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Abstract—This paper studies event classification using imper-
fect real-world phasor measurement unit (PMU) data with scarce
event types (labels). By investigating the real-world PMU data,
it is observed that most real-world PMU data’s event type is
unknown, which makes it challenging to directly use such dataset
to build event classifiers as existing classification techniques
require high-quality training data with known event type (i.e.,
label). To address this challenge, a weakly supervised learning
based event classification approach is developed, which can use
noisy and low-quality PMU data for the training. First, data
quality issues are fixed using data preprocessing techniques and
then event features are constructed from the PMU data. Using
these features, a series of labeling functions are learnt to generate
initial estimates of the labels of large amounts of unlabeled PMU
data. As the labeling functions are learnt using the same data with
scarce labels, the label estimates from the labeling functions can
be correlated, noisy, and bias. To enhance these initial estimates,
a generative model is developed to characterize the dependencies
among the estimated labels, based on which better labels are
obtained for training event classifiers. Numerical experiments
using the real-world dataset from the Western Interconnection of
the U.S. power transmission grid show that the proposed weakly
supervised event classifier trained using the dataset with only 5%
labeled data can achieve 78.4% classification accuracy.

Index Terms—Phasor Measurement Units (PMUs), Event Clas-
sification, Weakly Supervised Learning

I. INTRODUCTION

A. Motivation
Thanks to the wide deployment of phasor measurement

units (PMUs), large amounts of data are being collected with
high sampling rates (e.g., 30 or 60 samples per second in the
U.S.), which provides golden opportunities to achieve high
level of situational awareness (e.g., real-time event detection
and classification). However, the collected data are often of
low quality, e.g., the real-world PMU data are noisy and
contain bad data, dropouts, and timestamp errors. Worse still,
most of real-world PMU data’s event types are unknown
(unlabeled). Recently, we have opportunities to analyze large
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amounts of real-world PMU data provided by DOE’s Big
Data Analysis of Synchrophasor Data program [1], where it is
observed that no event type (i.e., label) information is available
in the PMU data from the Texas Interconnection of continental
U.S. transmission grid. As the efficacy of existing techniques
(e.g., Convolutional Neural Network [2]) for training event
classifiers depends on high-quality PMU data with sufficient
known event types (i.e., labels), it requires significant efforts
from domain experts to maintain the event logs (i.e., to label
those data) and even hand-label the event types, which can
be prohibitively costly or impractical. One fundamental open
question is “How can we train a good event classification
model using imperfect real-world PMU data with scarce labels
in a less expensive and automated way?”

B. Related Works
To address the challenge of insufficient labeled PMU data,

some studies leverage synthetic data by simulation [3] or
Generative Adversarial Neural Networks [4] to train event
classification models. Although these approaches can increase
the number of labeled data for training event classifiers, the
event and grid characteristics hidden in the real-world PMU
data can hardly be represented by synthetic data. Thus, the
generalization of event classifiers trained using synthetic data
can be poor.

In order to leverage the large amount of unlabeled PMU
data, different unsupervised learning based labeling ap-
proaches have been proposed, e.g., clustering techniques [5],
low-rank techniques [6], PCA based techniques [7], [8], and
convolutive dictionary based techniques [9]. For unsupervised
learning, one key challenge is how to determine the correct
number of clusters (i.e., the number of event types). As
no labeled PMU data are utilized, it is challenging for the
unsupervised learning approaches to accurately capture the
features of different types of events. Thus, it is highly possible
that different types of events may be identified as the same
type or normal operations could be considered as events,
which would introduce modeling error in the developed event
classifiers.

Different from unsupervised learning, semi-supervised
learning (SSL) based methods (e.g., self-training [10], [11],
hidden structure semi-supervised machine [12], and adversar-
ial SSL [13]) have been proposed, which leverage both labeled
and unlabeled data. The idea of SSL is to use limited labeled
data to guide the labeling process for the unlabeled data, which
can be used for training event classifiers. However, these SSL
based methods rely on well-developed and non-customizable
models to label the unlabeled data, and the performance of
these models largely depends on the amount of available
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labeled data. With scarce labeled data, the performance of
SSL based methods could be poor. Moreover, the SSL based
methods cannot easily incorporate the domain knowledge on
different types of events, which can provide useful information
for event classification.

To address these challenges, a weakly supervised learning
for event classification is proposed, which can use noisy and
low-quality data for the training [14]. Recently, Snorkel [15],
an open-source system for quickly assembling training data
through weak supervision, has been developed; Snorkel em-
ploys the central principles of the data programming paradigm
[16], in which developers create labeling functions to label the
data and employ supervised learning techniques to assess the
accuracy of these labeling functions. Using weakly supervised
learning, the domain knowledge can easily be incorporated in
the labeling functions, which can enable the use of low-quality
unlabeled PMU data to create high-quality event classification
models.

C. Main Contributions

This paper develops a weakly supervised learning based
event classification approach that can train good event classi-
fiers using imperfect real-world PMU data with scarce labels.
The key idea is to estimate the labels of large amounts of
unlabeled PMU data for training event classifiers. Specifically,
a series of labeling functions based on the knowledge of
different types of events is first learnt, which can generate
initial estimates of the labels. As these labeling functions are
learnt using the same dataset with scarce labels, the estimated
labels are often correlated and the estimates can be noisy and
biased. Directly using such estimates cannot generate good
event classifiers. To enhance the accuracy of the estimated
labels, a generative model is developed to characterize the
correlations among the estimated labels, based on which the
estimated labels from labeling functions are combined in a
probabilistic manner to generate the “true” labels. Then, the
refined labels from the generative model are used to train event
classifiers. It is worth noting that using the proposed weakly
supervised learning approach, less efforts are required from
domain experts to maintain the event logs for building event
classifiers; by examining the classification results, domain
experts can further enhance the classification models. To the
best of our knowledge, this paper is the first to study weakly
supervised event classification in power system. The findings
in the paper can shed the light on using imperfect real-world
PMU data with scarce labels for event classification.

Using the two-year real-world PMU data from the Western
Interconnection of the continental U.S. transmission grid, the
performance of the proposed weakly supervised event classi-
fication approach is evaluated. The experimental results show
that when only 5% of data are labeled, the average accuracy of
the estimated labels using our approach can be around 70.9%
and the average accuracy of the corresponding event classifier
can achieve about 78.4%. This shows a promising way of
using weakly supervised learning for developing robust event
classification with extremely insufficient labeled data.

The rest of the paper is organized as follows: Section
II provides the details of the proposed weakly supervised
learning framework. Section III evaluates the performance

of event classifiers trained under the proposed framework.
Section IV concludes the paper.

II. WEAKLY SUPERVISED EVENT CLASSIFICATION

A. Weakly Supervised Learning Framework

Fig. 1: The weakly supervised learning framework.

A weakly supervised learning framework (see Fig. 1) is
proposed to estimate the labels of large amounts of unlabeled
PMU data for training event classifiers. As the raw PMU
data are often of low quality (e.g., bad data, dropouts, and
timestamp errors), the data quality issues are initially fixed
before using the proposed framework to estimate the labels,
where the data preprocessing proposed in our recent work [1]
is carried out and construct event features from the PMU data.
Then, the labels of unlabeled PMU data are estimated in two
main steps: labeling function learning and generative model
based label estimation.
• Labeling function learning. Labeling functions (LFs)

can be treated as event classifiers. Given the input PMU
data, a LF outputs a label (i.e., event type), e.g., line
outage, transformer outage, or frequency event. In the
proposed framework, multiple LFs are learnt to charac-
terize the features of different event types. Due to the
limited labeled PMU data, the learnt LFs can be noisy
and biased. Therefore, directly using the estimates from
the LFs cannot generate good event classifiers.

• Generative model. To enhance the accuracy of the
estimated labels from the LFs, a generative model is
developed. As LFs are learnt using the same dataset, the
estimated labels from the LFs are correlated. The goal of
the generative model is to characterize the dependency
structure of the LFs, based on which the estimated labels
are better combined from the LFs to generate better
estimates without knowing the ground truth.

Using the estimated labels from the generative model together
with the limited labeled data, event classifiers are trained,
where different off-the-shelf machine learning models (e.g.,
random forest) can be used. In the following, the details of
each main step in the proposed framework are discussed.

B. Labeling Function Learning

From our previous work [1], it is observed that the patterns
of the PMU measurement signals under different event types
are distinct, as illustrated in Fig. 2. For example, frequency
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Fig. 2: Illustration of constructed features for different event types.

events have a deep and wide V-shape; line outages have a
narrow spark; and transformer outages are similar to a step
function. Based on these event characteristics, multiple event
features F si (i.e., Amplitude/Area above or below the average,
Ramp up, Ramp down rate) are constructed [1] for each
measurement signal s (including the voltage magnitude and
the current magnitude of positive sequence and ROCOF) to
train event classifiers. The event types are jointly determined
by these features, not the single signal type. Because these
features can better capture the patterns of different events, the
event classifiers trained using these features are more robust
and accurate than event classifiers trained using the PMU
measurements directly [1]. Therefore, multiple LFs are learnt
based on these features of different types of events.

Let C = {(x1, y1), ..., (xl, yl),xl+1,xl+2, ...,xm} denote
the training dataset with m training samples, where xi denotes
the set of constructed features F si of the training sample
(event) based on our previous work [1]. In the training dataset
C, only l samples are labeled, where yi denotes the event label
for i = 1, ..., l. In practice, the number of labeled data is much
smaller than the total number of data, i.e., l� m.

Using these l labeled samples, multiple LFs are trained
using different machine learning models, e.g., Random Forest
(RF), Logistic Regression (LR), K-Nearest Neighbor (KNN),
and Gradient Boosting Decision Tree (GBDT). Specifically,
event features constructed from different measurement signals
(including voltage magnitude, current magnitude, and rate of
change of frequency (ROCOF)) and their combinations are
used to train different machine learning models. Table I shows
the possible LFs to build using different features and models,
where each LF is denoted as λj .

Suppose k LFs (i.e., {λj , j = 1, 2, ..., k}) are learnt using
the l labeled samples. The output of each LF, i.e., λj(xi)
for i = l + 1, ...,m, is the estimate of the event label of the
unlabeled data. Let Λ be the label matrix generated by the
k LFs for the unlabeled data, where Λi,j = λj(xi) for i ∈
[l + 1,m] and j ∈ [1, k]. For a given unlabeled data xi, the
outputs from k LFs (i.e., Λi,j for j ∈ [1, k]) can be treated as
noisy votes. From these noisy votes, it aims to estimate the

TABLE I
LFS BUILT BY DIFFERENT FEATURES AND CLASSIFIERS

Feature
Classifier

RF LR KNN GBDT

Voltage magnitude λ1 λ2 λ3 λ4
Current magnitude λ5 λ6 λ7 λ8

Rocof λ9 λ10 λ11 λ12

“true” label without knowing the ground truth.
As LFs are learnt using the same dataset with scarce

labels, the estimated labels (i.e., Λi,j) are often correlated
and the estimates can be noisy and biased. Simply using the
majority vote to combine Λi,j for j ∈ [1, k] cannot obtain
good estimate, as the majority vote assumes that the LFs are
independent. To enhance the accuracy of the estimated labels,
it is of paramount importance to characterize the correlations
among the LFs, based on which Λi,j for j ∈ [1, k] can be
better combined.

C. Generative Model

To better estimate the true labels Y using Λ, a generative
model is leveraged, where the output of each LF, i.e., Λi,j , is
modeled as a random variable. Using the observation matrix
Λ̄ (i.e., the outputs of Λ using the unlabeled data), the joint
distribution Prob(Λ, Y ) of this generative model is estimated.
Prob(Λ, Y ) will be used to estimate the accuracy of each LF,
based on how well Λ are combined to estimate Y . Specifically,
the joint distribution can be specified as:

Prob(Λ, Y ) ∝ exp

(
m∑

i=l+1

∑
d∈D

θdφd(Λi, yi)

)
, (1)

where Λi = (Λi,1, ...Λi,k) denotes the vector of the estimated
labels from k LFs for the training sample i. D is a set of
tuples that describe the dependencies between LFs, denoted
by φd(Λi, yi), and θd denotes how correlated the LFs are. For
example, if d refers to the dependency between two LFs j1 and
j2, then φd(Λi, yi) = φj1,j2(Λi, yi) = 1{Λi,j1 ,Λi,j2}, where
the indication function 1{Λi,j1 ,Λi,j2} represents whether LFs
j1 and j2 depend on each other.

As Y is unknown for the unlabeled data, therefore the
distribution Prob(Λ) will be estimated. In [17], it is proved
that using an unlabeled input dataset of size greater than
a threshold, it is sufficient to recover the exact dependency
structure. As the number of possible dependencies increases
at least quadratically with the number of LFs, the approach
in [17] is leveraged to efficiently learn the dependencies
by changing the optimization objective to the log marginal
pseudolikelihood of output of a single LF λj conditioned on
the outputs of the other LFs λ\j using L1 regularization, i.e.,

arg min
θ={θd,∀d∈D}

(− log Prob(Λ̄j |Λ̄\j) + ε||θ||1)

= arg min
θ

(−
m∑

i=l+1

log
∑
yi

Prob(Λ̄i,j , yi|Λ̄i\j) + ε||θ||1),

(2)

where ε > 0 is a hyperparameter. This problem can be solved
efficiently using the stochastic gradient descent method [17].
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After solving (2), the dependencies based on θ that have a suf-
ficiently large magnitude to estimate Prob(Λ, Y ) are selected.
For each unlabeled sample i, the estimated label ŷi can be
obtained by ŷi = arg maxyi Prob(yi|Λ̄i) for i = l + 1, ...,m.
In this paper, a python package Snorkel [15] is applied to train
this model.

D. Weakly Supervised Event Classification
Using the estimated labels based on the generative

model, the large amount of unlabeled PMU data is lever-
aged to train event classifiers, where different machine
learning models can be used. In this study, we com-
pare the performance of different machine learning mod-
els using the training data with the estimated labels, i.e.,
{(x1, y1), ..., (xl, yl), (xl+1, ŷl+1), ..., (xm, ŷm)}. Based on
the experiments (see Section III-C), it is observed that the
Random Forest model performs best.

III. CASE STUDY OF REAL-WORLD PMU DATA

A. Experimental Setup

1) Data: This paper uses real-world PMU data from the
Western Interconnection of continental U.S. transmission grid.
The measurement data is collected from 23 PMU streams
over a two-year period (2016–2017). The sampling rate of
PMUs is 60 samples per second. The measurements used in
the experiments are voltage magnitude of positive sequence,
current magnitude of positive sequence, frequency, and rate
of change of frequency (ROCOF). Besides, event logs for the
period of two years are provided, where start timestamp, end
timestamp, event type, event cause, and event description for
each event are provided.

In the experiments, 3,877 events are used in the event logs,
including 2,507 line events, 921 transformer events, and 449
frequency events. For these events, these events are randomly
split in each month into 80% for training (i.e., 3098 events)
and 20% for testing (i.e., 779 events), in order to ensure the
events across the entire year are fairly distributed between the
training set and the testing set. For the training data, 5% data
are preserved as labeled data (i.e., 154 events) and remove the
labels for the remaining training data, in order to evaluate
the performance of the proposed weakly supervised event
classification. The event classification performance have been
tested over 20 runs, and in each run, the data are randomly
selected.

2) Evaluation Metrics: Four metrics are used to evaluate
the classification performance, i.e., accuracy (ACC), precision
(PRE), recall (REC), and F1 score, which are defined as
follows:

ACC = (TP+TN)/(TP+TN+FP+FN),
PRE = TP/(TP + FP),
REC = TP/(TP + FN),

F1 = 2× (PRE× REC)/(PRE + REC),

where TP (i.e., True Positive) and TN (i.e., True Negative)
denote the number of positive and negative instances that are
correctly classified, respectively. FP (i.e., False Positive) and
FN (i.e., False Negative) denote the number of misclassified
negative and positive instances, respectively.

B. Performance of Weakly Supervised Event Classification

TABLE II
PERFORMANCE OF WEAKLY SUPERVISED EVENT CLASSIFICATION UNDER

DIFFERENT MODELS USING THE TESTING DATA.

Model Accuracy (%) Precision (%) Recall (%) F1 (%)
RF 78.4±1.0 81.2±3.0 63.8±2.8 63.9±1.3

GBDT 77.5±3.3 77.2 ±7.5 62.6 ±10.2 64.8 ±8.5
SVM 71.1±0.1 35.7±21.4 33.63±0.9 28.3±2.0
LR 71.6±3.4 58.9±26.07 38.4±4.7 36.0±6.8

KNN 74.1±2.0 69.2±6.0 54.7±8.4 56.0±7.9
DT 74.9±3.3 70.6±7.3 62.1±8.4 64.3±6.8

Table II compares the average performance of different
machine learning models over 20 runs, including Random
Forest (RF), Gradient Boosting Decision Tree (GBDT), Sup-
port Vector Machine (SVM), Logistic Regression (LR), K-
Nearest Neighbor (KNN), and Decision Tree (DT). Each
model is trained using the training data with the estimated
labels obtained using the weakly supervised learning and then
tested using the testing data. It is observed that RF outperforms
the other models in terms of accuracy, precision, and recall,
and F1 score of RF is close to GBDT but with less variation.
Thus, RF is used to train the weakly supervised event classifier.

Fig. 3: Confusion matrix of the weakly supervised RF model for the testing
data.

Fig. 3 illustrates the confusion matrix of the weakly super-
vised event classifier using RF, where the rows represent the
estimated event type, the columns represent the true event type.
The diagonal and off-diagonal cells in Fig. 3 represent the
events that are correctly and incorrectly classified, respectively.
From Fig. 3, it is observed that with only 5% labeled data, the
proposed weakly supervised event classification can correctly
classify the majority of the events (i.e., 78.4% on average).
The misclassified events are due to the facts that 1) the patterns
of line events and transformer events are similar and 2) the
patterns in the ROCOF signal of some frequency events are
buried by noise due to low signal-to-noise ratio (SNR). With
scarce labeled data, it is challenging for the event classifier
to correctly classify these events. It is believed that domain
experts can further enhance the classification performance by
examining the classification results, e.g., adding additional LFs
using domain knowledge.

C. Weakly Supervised Learning vs. Semi-Supervised Learning

The performance of the proposed weakly supervised event
classification with the semi-supervised learning based event
classification approaches in [11] are compared. For the semi-
supervised learning, the self-training under different models
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in [11] (i.e., LF, KNN, SVM, DT, Naive Bayes (NB), and the
majority vote (Maj) based on these 5 models) are compared.

TABLE III
THE ACCURACY OF THE ESTIMATED LABELS UNDER DIFFERENT MODELS

FOR THE 95% UNLABELED TRAINING DATA.

Model Label Accuracy(%)
Our Method 70.9±0.6

Semi-DT 62.1±1.2
Semi-NB 64.7±0.3

Semi-SVM 64.7±0.1
Semi-LR 64.2±0.3

Semi-KNN 65.7±2.3
Semi-Maj 64.7±0.8

Table III compares the accuracy of the estimated labels
using the proposed weakly supervised learning and the semi-
supervised self-training under different models over 20 runs. It
is observed that our method outperforms the semi-supervised
models. Compared with the semi-supervised models, the pro-
posed weakly supervised learning can easily incorporate the
domain knowledge using different LFs, and thereby enhance
the accuracy of the estimated labels.

TABLE IV
TESTING PERFORMANCE UNDER DIFFERENT MODELS.

Model Accuracy (%) Precision (%) Recall (%) F1 (%)
Fully supervised 94.3±0.1 95.1±0.3 87.9±0.2 91.0±0.2

Our Method 78.4±1.0 81.2±3.0 63.8±2.8 63.9±1.3
Semi-DT 69.9±1.4 74.3±1.2 56.0±2.5 48.9±2.5
Semi-NB 71.6±0.1 58.2±19.1 34.1±1.3 29.2±6.2

Semi-SVM 71.6±0.1 57.2±0.1 34.0±0.1 29.1±0.1
Semi-LR 71.3±1.5 54.4±25.7 35.2±9.9 31.3±13.8

Semi-KNN 73.3±0.5 79.5±5.9 42.8±10.8 43.6±13.7
Semi-Maj 71.6±0.3 58.9±31.7 34.1±1.4 29.2±2.7

Table IV compares the average performance of the weakly
supervised event classification using RF and different semi-
supervised approaches. The fully supervised learning case in
our recent work [1] is also provided, where all the labels are
provided in the training data. From Table IV, the proposed
weakly supervised event classification outperforms the other
semi-supervised models in all metrics by at least 5.1%, 1.7%,
7.8%, and 15% improvement in accuracy, precision, recall
and F1 score, respectively. Compared to the fully supervised
case, the weakly supervised event classification can obtain
satisfactory results using only 5% labeled training data. Due
to the scarce labeled data, the label estimation errors would
degrade the performance of the event classification models.
In the future, the use of other LFs developed using domain
knowledge will be explored to enhance the classification
performance.

IV. CONCLUSION

In this paper, a weakly supervised learning framework
for training event classifiers using imperfect real-world PMU
data with scarce labels is developed. One salient merit of
the proposed framework is easy to incorporate the domain
knowledge by adding labeling functions so that domain ex-
perts can further enhance the classification models. Another
advantage is that less efforts are required from domain experts
to maintain the event logs for building event classifiers.
Numerical experiments using the real-world PMU data from
the Western Interconnection of the U.S power transmission
grid show that the event classifiers trained under the proposed

framework when the training data has only 5% labeled data, a
satisfactory classification accuracy of 78.4% is still achieved.
In conclusion, the proposed framework offers a promising way
to train event classifiers using scarce and low-quality labeled
PMU data.
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