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Abstract—Timely detection of power system events is a crucial
task, which can facilitate the implementation of remedial actions
to improve reliability, resiliency, and security of the system.
Meanwhile, the widespread deployment of phasor measurement
units (PMUs) makes it possible to develop data-driven event
detection techniques. However, relying purely on data without
incorporating domain knowledge for the event detection task in
power systems poses substantial security and stability risks due to
issues associated with data misinterpretation and model accuracy.
In this regard, we propose a real-time event detection method
using real-world PMU data by incorporating domain knowledge
to adequately capture the event signatures. Specifically, we track
the change in rank signatures of PMU data to accurately localize
the events. To optimize the detection process, we incorporate an
offline Bayesian optimization algorithm to tune the parameters by
efficiently searching for the best values. The experiments using the
real-world PMU dataset from a U.S. interconnection show that the
proposed event detection approach can efficiently detect the events
from PMU data streams with high accuracy.

Index Terms—Phasor Measurement Units (PMUs), Event De-
tection, Low-rank Property, Bayesian Optimization.

I. Introduction

With the ever-increasing deployment and installation of pha-
sor measurement units (PMUs), more advanced data-driven
monitoring and control techniques have become feasible, which
in turn facilitates the efficient, secure and reliable operation of
power system [1]. The benefits offered by PMUs include the
development of faster grid analytics and modeling, better grid
asset management, and sub-second automatic control actions, all
of which can help system operators avoid grid outages, enhance
operations, and reduce costs [2]. Moreover, the abundance of
fine-grained PMU data has paved the way for the system post-
event applications where advanced data-driven techniques are
developed to identify event types [3–5]. Nevertheless, due to the
massive scale of the streaming PMU data, it becomes difficult
for the system applications to accurately detect the events in
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a timely manner. Thus, developing an efficient real-time event
detection algorithm for the streaming PMU data is of paramount
importance for harvesting the benefits offered by PMUs.

Reviewing the existing literature reveals three major chal-
lenges in designing event detection algorithms in power system
applications. First is the lack of domain-dependent knowledge
in designing the detection algorithms. This issue stems from
the fact that most of the detection algorithms leverage model-
free methods based on statistical and signal processing tech-
niques [6–13]. However, issues related to data misinterpretation
can significantly degrade the performance of the model-free
methods due to their data-dependent nature [14–17]. Besides,
most of these techniques fail to show the precise start-time of
PMU-based events which is crucial for planing the remedial
actions by the system operators [18]. The next challenge is
to incorporate the spatio-temporal correlations of the PMU
data into the event detection algorithms [19], [20]. Most of
the existing literature fail to incorporate both of the features
in the detection process simultaneously. For example, spatial
correlations among different PMUs are ignored in the [10], [11],
[21] while temporal dependencies of the streaming PMUs are
not directly modeled in [7], [13]. Note that exploiting spatio-
temporal characteristics of PMU data can significantly improve
the detection accuracy. Finally, the third and most common
challenge is the lack of systematic approach for optimally tuning
of the parameters for the event detection algorithms. Previous
studies in the literature mainly leverage sensitivity analysis to
find the best set of parameters while there is no guarantee on the
optimality of the obtained parameters [21]. Besides, the larger
number of parameters makes it difficult to tune the parameters
using sensitivity analysis.

As reported in the existing literature (e.g., [7], [14–16]), the
PMU data shows a low-rank property in normal conditions.
In other words, there is a strong inter-dependency among data
from different PMUs, and if the data from different PMUs are
constructed as a matrix, the data can be accurately reconstructed
by using only a few principal components. However, the low-
rank property does not hold when events occur. Using such fea-
tures, a few studies (e.g., [14], [15]) have developed PMU data
driven event detection methods with a few model parameters.
However, these works leverage such features using only one
measurement signal (e.g., voltage magnitude) and heuristically
tune the model parameters. By analyzing real-world PMU data,
we observe that the change of the rank property of PMU data



can be observed from different measurement signals and such
changes across different measurement signals are different (see
Fig. 3 in the result section). Moreover, different event types
show different features. For example, voltage magnitude can
be used to detect line outage events, while frequency signal
can be used to detect frequency events. Thus motivated, this
paper aims to leverage the unique event features from multiple
measurement signals to enhance real-time event detection, and
tune the model parameters in an optimization framework.

Specifically, we leverage the unique rank features of PMU
data to construct rank signatures for different measurement
signals. For the rank signatures, we develop a threshold-based
OR rule such that an event is detected if one of the rank
signatures is greater than a threshold. Using the available
event logs, we introduce a Bayesian optimization algorithm
to tune the thresholds offline in order to optimize the event
detection accuracy. Using a real-world PMU dataset provided
by Department of Energy (DOE), experimental results show that
the accuracy of the proposed detection algorithm can be greater
than 99%. Moreover, the average running time of the proposed
detection algorithm can be less than 0.08 ms using a regular
computer, which is much faster than the PMU data generation
speed (e.g., 17 ms for PMUs with 60 samples per second).

The rest of the paper is organized as follows. Section II
presents the rank signatures based event detection method.
Section III evaluates the proposed method using a real-world
PMU dataset. The paper is concluded in Section IV.

II. Rank Signatures Based Real-time Event Detection
In this section, we first introduce the framework of the pro-

posed rank signatures based event detection. Then, we present
a three-step process for real-time event detection using the
streaming PMU data. Finally, we develop an offline Bayesian
optimization algorithm to optimize the detection algorithm’s
parameters.

A. Rank Signatures Based Real-time Event Detection
The framework of the proposed rank signatures based event

detection is illustrated in Fig. 1, which includes two stages:
event detection and parameter tuning. The event detection stage
constructs rank signatures using the relative change in the ratio
of the two largest singular values of the PMU measurement
matrices. Using a threshold-based OR rule, an event is detected
if one of the rank signatures is greater than a threshold.

The parameter tuning stage leverages Bayesian optimization
to optimally tune the parameters in the event detection al-
gorithm. The idea of Bayesian optimization is to model the
unknown function between the parameters and the detection
errors using a multivariate Gaussian distribution, and then use a
computationally cheap acquisition function to guide the search.
The main goal is to use all of the information available from
previous evaluations to update the Gaussian model. This results
in a procedure that can find the minimum of difficult non-
convex functions with relatively few evaluations, at the cost
of performing more computation [22]. The technical details of
the event detection algorithm and the parameter tuning process
are given in Section II.B and II.C, respectively.

Fig. 1: The overall framework of the proposed event detection algorithm using
Bayesian optimization for tuning parameters.

B. Event Detection Algorithm

By analyzing real-world PMU data, we observe that the low-
rank property of PMU data does not hold when a disturbance
occurs in the system (see Fig. 2), which can be quantified using
the singular values of PMU measurement matrices. Therefore,
we leverage this domain specific knowledge to develop a model-
free event detection method to accurately detect the system
events.

Let Mw
s (t) ∈ Cw×n be a PMU measurement matrix for a

measurement signal s ∈ S, which embraces the past w measure-
ments before the timestamp t from n PMUs. Here S denotes
the set of measurement signals, e.g., the voltage magnitude (i.e.,
Vpm) and the current magnitude (i.e., Ipm) of positive sequence
and frequency. We present a three-step process for detecting the
abnormal events from PMU data streams.

1) Step I: For Mw
s (t), we do the singular value decomposition

(SVD) and compute the ratio of the largest σ1 and the
second largest singular σ2 values, i.e., ηt = σ2

σ1
.

2) Step II: The average relative change of this ratio in the
time window w (i.e., rank signature) is calculated as

ξw
s (t) =

ηt − ηt−w

ηt−w · w
. (1)

3) Step III: Based on these ξw
s (t) from different signals, we

use a threshold-based OR rule to determine whether there
is an event. In other words, an event is detected, if one
of these ξw

s (t) is greater than a pre-determined threshold
θs.

Fig. 2 illustrates that a line outage event can be successfully
detected by tracking the changes in rank signatures using the
positive sequence voltage magnitude signal. The changes in the
low rank property of the measurement matrix are captured by
calculating the coefficient η and comparing with normal operat-
ing conditions. Any significant change indicates the occurrence
of an event in the system. This simple approach can capture
the exact start time of an event, which is crucial in planning



Fig. 2: Line outage detection using rank signatures, where coefficient η of the
positive sequence voltage magnitude signal is shown.

remedial control actions.

C. Bayesian Optimization for Tuning Parameters

The proposed event detection approach is model-free with the
parameters of the window size w and the detection thresholds
θ = {θs} of the measurement signals S. Using the available
event logs, we tune the parameters by a Bayesian optimization
algorithm, which can efficiently search for the best parameters.
Bayesian optimization works offline by assuming an unknown
function between the parameters and the detection errors. It
models the unknown function by sampling the parameters
based on a Gaussian process and running evaluations over the
detection algorithm to obtain a posterior multivariate Gaussian
distribution for this function. Finally, it leverages a computa-
tionally cheap acquisition function to guide the search towards
the best set of parameters by minimizing the detection error.
We introduce an acquisition function β(·) as the optimization
objective, which characterizes the expected detection error im-
provement under (θ,w):

β(θ,w) = E[(e(θ∗,w∗) − e(θ,w))+], (2)
where e(θ,w) denotes the detection error under (θ,w), and
e(θ∗,w∗) denotes the lowest detection error that has been
obtained so far. It is assumed that the detection errors are ran-
dom variables following the multivariate Gaussian distribution:
G ∼ N(m(θ,w),Cov(θ,w)) with mean m(θ,w) and covariance
Cov(θ,w). In each iteration, we find (θ,w) that maximizes the
acquisition function β(θ,w). Then, (θ,w) and the corresponding
e(θ,w) will be added into a sample set B, and the mean m(θ,w)
and covariance Cov(θ,w) of G will be updated accordingly [22].
The details of the Bayesian optimization based parameter search
are given in Algorithm 1.

III. Experimental Results

We present numerical experiments using the real-world PMU
dataset from the DOE to evaluate the performance of the
proposed event detection method. The detection results are eval-
uated using the available event logs. The computation platform
has a CPU of Intel Xeon E5-2630 v4 @ 2.20GHz and 64 GB
of memory.

A. Dataset and Event Description

This paper uses real-world PMU data from the Western Inter-
connection of continental U.S. transmission grid. The measure-

Algorithm 1 Bayesian optimization based parameter search

Initialization: Initialize B = {((θ,w), e(θ,w))}.
For each iteration:
1) Find the parameters (θ̂, ŵ) that maximize β, i.e.,
(θ̂, ŵ) = arg max((θ,w),e(θ,w))∈B β(θ,w).
2) Use (θ̂, ŵ) for event detection and compute the correspond-
ing detection error e(θ̂, ŵ).
3) Add ((θ̂, ŵ), e(θ̂, ŵ)) into the sample set B = B ∪

((θ̂, ŵ), e(θ̂, ŵ)), and update the parameters of m(θ,w) and
Cov(θ,w) using B.

ment data is collected from 23 PMU streams over a two-year
period (2016–2017). The sampling rate of PMUs is 60 samples
per second. The measurements used in the experiments are
voltage magnitude of positive sequence (i.e., Vpm), voltage angle
of positive sequence, current magnitude of positive sequence
(i.e., Ipm), current angle of positive sequence, and frequency.
We also calculate active power (i.e., P) and reactive power
signals (i.e., Q) by leveraging the available signals. Besides,
event logs are also provided for the period of two years which
contains 3427 total events, including 2830 line outages, 136
transformer outages, and 368 frequency events. For each event,
start timestamp, end timestamp, event type, event cause, and
event description are provided.

B. Event Detection Performance

In this section, we present the accuracy of the proposed
detection algorithm for each event type. First, the Bayesian
optimization algorithm is applied to tune the model parameters
using the event and non-event data. In this sense, three minutes
(i.e., 10800 samples) of data are extracted around the event
time according to the event logs. We split the extracted events
into 25% for training and 75% for testing. The training set
contains 50% event data and 50% non-event data, which are
used by the Bayesian optimization algorithm for tuning the
parameters. Here the non-event data are not recorded in the
event logs and are extracted from the PMU dataset with no event
signatures. Moreover, the proposed detection algorithm requires
one threshold value for each signal (i.e., θs) and a time window
value (i.e., w) as parameters. The test set also contains 50%
event data and 50% non-event data to evaluate the performance
of the detection algorithm.

Table I shows the detection results for different types of
events. The outputs from the event detection algorithm are
classified into TP (i.e., True Positive), TN (i.e., True Negative),
FP (i.e., False Positive), and FN (i.e., False Negative) instances.
The following metrics are used to evaluate performance of
the event detection algorithm, i.e., accuracy (ACC), precision
(PRE), recall (REC), and F1 score, which are defined as follows:

ACC = (TP+TN)/(TP+TN+FP+FN),
PRE = TP/(TP + FP),
REC = TP/(TP + FN),
F1 = 2 × (PRE × REC)/(PRE + REC),

where TP denotes number of events that are correctly classified
and FP denotes number of events that are misclassified as non-
events. The overall accuracy for all the event types is 99.79%



which is calculated based on the reported events from the event
logs. Note that the results in Table I are based on the optimized
parameters derived from the Bayesian optimization algorithm
for the fixed window size of w = 30. The suggested window
size value provides better accuracy results as well as lower
computational complexity.

TABLE I
Performance of the proposed detection algorithm for different event types

Event type TP FP FN TN ACC (%) PRE (%) REC (%) F1(%)
Line Event 2818 12 0 3427 99.8 99.57 100 99.78

Frequency Event 366 2 0 3427 99.94 99.45 100 99.72
Transformer Event 136 0 0 3427 100 100 100 100

All Events 3413 14 0 3427 99.79 99.6 100 99.79

C. Parameter Tuning

Fig. 3 illustrates the value of ξw
s (t) based on positive sequence

voltage magnitude and frequency signals for frequency, line, and
transformer events. The change in the value of ξw

s (t) is signifi-
cant around the event time, which indicates a disturbance in the
low-rank property of the measurement matrix. We leverage this
rank signature to detect the events in the streaming PMU data.
It should be noted that the value of ξw

s (t) around the event time
varies for different event types, which makes it challenging to
derive consistent thresholds for all the events. In this regard, we
leverage the Bayesian optimization algorithm to obtain the best
thresholds.

Table II shows the detection results for different sets of
parameters. The results indicate that the sub-optimal parameter
values can significantly degrade the performance of the detec-
tion algorithm. Hence, it is of paramount importance to leverage
a systematic approach (e.g., Bayesian optimization) instead of
using sensitivity analysis to derive the optimal parameter values
for the proposed event detection algorithm.

TABLE II
Performance of the proposed detection algorithm for different set of

parameters

Parameters set TP FP FN TN ACC (%) PRE (%) REC (%) F1(%)
{θVpm , θIpm , θ f , θP, θQ,w}

{0.2, 0.5, 0.5, 0.4, 0.3 , 30} 3413 14 0 3427 99.79 99.6 100 99.79
{0.2, 2.2, 0.5, 0.2, 0.3, 30} 3352 75 0 3427 98.9 97.8 100 98.88
{1, 1.8, 0.1, 0.1, 0.1, 30} 3156 271 1 3426 96.03 92.1 99.96 95.86
{0.7, 0.8, 1, 0.1, 0.1, 30} 2694 733 1 3426 89.29 78.6 99.96 88.00

{1.2, 0.3, 1.2, 0.3, 0.3, 30} 2689 738 0 3427 89.23 78.4 100 87.89
{1.5, 0.5, 1, 0.4, 0.4, 30} 2095 1332 0 3427 80.56 61.1 100 75.85

D. Computational Complexity

In this section, we evaluate the computational complexity
of the proposed event detection algorithm. The time com-
plexity of performing SVD operation on Mw

s (t) ∈ Cw×n is
O(w × n × min(w, n)). This means that adding more PMUs to
the measurement matrix linearly increases the running time of
the detection algorithm (assuming n >> w).

Fig. 4 shows the average running time of the detection
algorithm using different numbers of PMUs. In this experiment,
the detection algorithm scans through multiple event data (i.e.,
extracted three minutes data). The results indicate that the
average running time is fixed for different numbers of events.
However, increasing the number of PMUs in the measurement

matrix would increase the average running time for each sample.
Note that the average running time for each sample at w = 30 is
less than 0.08 ms which is much faster than the PMU data gener-
ation speed (i.e., 17 ms for PMUs with 60 samples per second).
If the number of PMUs is excessively high, the measurement
matrix can be partitioned into smaller matrices in order to
satisfy the real-time requirements. Since PMU data are low-
rank, combination of matrix decomposition methods (e.g., QR
decomposition) and SVD of smaller partitioned PMU matrices
can be leveraged to reduce the computational complexity of the
SVD process [23].

Table III shows the total running time for different values
of w. The results support our time complexity analysis where
the increase of the window size would significantly increase the
running time of the detection algorithm. Hence, it is important to
strike a balance between detection accuracy and computational
complexity by choosing a proper value for window size w. Note
that each event contains three minutes data and the detection
algorithm scans through the data for one event in 1.8, 2.4, 3.9
and 21.9 seconds for window size values of w = 30, w = 60,
w = 120, and w = 240, respectively. When a proper window size
is chosen (e.g., w = 30), the proposed event detection algorithm
can also be used for offline analysis on a large PMU dataset
to efficiently detect events. For example, it would take only
15 minutes to scan one day PMU data of almost 5.2 million
samples.

TABLE III
Total running time for different number of events

# of events Total running time (s)
w = 30 w = 60 w = 120 w = 240

1 1.8 2.4 3.9 21.9
10 18.3 24.6 39.3 207.1
20 36.1 49.8 78.7 424.3
50 89.1 120.7 197.8 1300.7

IV. Conclusions

In this paper, a real-time event detection framework is de-
veloped by using the rank signatures of the real-world PMU
data. Specifically, we construct measurement matrices based
on PMU measurement signals and track their rank signatures
over time. A threshold-based OR rule is developed such that an
event is detected if one of the rank signatures is greater than
threshold. To optimize the event detection accuracy, we intro-
duce a Bayesian optimization algorithm to systematically tune
the detection algorithm’s parameters. Numerical experiments
using the real-world dataset from the Western Interconnection
of the U.S power transmission grid show that the proposed
event detection algorithm achieves a detection accuracy over
99% while the running average time is well below PMU data
generation speed. Besides, a Bayesian optimization algorithm is
developed to tune the parameters, which significantly improves
the detection accuracy.
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Fig. 3: Frequency, line, and transformer event detection based on positive sequence voltage magnitude and frequency signals.
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Fig. 4: Average running time for different number of PMUs.
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