing real, planar, objects
from two-dimensional intensity images, assuming
that the viewpoint is arbitrary. In particular, we con-
sider two different approaches: genetic search in the
image space (GA-IS) and genetic search in the
transformation space (GA-TS). GAs are search pro-
cedures which have shown to perform quite well
when the space to be searched is very large [4][5].
Both the image and transformation spaces are large
making the use of GAs well suited. GAs operate
iteratively on a population of structures, each one of
which represents a candidate solution to the prob-
lem at hand. Each structure, is modified in a much
the same way that populations of individuals evolve



-- --

under natural selection. Variations among the indi-
viduals in the population result in some individuals
being more fit than others (i.e., better solutions).

In the past, GAs have been used to solve vari-
ous problems in computer vision. For example, they
have been used for feature selection [6], image seg-
mentation [7], and target recognition [8]. There
have also been several attempts to apply GAs in
object recognition [9][10]. In [9], GAs were used to
solve the object recognition problem which, how-
ev er, was formulated as a structural matching prob-
lem (i.e., graph matching problem). The results
reported in [7] are encouraging but are based on
artificial objects only. In [10], point patterns were
recognized using genetic search in the image space,
assuming similarity transformations (i.e., fixed
viewpoint). Although that work has similarities with
our first approach (GA-IS), here we consider the
more general case of affine transformations (i.e.,
unconstrained viewpoint). Also, our experiments
involve real objects whereas the results reported in
[10] are based on artificial data only. In a different
application, GAs were used for image registration
[11]. The main idea in that work was to apply
genetic search in a transformation space to register
a set of images. This approach has also similarities
with our second approach (GS-TS), however, here
we try to solve a different problem. Also, we do not
apply genetic search in the whole transformation
space but we restrict it in a subspace of the transfor-
mation space only. To find this subspace, we use a
procedure, that we have proposed recently [12][13],
to estimate the ranges of values that the parameters
of the transformation (affine) assume.

Although there are many problems for which
genetic algorithms can find a good solution in rea-
sonable time, there are also problems for which
they are inappropriate. These are mainly problems
for which it is important to find the exact global
optimum. It is well known that genetic algorithms
do not perform well in these cases. In the context of
object recognition, we expect genetic algorithms to
be able to perform at least a rough alignment of the
model with the scene. In fact, our experimental
results demonstrate that the genetic algorithms find
almost exact matches in the case of scenes with lit-
tle occlusion while they find near-exact matches
when scenes with more occlusion are considered.
Although near-exact matches might not solve the
recognition problem completely, they are useful in
the sense that can actually reduce the search space
to a limited domain. Then, a local optimization
technique can be used for finding an exact match.
The preliminary stage of rough alignment may help
preventing such methods from reaching a local min-
imum instead of the global one.

The paper is organized as follows: In Section
2, we review the problem of model-based object
recognition and we present some background mate-
rial. In section 3, we present the genetic object
recognition approaches. Specifically, we describe
the encoding mechanism, the selection scheme,
genetic operators, and fitness function used. Section
4 includes our experiments while our conclusions,
limitations, and extensions of the current work are
given in section 5.

2. Model-Based Object Recognition

2.1. Affine Transformations
Under the assumption of weak perspective

projection (i.e., orthographic projection plus scale),
two different views of the same planar object are
related through an affine transformation [2].
Specifically, let us assume that an object is charac-
terized by a list of "interest" points
(p1, p2, . . . , pM ), which may correspond, for
example, to curvature extrema or curvature zero-
crossings [14]. Let us now consider two views of
the same planar object, V and V ′, each one taken
from a different viewpoint. Also, let us consider two
points p = (x, y), p′ = (x′, y′), one from each view,
which are in correspondence (i.e., correspond to the
same model point). Then, the coordinates of p′ can
be expressed in terms of the coordinates of p,
through an affine transformation:

p′ = Ap + b (1)

where A is a non-singular 2 x 2 matrix and b is a
two-dimensional vector.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’a’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’b’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’c’

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

’d’

Figure 1. (a) a known view of a planar object (b)-(d)
some new, affine transformed, views of the same



-- --

object.

Writing (1) in terms of the image coordinates of the
points we have:

x′ = a11 x + a12 y + b1 (2)

y′ = a21 x + a22 y + b2 (3)

Figures 1(b)-(d) show affine transformed views of
the planar object shown in Figure 1(a).

2.2. Solution Spaces
Recognition approaches usually operate in

one of the following two spaces: the image space or
the transformation space. Image space techniques
proceed by first extracting a collection of scene fea-
tures. Then, a correspondence between these fea-
tures and a set of model features is hypothesized.
The transformation which aligns the model with the
scene is determined by this hypothesis. In the case
of affine transformations, at least three point corre-
spondences between the model and the scene are
required. Since there is usually no a-priori knowl-
edge of which model features correspond to which
scene features, recognition can be computationally
too expensive, even for relatively simple scenes.
Assuming M model points and S image points, the
maximum number of possible alignments is of the
order of O(M3S3). Usually, due to errors in the
location of the scene points due to noise, more than
three point correspondences are required to com-
pute the affine transformation more accurately. In
this paper, we consider only three point correspon-
dences. Our first approach to solve the object recog-
nition problem involves using genetic search in the
image space (GA-IS) to find the best set of three
point correspondences efficiently.

Alternatively, transformation space techniques
deal with the space of possible geometric transfor-
mations between the model and the scene. The
objective is to search the space of all possible trans-
formations in order to find a transformation which
would bring a large number of model points into
alignment with the scene. In the case of affine trans-
formations, the transformation space is six-
dimensional. Again, searching this space is very
computationally expensive due to the large number
of possible transformations. Our second approach to
solve the object recognition problem involves
applying genetic search in the transformation space
(GA-TS) to find the best transformation efficiently.

Due to the fact that the transformation space is
much larger than the image space, genetic search in
the transformation space will be significantly

slower. Without bounding the parameters of the
affine transformation, it will be rather difficult for
the GA to find a solution quickly. To speed up
genetic search, it is important that we restrict
searching in a subspace of the transformation space
only. Recently, we hav e proposed a method, based
on Singular Value Decomposition (SVD) [15] and
Interval Arithmetic (IA) [16], for estimating the
ranges of values that the parameters of affine trans-
formation can assume [12][13]. Here, we use this
approach to restrict genetic search in a subspace of
the transformation space only. We briefly describe
this approach in the next subsection.

2.3. Estimating the parameter ranges
Considering all the "interest" points which

comprise V and V ′, (2) and (3) can be rewritten as
follows:







x1

x2
. . .

xM

y1

y2
. . .

yM

1

1
. . .

1












a11

a12

b1






=







x′1
x′2
. . .

x′M







(4)







x1

x2
. . .

xM

y1

y2
. . .

yM

1

1
. . .

1












a21

a22

b2






=







y′1
y′2
. . .

y′M







(5)

Using matrix notation, we can rewrite (4) and (5) as
Pc1 = px′ and Pc2 = py′ correspondingly, where P
is the matrix formed by the x- and y-coordinates of
the points in V , c1 and c2 represent the parameters
of the transformation, and px′, py′, are the x- and y-
coordinates of V ′. Both (4) and (5) are over-
determined and can be solved using a least-squares
approach such as SVD [8]. Using SVD, we can fac-
tor P as follows:

P = UWV T (6)

where both U and V are orthogonal matrices, while
W is a diagonal matrix whose elements wii are
always non-negative and are called the singular val-
ues of P. The solutions of (4) and (5) are then given
by c1 = P+ px′ and c2 = P+ py′, where P+ is the
pseudo-inverse of P which is equal to
P+ = VW +UT , where W + is also a diagonal matrix
with elements 1/wii , if wii greater than zero (or a
very small threshold in practice), and zero other-
wise. Specifically, the solutions of (4) and (5) can
be written as follows ([15]):



-- --

c1 =
3

i=1
Σ(

ui px′

wii
)vi (7)

c2 =
3

i=1
Σ(

ui py′

wii
)vi (8)

where ui denotes the i-th column of matrix U and vi
denotes the i-th column of matrix V . Of course, the
sum should be restricted for those values of i for
which wii ≠ 0.

To determine the range of values for c1 and
c2, we assume that V ′ has been scaled such that its
x- and y-coordinates belong to a specific interval.
This can be done, for example, by mapping the
image of the unknown view to the unit square. In
this way, its x- and y- image coordinates are
mapped to the interval [0, 1]. To determine the
range of values for c1 and c2, we need to consider
all possible solutions of (4) and (5), assuming that
the px and py belong to [0,1]. To solve this prob-
lem, we use IA [16]. In IA, each variable is repre-
sented as an interval of possible values. Given two
interval variables t = [t1, t2] and r = [r1, r2], then
the sum and the product of these two interval vari-
ables is defined as follows [16]:

t + r = [t1 + r1, t2 + r2] (9)

t * r = [min(t1r1, t1r2, t2r1, t2r2), (10)

max(t1r1, t1r2, t2r1, t2r2)]

Applying the interval arithmetic operators to (7) and
(8) instead of standard arithmetic operators, we can
compute interval solutions for c1 and c2 by setting
px′=[0,1] and py′=[0,1]. In interval notation, we
want to solve the systems Pc1 = pI

x′ and Pc2 = pI
y′,

where the superscript I denotes an interval vector.
The solutions c I

1 and c I
2 should be understood to

mean c I
1=[c1: Pc1 = px′, px′ ∈pI

x′] and
c I

2=[c2: Pc2 = py′, py′ ∈pI
y]. It should be men-

tioned that since both (7) and (8) involve the same
matrix P and px′, py′ assume values in the same
interval, the interval solutions c I

1 and c I
2 will be the

same. Table 1 (first row) shows the range of values
computed for c1 in the case of the object shown in
Figure 1(a).

Table 1. The computed ranges of values.

Ranges of values
range of a1 range of a2 range of a3

original [-2.953, 2.953] [-2.89, 2.89] [-1.662, 2.662]
preconditioned [-0.408, 0.408] [-0.391, 0.391] [0.0, 1.0]

It can be shown that the width of the ranges
depends on the condition of the matrix P and that V
can be "preconditioned" to narrow the ranges of val-
ues [13]. By pre-conditioning we imply a transfor-
mation that can transform V to new view, yielding
tighter ranges of values. Table 1 (second row)
shows the new, tighter, ranges of values obtained by
pre-conditioning V .

3. Methodology
For testing, we used three scenes, Scene1,

Scene2, and Scene3, with the object to be recog-
nized being completely visible in Scene1 and
increasingly occluded in Scene2 and Scene3 (see
Figure 2). Our selection strategy was cross genera-
tional. Assuming a population of size N , the off-
spring double the size of the population and we
select the best N individuals from the combined
parent-offspring population for further processing
[17]. This kind of selection does well with small
populations and leads to quick convergence (some-
times prematurely). We also linearly scale fitnesses
to try maintain a constant selection pressure.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’scene3’
’int_scene3’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’scene2’
’int_scene2’

Figure 2. Scenes used in our recognition experi-
ments along with their extracted boundaries and
interest points.

3.1. Image Space Encoding
A simple encoding scheme where the identity

of the points to be matched made up the alleles in
the genotype gav e good results on all three scenes.
The parameters are provided in the next section.
This encoding is shown in Figure 3. Since three
pairs of points are needed to compute an affine
transformation, the chromosome contains the binary
encoded identities of the three pairs of points. The



-- --

model or object to be recognized was defined by 19
points requiring log 19 = 5 bits per point while the
scene had between 19 and 45 points and required
either 5 or 6 bits per point. We did not check for
repeated points and used simple two-point
crossover and point mutation.

Model pt 1 Model pt 2 Model pt 3 Scene pt 1 Scene pt 2 Scene pt 3

5 bits 6 bits

Figure 3. The chromosome contains the binary
encoded points to be matched between the model
and scene.

3.2. Transformation Space Encoding
A simple binary encoding scheme was also

used to represent solutions in the transformation
space. Each chromosome contains six fields with
each field corresponding to one of the six parame-
ters of the affine transformation. Since we have a
methodology to estimate the minimum and maxi-
mum value of each parameter, only the range (dif-
ference between the maximum and minimum val-
ues) needs to be represented. For example, a11
assumes values in the interval [−0. 408, 0. 408] (see
second row of Table 1). Thus, its range is
r = 0. 408 − (−0. 408) = 0. 816. Assuming that up to
two decimal points are important in the estimation
of the affine transformation, 82 possible values
(0. 816x100 + 1) must be encoded. This means
that 7 bits are enough to encode a11’s range. How-
ev er, 7 bits can be used to represent values from 0
to 127 while we only need to represent values from
0 to 81. As a result, it is possible for the genetic
algorithm to find solutions which are not within the
desired range (i.e., [0, 81]). To deal with this prob-
lem, a simple transformation is used to map values
in [0, 127] to values in [0, 81]. Assuming that W is
a binary encoded solution corresponding to a11,
a11’s actual value can be obtained as follows:

a11 = MIN (a11) + (82/27)) * Decimal(W )

where MIN (a11) = − 0. 408 and Decimal(W ) is the
decimal representation of W . The decoding of the
other parameters is performed in a similar way. The
constant (82/27) is used to map values from [0, 127]
to [0, 81]. A simple two-point crossover and point
mutation were used again.

3.3. Fitness ev aluation
We evaluate fitness of individuals by comput-

ing the back-projection error (BE) between the
model and scene. Specifically, to evaluate the good-
ness of the match specified by an individual in the
case of the GA-IS approach, we first compute the
parameters of the affine transformation which maps
the encoded model points to the encoded scene
points. This requires the solution of a system of six
equations with six unknowns (see (4) and (5)). After
the transformation has been computed, we apply it
to all the points of the model in order for us to back-
project the model onto the scene. Finally, we com-
pute the error, BE, between the back-projected
model and the scene. To compute BE, for every
model point we find the closest scene point and we
compute the distance dj between these two points.
Then, the back-projection error is

BE =
M

i=1
Σ d j

2.

Since we need to maximize fitness but minimize the
error, our fitness function is

Fitness = 10000 − BE

and changes the minimization problem to a maxi-
mization problem for the GA.

To evaluate individuals in the case of the GA-
TS approach, we follow exactly the same procedure
except that we do not have to solve for the transfor-
mation. This is because the transformation is
directly encoded in the chromosome and all that is
required is to decode it by following the procedure
outlined in subsection 3.2.

4. Simulations and results
All genetic algorithm parameters were identi-

cal except for the population size and running time.
We used a crossover probability of 0. 95, a mutation
probability of 0. 05, and a scaling factor of 1. 2. The
population sizes were set to 100, 200, and 500 for
scenes Scene1, Scene2, and Scene3 respectively.
The number of generations needed in the case of the
GA-TS approach were twice as many than in the
case of the GA-IS approach. In particular, less than
30 generations were required by the GA-IS
approach for Scene1, and less than 50 for Scene2
and Scene3. In the case of the GA-TS approach,
approximately 100 generations were required for
each scenes. This is probably justified by the fact
that the transformation space is larger than the
image space. However, although the GA-TS
approach required more generations to converge to



-- --

a good solution, this does not mean that it is neces-
sarily slower than the GA-IS approach. The reason
is that we do not have to solve for the affine trans-
formation in the case of the GA-TS approach since
it is directly encoded in the chromosomes. For each
scene, we ran each approach 10 times with different
random seeds. Performance plots indicate that the
GA very quickly gets close to the correct mapping
and then spends most of its time making little
progress.

Scene1 was chosen to be exactly the same as
our model, (i.e., the goal of the genetic algorithm
was to find the identity mapping). Exact mappings
(i.e., back-projection error equal to zero) were
found using the GA-IS approach in 9 out of 10 tri-
als. Figure 4 (top, left), shows the best and worst
solutions found. The solid lines corresponds to the
scene and the dashed lines correspond to the back-
projected models, using the solutions found. In the
case of the best solution, the back-projected model
and the scene overly each other and present a single
outline. Figure 4 (bottom, left), shows the best fit-
ness (solid line) and average fitness (dashed line)
corresponding to the best solution found. As it can
be observed, the GA-IS approach found the solution
within the first 10 generations or so. In the case of
GA-TS approach, almost exact mappings (i.e.,
small back-projection error but not equal to zero)
were found in all cases. Figure 4 (top, right), shows
the best and worst solutions found by this approach.
In this case, the dashed lines (bak-projected models)
do not overly with the solid line (scene) since the
back-projection error is non-zero as mentioned
above. Figure 4 (bottom, right), shows again the
best and average fitnesses for the best solution
found by the GA-TS approach. Comparing them
with the performance curves for the GA-IS case, it
is obvious that the convergence of the GA-TS
approach is slower.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

’SCENE_NO_HEADER’
’best_sol_out_of_10’

’worst_sol_out_of_10’

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

’SCENE_NO_HEADER’
’best_sol_out_of_10’

’worst_sol_out_of_10’

99960

99965

99970

99975

99980

99985

99990

99995

100000

0 5 10 15 20 25 30

’best_f_out_of_10’
’best_af_out_of_10’

99910

99920

99930

99940

99950

99960

99970

99980

99990

100000

0 20 40 60 80 100

’best_f_out_of_10’
’best_af_out_of_10’

Figure 4. Best and worst solutions found by GA-IS
(left) and GA-TS (right) on Scene1 (performance
plots are shown on the second row).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’SCENE_NO_HEADER’
’best_sol_out_of_10’
’worst_sol_out_of_10’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’SCENE_NO_HEADER’
’best_sol_out_of_10’

’worst_sol_out_of_10’

99955

99960

99965

99970

99975

99980

99985

99990

99995

100000

0 5 10 15 20 25 30 35 40 45 50

’best_f_out_of_10’
’best_af_out_of_10’

99940

99950

99960

99970

99980

99990

100000

0 20 40 60 80 100

’best_f_out_of_10’
’best_af_out_of_10’

Figure 5. Best and worst solutions found by GA-IS
and GA-TS on Scene2 (performance plots are
shown on the second row).



-- --

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’SCENE_NO_HEADER’
’best_sol_out_of_10’

’worst_sol_out_of_10’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

’SCENE_NO_HEADER’
’best_sol_out_of_10’

’worst_sol_out_of_10’

99950

99955

99960

99965

99970

99975

99980

99985

99990

99995

0 5 10 15 20 25 30 35 40 45 50

’best_f_out_of_10’
’best_af_out_of_10’

99945

99950

99955

99960

99965

99970

99975

99980

99985

99990

99995

0 20 40 60 80 100

’best_f_out_of_10’
’best_af_out_of_10’

Figure 6. Best and worst solutions found by GA-IS
and GA-TS on Scene3 (performance plots are
shown on the second row).

Results for Scene2 and Scene3 are shown in
Figures 5 and 6. The best and worst solutions found
by the two approaches in the case of Scene2 are
quite comparable. In the case of Scene3, the GA-IS
approach found the correct solution in all 10 trials
while the GA-TS approach missed the correct solu-
tion once. This case is actually shown in Figure 6
(top, right). It should be mentioned, however, that
Scene3 is considerably more difficult than Scene2
since a larger part of the boundary of the object we
are trying to recognize is missing. Additional exper-
iments have shown that the wrong solution can be
recognized correctly by increasing the population
size and the number of generations. Performance
plots in both cases illustrate similar results: GA-IS
converges faster to a correct solution than GA-TS.

Table 2 provides a summary of our results in
the case of the GA-IS approach. The first column
specifies the scene. The second and third columns
help describe the size of the test problems. The
columns list (in order) the number of scene points
and the size of the search space. The last two
columns indicate GA-IS effort in terms of the num-
ber of matches explored and the corresponding frac-
tion in the searched space.

Table 2. Summary of results (GA-IS approach).

Results
Scene Scene Points Number of Matches GA − ISmatches

Scene1 19 5,633,766 1800(0.0003)
Scene2 40 57,442,320 47,800(0.0008)
Scene3 45 82,500,660 133,250(0.0016)

In our experiments, M the number of model points
is 19, thus the number of possible triplets M3

M3 = 


19

3



= 969

The order of points matters in computing the total
number of possible matches between model and
scene points and is thus given by the expression

Total number of matches = 3! x M3 x S3

Referring again to Table 2, the third column lists the
total number of possible matches, and the last two
columns indicate the average number of matches
the GA-IS searched through (GA − ISmatches), for
each encoding. The number within parenthesis cal-
culate (Total number of matches/GA − ISmatches)
which is the fraction of the space searched by the
GA-IS.

Table 3 presents similar results for the case of
the GA-TS approach. Referring to Table 1 (second
row), the number of values we need to consider in
order to represent a11’s range is 82 (see also our
discussion in section 3.2). In the case of a12, we
need to consider 79 values while in the case of b1,
we need to consider 101 values. The values for a21,
a22 and b2 are the same (same interval solutions -
see our discussion in section 2.3). This means that
the total number of possible transformations is
822 x792 x1012=428, 079, 701, 284. The last column
of Table 3, indicates the number of matches the
GA-TS approach searched through. The number in
the parenthesis has the same meaning as before.

Table 3. Summary of results (GA-TS approach).

Results
Scene Number of Number of Transforms GA − TSmatches

Scene1 428,079,701,284 8010 (0.000000018)
Scene2 428,079,701,284 8760(0.00000002)
Scene3 428,079,701,284 8620(0.00000002)

5. Conclusions
In this paper, we considered using genetic

algorithms to recognize real, planar, objects from
intensity images, assuming that the viewpoint is
arbitrary. Two different approaches were consid-
ered: genetic search in the image space and genetic
search in the transformation space. Our experimen-
tal results demonstrate that genetic algorithms are a
viable tool for searching these spaces efficiently.
One limitation of our current work is that we con-
sider only one model object in our experiments. For
future research, we plan to consider more model
objects as well as to extend the proposed



-- --

approaches for recognizing 3D objects.

References

[1] R. Chin and C. Dyer, "Model-based recognition
in robot vision", Computing Surveys, vol. 18,
no. 1, pp. 67-108, 1986.

[2] D. Huttenlocher and S. Ullman, "Recognizing
solid objects by alignment with an image",
International Journal of Computer Vision, vol.
5, no. 2, pp. 195-212, 1990.

[3] D. Ballard, "Generalizing the hough transform
to detect arbitrary patterns", Pattern Recogni-
tion, vol. 13, no. 2, pp. 111-122, 1981.

[4] J. Holland, Adaptation in natural and artificial
systems, The University of Michigan Press,
1975, Ann Arbor.

[5] D. Goldberg, Genetic algorithm in search, opti-
mization, and machine learning, Addison-
Wesley, 1989, Reading, MA.

[6] G. Roth and M. Levine, "Geometric primitive
extraction using a genetic algorithm", IEEE
Tr ansactions of Pattern Analysis and Machine
Intelligence, vol. 16, no. 9, pp. 901-905, 1994.

[7] D. Swets and B. Punch, "Genetic algorithms for
object localization in a complex scene",
Michigan State University.

[8] A. Katz and P. Thrift, "Generating image filters
for target recognition by genetic learning"
IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 16, no. 9, 1994.

[9] M. Singh, A. Chatterjee, and S. Chaudhuri,
"Matching structural shape descriptions using
genetic algorithms", Pattern Recognition, vol.
30, no. 9, pp. 1451-1462, 1997.

[10] N. Ansari, M. Chen, and E. Hou, "A genetic
algorithm for point pattern matching", in
Dynamic, Genetic, and Chaotic Program-
ming, Branko Soucek and the IRIS Group
(Ed.), pp. 353-371, 1992.

[11] J. Fitzpatrick, J. Grefenstette, and D. Gucht,
"Image registration by genetic search", 1984
IEEE Southeastcon, pp. 460-464.

[12] G. Bebis and M. Georgiopoulos and N. da
Vitoria Lobo and M. Shah, "Learning affine
transformations of the plane for model-based
object recognition", Proceedings of the 13th
International Conference on Pattern Recogni-
tion (ICPR-96), vol. VI, pp. 60-64, 1996.

[13] G. Bebis and M. Georgiopoulos, M. Shah, and
N. da Vitoria Lobo, "Algebraic functions of
views for model-based object recognition",
6th International Conference on Computer

Vision (ICCV-98).

[14] F. Mokhtarian and A. Mackworth, " A theory
of multi-scale, curvature-based shape repre-
sentation for planar curves", IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, vol. 14, no. 8, pp. 789-805, 1992.

[15] W. Press et. al, Numerical recipes in C: the art
of scientific programming, Cambridge Univer-
sity Press, 1990.

[16] R. Moore, Interval analysis, Prentice-Hall,
1966.

[17] L. Eshelman, The CHC Adaptive Search Algo-
rithm: How to Hav e Safe Search When
Engaging in Non-traditional Genetic Recom-
bination, Proceedings of the Foundations of
Genetic Algorithms Workshop - 1, Morgan
Kauffman, Gregory J. E. Rawlins (ed.), 1990,
San Mateo, CA.

-- --


