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Abstract—This paper studies robust event classification using
imperfect real-world phasor measurement unit (PMU) data. By
analyzing the real-world PMU data, we find it is challenging
to directly use this dataset for event classifiers due to the
low data quality observed in PMU measurements and event
logs. To address these challenges, we develop a novel machine
learning framework for training robust event classifiers, which
consists of three main steps: data preprocessing, fine-grained
event data extraction, and feature engineering. Specifically, the
data preprocessing step addresses the data quality issues of PMU
measurements (e.g., bad data and missing data); in the fine-
grained event data extraction step, a model-free event detection
method is developed to accurately localize the events from the
inaccurate event timestamps in the event logs; and the feature en-
gineering step constructs the event features based on the patterns
of different event types, in order to improve the performance and
the interpretability of the event classifiers. Based on the proposed
framework, we develop a workflow for event classification using
the real-world PMU data streaming into the system in real
time. Using the proposed framework, robust event classifiers
can be efficiently trained based on many off-the-shelf lightweight
machine learning models. Numerical experiments using the real-
world dataset from the Western Interconnection of the U.S power
transmission grid show that the event classifiers trained under
the proposed framework can achieve high classification accuracy
while being robust against low-quality data.

Index Terms—Phasor Measurement Units (PMUs), Event Clas-
sification, Event Detection, Feature Engineering

I. INTRODUCTION

A. Motivation and Related Works

Recent years have witnessed the booming deployment of
phasor measurement units (PMUs) [1]. More than 2500 PMUs
are installed in the North American power system. Com-
pared to traditional supervisory control and data acquisition
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(SCADA) systems, PMUs are of much higher sampling rates
(e.g., 30 or 60 samples per second in the U.S.), which pro-
vides golden opportunities to achieve high level of situational
awareness (e.g., real-time event detection and classification),
in order to prevent large-scale blackouts (e.g., [2], [3]). In this
paper, we study robust event classification using real PMU
data.

Much effort has been made on the development of PMU
based event detection and classification. For PMU based event
detection, many methods have been developed (e.g., [4–11]).
Compared to PMU based event detection, large amounts of
high-quality labeled PMU datasets are critical for the devel-
opment of PMU based event classification, especially for the
development of neural network based classifiers. However,
based on our observations from large amounts of real-world
PMU data (see Section II), high-quality labeled PMU datasets
are not available in practice. In fact, many existing works on
PMU based event classification consider a small amount of
PMU data with a few labeled events. For example, in [12],
the dataset consists of only 32 labeled events; in [13], only 4
PMUs are used in case studies; in [14], only 57 labeled line
events are used to train an event classifier; in [15], hundreds
of labeled frequency events from the FNET/GridEye system
are used to train a Convolutional Neural Network (CNN)
based frequency event detector. The generalization of event
classifiers trained using a small dataset can be poor.

To address the challenge of insufficient PMU data, some
studies leverage synthetic data generated by simulation or
neural networks. For instance, in [7], simulated data with
man-made noises are used; in [16], Generative Adversarial
Networks (GAN) are used to generate synthetic event data.
While synthetic data can increase the amounts of data for
training event classifiers, the events and grid characteristics
hidden in the real PMU data can hardly be represented by
synthetic data. Thus, the generalization of event classifiers
trained using synthetic data can still be poor.

This paper leverages large amount of real-world PMU
data from the Western Interconnection of continental U.S.
transmission grid (see the data description in Section II-A)
for the development of event classifiers. By analyzing this
large dataset, we find that it is challenging to directly use this
dataset to train event classifiers due to the low data quality.
Specifically, the real PMU data is noisy and contain bad data,
dropouts, and timestamp errors. The timestamps of labeled
events provided in the event logs are inaccurate. Though the
entire dataset contains measurements from many PMUs over
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a two-year period, the total number of labeled events is only
a few thousands and the distribution of different event types
is highly imbalanced. Due to these issues, the performance of
off-the-shelf machine learning models directly trained using
such dataset can be significantly degraded.

Recently, there have been several attempts using large-scale
real PMU data to develop event classifiers based on neural
networks (e.g., auto-encoder model [17], Convolutional Neural
Network (CNN) [18], Hierarchical CNN [19], spatial pyra-
mid pooling (SPP)-aided CNN [20], and information loading
enhanced Deep Neural Network (DNN) [21]). However, the
hyperparameter tuning of the neural network based approaches
is challenging and the training time is long. Though good
classification results using neural networks are reported [17],
[18], [20], [21], the interpretability of neural networks is low,
not to mention the adversarial vulnerability of neural networks.
Compared with neural network based event classifiers, the
proposed machine learning framework can train robust event
classifiers with good interpretability and low training cost
based on our experiments in Section IV (e.g., it takes only a
few seconds to train event classifiers with better performance
and more robust than the neural network based classifiers in
[20]).

B. Main Contributions

This paper develops a novel machine learning framework
for training event classifiers using large-scale imperfect real-
world PMU data, which consists of three main steps: data
preprocessing, fine-grained event data extraction, and feature
engineering. The goal is to obtain high-quality labeled PMU
training data from the low-quality real PMU data. Specifically,
the data preprocessing step addresses the data quality issues
of PMU measurements (e.g., bad data and missing data); the
fine-grained event data extraction step accurately localizes
the events from the inaccurate event timestamps in the event
logs by using a model-free event detection method developed
based on the low-rank property of PMU data; and the feature
engineering step constructs the event features based on the
patterns of different event types, in order to improve the
performance and the interpretability of the event classifiers.
Based on the proposed machine learning framework, we also
develop a workflow for event classification using the real
PMU data streaming into the system in real time. One salient
merit of the proposed framework is that large-scale real PMU
data is reduced to a small set of event features, which can
be used to efficiently train many off-the-shelf lightweight
machine learning models. As the features are constructed
based on the event patterns, the contribution of any single
PMU measurement to the features is low, which can effectively
mitigate the impact of bad and missing data and improve the
robustness of the event classifiers.

Using the two-year real-world PMU data from the Western
Interconnection of continental U.S. transmission grid, we
evaluate the performance of the proposed machine learning
framework. Many off-the-shelf lightweight machine learning
models can be efficiently trained in our framework and achieve
good performance. For example, the training time of the

Random Forest model is less than 2 seconds while the testing
accuracy of the Random Forest model is 94%. Moreover, our
framework demonstrates a strong robustness against missing
data. Even under the missing rate of 50%, the accuracy of the
Random Forest model can still achieve 87%. In summary, the
proposed machine learning framework provides a promising
way to train robust event classifiers with good interpretability
and low training cost.

The rest of the paper is organized as follows: Section II
describes the real-world PMU data used in this paper and
elaborates the key challenges of using real PMU data for
the development of event classifiers. Section III provides the
details of the proposed machine learning framework. Section
IV evaluates the performance of event classifiers trained under
the proposed framework. Section V concludes the paper.

II. DATA DESCRIPTION AND KEY CHALLENGES

In this section, we introduce the real-world PMU data used
in this study and identify the key challenges of using this
dataset for the development of event classifiers.

A. Data Description
This paper uses real-world PMU data from the Western

Interconnection of continental U.S. transmission grid. The
dataset is complied by the Pacific Northwest National Lab-
oratory (PNNL) to anonymize the data such that proprietary
information (e.g., PMU locations, event locations, and the
system topology) is unavailable. The dataset contains mea-
surements from 43 PMUs over a two-year period (2016–2017).
The sampling rates of PMUs are either 30 or 60 frames per
second. The size of the dataset is about 5 TB (stored in Parquet
format), which contains over 93 billion records. In each
record, the measurements contain: 1) coordinated universal
time (UTC), 2) voltage magnitude of positive sequence, A
phase, B phase, and C phase, 3) voltage angle of positive
sequence, A phase, B phase, and C phase, 4) current magnitude
of positive sequence, A phase, B phase, and C phase, 5) current
angle of positive sequence, A phase, B phase, and C phase, 6)
frequency, 7) rate of change of frequency (ROCOF), 8) PMU
status flag, and 9) anonymized PMU ID.

Besides the raw PMU measurements, event logs are pro-
vided for the development of event classifiers. In the event
logs, four types of events (i.e., line outage, transformer outage,
frequency event, and oscillation event) are recorded. For each
event, start timestamp, end timestamp, event type, event cause,
and event description are provided. The total number of events
in the event logs is 4,854, including 3,667 line outages, 621
transformer outages, 465 frequency events, and 100 oscillation
events.

B. Key Challenges
By analyzing the real-world PMU measurements and the

event logs, we find that it is challenging to directly use this
dataset to develop event classifiers as the data quality is low
and off-the-shelf machine learning approaches require high-
quality training data. Specifically, we face the following major
challenges of using this dataset for the development of event
classifiers.
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Fig. 1: PMU data availability.

Fig. 2: SNR of voltage magnitude of positive sequence of different PMUs.

1) Incomplete and noisy PMU measurements: Fig. 1 illus-
trates the availability of PMU data, where the data from some
PMUs are completely missing in certain months. Moreover,
the current magnitude of A phase, B phase and C phase and the
current angle of A phase, B phase and C phase are unavailable
in most cases. Fig. 2 illustrates the signal-to-noise ratio (SNR)
of PMUs calculated based on [22]. According to [22], 45
dB can be used as a threshold to indicate whether the PMU
measures are noisy. As shown in Fig. 2, three PMUs are below
45 dB. Therefore, the quality of PMU measurements needs to
be accounted for when preparing for the training dataset.

2) Inaccurate event timestamps in the event logs: By ana-
lyzing the event logs, we observe that the timestamps of events
provided in the event logs are inaccurate. Figs. 3–5 illustrate

the PMU measurements during different events, where the red
vertical line indicates the start time of the event provided in
the event logs. For example, in Fig. 3, the actual start time of
the frequency event is around 19:43:00, while the start time
provided in the event logs is 19:42:00. Clearly, the timestamps
in the event logs are not accurate. If such timestamps are used
for event extraction, with high probability, the event features
would be missing and therefore the performance of event
classification would be degraded.

3) Insufficient and imbalanced training data: The total
number of events in the event logs is only a few thousands,
and 75% of the events are line outages. Directly applying off-
the-shelf machine learning models on such dataset can lead to
overfitting issues, especially for neural network based models,
where the parameters of neural networks can be much larger
than the number of events in the training dataset. To address
this challenge, recent works on neural networks (e.g., [20],
[21]) leverage data augmentation and report good classification
results; however, the training time of neural networks is long
and the interpretability of neural networks is low. As shown in
the next section, different types of the events exhibit distinct
features, based on which good machine learning models with
better interpretability and low training cost can be built.

III. A MACHINE LEARNING FRAMEWORK FOR ROBUST
EVENT CLASSIFICATION

A. The Machine Learning Framework for Real-world PMU
Data

To address the challenges of using the real-world PMU data
for the development of event classifiers, we propose a novel
machine learning framework to handle these challenges, as
illustrated in Fig. 6. Specifically, we first do data preprocess-
ing: 1) we coarsely localize the events based on the inaccurate
event timestamps in the event logs, where a large time window
(e.g., 10 minutes) around the event timestamp in the event
logs is used to ensure that the event features are included; 2)
we then do data quality assessment to filter out bad readings,
which are treated as “missing” data; and 3) we complete all the
missing data based on our prior work [23]. Then, we do fine-
grained event data extraction to accurately localize the events
using event detection, where a much smaller time window
(e.g., 5 seconds) will be used to ensure that only the event data
is included. Based on the fine-grained event data extraction,
more distinct features can be constructed for each event type.
These features will be used to train event classifiers. In the
following, we discuss the details of each component in the
proposed machine learning framework.

B. Data Preprocessing

As the event timestamps in the event logs are inaccurate,
we extract the data in a large time window (i.e., 10 minutes)
centered at the start time of an event provided in the event logs
(i.e, 5 minutes before and 5 minutes after the start time) based
on the analysis of events in the event logs. Compared to the
3-minute time window used in [20], a larger window size is
used in this paper in order to preserve the event features. It is
worth noting that the larger window size will not increase the
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Fig. 3: Example of a frequency event. Fig. 4: Example of a line outage. Fig. 5: Example of a transformer outage.

Fig. 6: The machine learning framework for robust event classification.

complexity of training the event classifiers, as our fine-grained
data extraction will further refine the event data based on the
proposed event detection method.

In the raw PMU dataset, the measurements of all PMUs in
each day are stored in one Parquet file and these measurements
are not ordered according to the timestamps. When doing the
event data extraction, we partition the data based on PMU
ID and sort the corresponding measurements based on the
timestamps. As mentioned in Section II, certain signals (e.g.,
the current magnitude of A, B and C phases) are missing in
most cases. In the event data extraction, we extract the voltage
magnitude and the current magnitude of positive sequence and
ROCOF for the development of event classifiers.

Then, we do data quality assessment to filter out bad data.
As the PMU status flags are provided, we first remove the
measurements when PMUs were malfunctioning or in test
mode. After the status check, we further remove the bad data
based on the following criteria:
• Remove the measurements out of physical bound, i.e., the

angle measurement larger than 180 or less than zero and
the current or voltage magnitude less than zero.

• Remove the measurements that are 3 times greater than
the standard deviation based on the empirical distribution
of the measurements.

The bad data are treated as “missing” data, which are com-
pleted based on our regularized tensor completion approach
[23].

C. Event Detection based Fine-grained Data Extraction

The goal of fine-grained data extraction is to accurately
extract the event data for better constructing event features,
as the event timestamps provided in the event logs are not
accurate. To this end, we develop a model-free event detection
method based on the low-rank property of PMU data to
accurately localize the events. We observe that when the
disturbance occurs in the system, the low-rankness of PMU
data will change (see Fig. 7), which can be quantified using
the singular values of PMU measurement matrices. Compared
with other model-free event detection methods (e.g., [24]), our
method leverages rank features of multiple PMU measurement
signals and uses available event logs to automatically tune the
model parameters based on a Bayesian optimization algorithm.

Specifically, let Mw
s (t) ∈ Cw×n be a PMU measurement

matrix for an extracted signal s ∈ S, which embraces the past
w measurements before the timestamp t from n PMUs. Here
S denotes the set of extracted signals including the voltage
magnitude and the current magnitude of positive sequence and
ROCOF. For Mw

s (t), we do the singular value decomposition
(SVD) and compute the ratio of the largest σ1 and the second
largest singular σ2 values, i.e., ηt = σ2

σ1
. Then, the average

relative change of this ratio in the time window w is calculated
as

ξws (t) =
ηt − ηt−w
ηt−w · w

. (1)

Based on these ξws (t) from different signals, we use a
threshold-based OR rule to determine whether there is an
event. In other words, an event is detected, if one of these
ξws (t) is greater than a pre-determined threshold θs. Fig. 7
gives an example of detecting a frequency event using the
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Fig. 7: Frequency event detection based on the low-rankness of PMU data,
where ξ150f (t) of the ROCOF signal is shown in the bottom and w = 150 is
used.

ROCOF signal, where ξwf (t) changes significantly when the
frequency event occurs. When an event is detected, we extract
the event data in a smaller time window W (e.g., 5 seconds)
centered at the detected event start time.

The proposed event detection approach is model-free with
the parameters of the window size w and the detection
thresholds θ = {θs} of extracted signals S. To optimize the
detection performance, we tune the parameters by a Bayesian
optimization algorithm, which can efficiently search for the
best parameters. The idea of Bayesian optimization is to
model the unknown function between the parameters and the
detection errors using a multivariate Gaussian distribution,
and then use a computationally cheap acquisition function to
guide the search. We introduce an acquisition function β(·) as
the optimization objective, which characterizes the expected
detection error improvement under (θ, w):

β(θ, w) = E[(e(θ∗, w∗)− e(θ, w))+], (2)

where e(θ, w) denotes the detection error under (θ, w), and
e(θ∗, w∗) denotes the lowest detection error that has been
obtained so far. It is assumed that the detection errors are
random variables following the multivariate Gaussian distri-
bution: G ∼ N (m(θ, w), Cov(θ, w)) with mean m(θ, w) and
covariance Cov(θ, w). In each iteration, we find (θ, w) that
maximizes the acquisition function β(θ, w). Then, (θ, w) and
the corresponding e(θ, w) will be added into a sample set
S, and the mean m(θ, w) and covariance Cov(θ, w) of G
will be updated accordingly [25]. The details of the Bayesian
optimization based parameter search are given in Algorithm
1.

D. Feature Engineering

Using the event data from fine-grained data extraction, we
construct the event features based on the patterns of different
event types. By carefully analyzing the PMU data during
events, we find that the shape and the duration of the signals
under different event types are distinct:
• The ROCOF measurements of frequency events tend to

have a deeper and wider dip, compared to a narrow spark
of line and transformer outages (see Fig. 8).

Algorithm 1 Bayesian optimization based parameter search

Initialization: Initialize B = {((θ, w), e(θ, w))}.
For each iteration:
1) Find the parameters (θ̂, ŵ) that maximize β, i.e.,
(θ̂, ŵ) = argmax((θ,w),e(θ,w))∈Bβ(θ, w).
2) Use (θ̂, ŵ) for event detection and compute the corre-
sponding detection error e(θ̂, ŵ).
3) Add ((θ̂, ŵ), e(θ̂, ŵ)) into the sample set B = B ∪
((θ̂, ŵ), e(θ̂, ŵ)), and update the parameters of m(θ, w) and
Cov(θ, w) using B.

• The voltage magnitude measurements of transformer out-
ages tend to have a cliff-like drop with a longer duration
time, compared with a narrow spark of line outages (see
Fig. 9).

• The signal similarity among different PMUs under dif-
ferent event types is different. Frequency events can be
observed by all PMUs, while only a few PMUs can
capture line and transformer outages.

Based on these observations, we construct the event features.
Specifically, let Xs

i (t) denote the measurement of the ith
PMU’s signal s ∈ S at time t. In the event detection based fine-
grained data extraction, we extract the event data in a small
time window W . Let W denote the set of timestamps in this
time window W . Using the measurements {Xs

i (t), t ∈ W} of
each PMU’s signal in this window, we construct the following
six event features as illustrated in Fig. 10:
• Amplitude above the average:

F s1 (i) = max
t∈W
{Xs

i (t)−Xs
i } (3)

• Amplitude below the average:

F s2 (i) = max
t∈W
{Xs

i −X
s
i (t)} (4)

• Ramp-up rate:

F s3 (i) = max
t1>t2,t1,t2∈W

{Xs
i (t1)−Xs

i (t2)} (5)

• Ramp-down rate:

F s4 (i) = max
t1<t2,t1,t2∈W

{Xs
i (t1)−Xs

i (t2)} (6)

• Area above the average:

F s5 (i) =
∑

{t|Xs
i (t)>X

s
i ,t∈W}

(Xs
i (t)−Xs

i ) (7)

• Area below the average:

F s6 (i) =
∑

{t|Xs
i (t)<X

s
i ,t∈W}

(Xs
i −X

s
i (t)) (8)

where Xs
i is the average of the ith PMU’s signal s, i.e.,

Xs
i = 1

W

∑
t∈W Xs

i (t). These features aim to capture the
shape features of different event types shown in Figs. 8 and
9. Fig. 10 illustrates the constructed features for each event
type, where Fig. 10(a) corresponds to the typical shape of
ROCOF in a frequency event, Fig. 10(b) corresponds to the
typical shape of voltage/current magnitude in a line outage,
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Fig. 8: Comparison of ROCOF in different events. Fig. 9: Comparison of voltage magnitude in different
events.

Fig. 10: Illustration of constructed features for dif-
ferent event types.

and Fig. 10(c) corresponds to the typical shape of ROCOF in
a transformer/line outage.

To capture the signal similarity among different PMUs, we
compute the maximum F s,maxj , the minimum F s,minj , and the
mean F sj values of each feature j = 1, ..., 6 based on n PMUs’
features {F sj (i), i = 1, ..., n}. As the voltage magnitude, the
current magnitude, and ROCOF are considered in the extracted
event data, the number of features constructed for each event
is 54 (6× 3× 3).

Based on our experiments, we find that the auxiliary ratio
features {F s1 /F s2 , F s5 /F s6 , F s5 /(F s5 + F s6 )} for ROCOF con-
structed based on F sj can better capture the signal shape.
Therefore, in our experiments, we use these 57 (54+3) features
of each event to build event classifiers.

Remarks. The proposed features are constructed based on
the patterns of different event types observed in real-world
PMU data, which are different from the features derived in
the existing works (e.g., [26], [27]). For example, in [26],
the features are constructed based on wavelet transformation,
and the performance may degrade in the presence of noise
[28]; in [27], the features are created based on the mean,
the first-order derivative, and the second-order derivatives of
the signals, which may include many irrelevant or redundant
features, and thus careful feature selection is carried out
in [27]. Compared to neural network based approaches, the
number of features in our approach is much less than the large
number of automatically generated features (e.g., CNN), and
the interpretability of our approach is much better. Moreover,
with the small number of good features, we need much
less number of training data to train a good event classifier,
which can address the challenge of insufficient and imbalanced
training data, and the training time is negligible compared to
neural network based approaches.

E. Classification Model

In our machine learning framework, we address the chal-
lenges of using real-world PMU data through data preprocess-
ing, fine-grained event extraction, and feature engineering. The
proposed machine learning framework can significantly reduce
the dimensionality of the training data to a few number of good
features, which can facilitate the use of many off-the-shelf
lightweight models. To train an event classification model, we
use the constructed features as input and the corresponding
event type in the event logs as label. To find the best model,
we train different machine learning models and compare their
performance. In our experiments (see Section IV), we examine
the performance of many off-the-shelf models, in which the
Random Forest model performs best.

F. Event Classification Using Real-world PMU Data

Fig. 11: The workflow for event classification using real-world PMU data.

To apply the trained event classifier in practice, we still need
to deal with the incomplete and noisy PMU measurements,
which are streaming into the system in real time. Based
on the proposed machine learning framework, we develop a
workflow for event classification using real-world PMU data,
as illustrated in Fig. 11. Specifically, the raw PMU data are
streaming into the system. The data preprocessing (i.e., data
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quality assessment and missing data completion) developed in
Section III-B is first applied on the raw PMU data to fix the
bad and missing data. Then, the event detection is used to
determine whether there is an event. If an event occurs, the
PMU data in the small window W will be used to calculate
the features based on Section III-D. The calculated features
will be input into the event classifier to determine the event
type.

IV. CASE STUDY OF REAL-WORLD PMU DATA

A. Experimental Setup

1) Data: The data used in case studies are described in
Section II-A. For the 2-year PMU data, we randomly split
the PMU data in each month into 80% for training and 20%
for testing, so that the events across the entire year are fairly
distributed between the training set and the testing set. The
event types provided in the event logs are used as the labels
for classification, except the line trip and the oscillation events,
because the recorded line trip cannot be determined as faults
based on the current high-level description of the event logs
and oscillation events can be detected/classified by many exist-
ing approaches (e.g., [29], [30]), which can be easily integrated
into the proposed machine learning framework. Similar to the
related work [20], this paper focuses on the classification of
line outages, transformer outages, and frequency events.

2) Evaluation Metrics: Four metrics are used to evaluate
the classification performance, i.e., accuracy (ACC), precision
(PRE), recall (REC), and F1 score, which are defined as
follows:

ACC = (TP+TN)/(TP+TN+FP+FN),
PRE = TP/(TP + FP),
REC = TP/(TP + FN),

F1 = 2× (PRE× REC)/(PRE + REC),

where TP (i.e., True Positive) and TN (i.e., True Negative)
denote the number of positive and negative instances that are
correctly classified, respectively. FP (i.e., False Positive) and
FN (i.e., False Negative) denote the number of misclassified
negative and positive instances, respectively. The precision
represents how good the proposed model is at excluding false
alarms. The recall represents how good the proposed model is
at not missing true events.

3) Parameter Tuning: In the proposed machine learning
framework, there are two key parameters, i.e., the number
of measurements w for event detection and the window size
W for feature calculation. Based on Algorithm 1, we find
the best w is 120 (detection accuracy: 99.3%), which is used
throughout the experiments. To show the impact of w on the
event detection, Fig. 12 illustrates the event detection accuracy
obtained under different w.

For the window size W , we optimize W based on the
classification accuracy. In Fig. 13, we evaluate the classifi-
cation accuracy under different W and find the best accuracy
is achieved when W is 10 seconds, where the Random Forest
model is used.

Fig. 12: Event detection accuracy versus w.

Fig. 13: Event classification accuracy versus W .

4) Benchmark: We evaluate the performance of different
classification models under the proposed machine learning
framework:

• The Random Forest (RF) model,
• The Gradient Boosting Decision Tree (GBDT) model,
• The K-Nearest Neighbor (KNN) model,
• The Logistic Regression (LR) model,
• The Support Vector Machine (SVM) model,
• The Decision Tree (DT) model.

We use the radial basis function (RBF) as the kernel of SVM.
We fine-tune the hyperparameters of all these models via grid
search. We also compare the performance of these models with
neural network models, i.e., the Long Short-Term Memory
(LSTM) model and the Convolutional Neural Networks (CNN)
model, where the features are automatically generated based
on the input signals. Specifically, for LSTM and CNN, 3-
minute measurements of each event (1 minute before and 2
minutes after the start timestamp of a detected event) are used
as input to train the classifiers. When training these models,
5-fold cross-validation is used. The trained models are then
evaluated using the testing dataset.
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Fig. 14: Confusion matrix of the RF model for the testing data.

B. Classification Results

TABLE I
EVENT CLASSIFICATION PERFORMANCE UNDER DIFFERENT MODELS.

Model ACC(%) PRE(%) REC(%) F1(%)
RF 94 95 88 91

GBDT 93 94 88 91
KNN 85 78 63 66
LR 93 81 66 69
DT 81 78 81 79

SVM 92 86 74 79
CNN 69 23 33 27

LSTM 69 23 33 27

Table I compares the performance of different classification
models using the testing data. The performance of the RF
model outperforms the other models in all evaluation metrics.
From Table I, we can observe that the performance of non-
neural network models (i.e., RF, GBDT, KNN, LR, SVM,
DT) trained using the proposed machine learning framework
is better than the neural network models (i.e., CNN, LSTM)
trained directly using the PMU data. For the non-neural
network models, the performance of RF and GBDT are close,
and both performs much better than KNN, LR, SVM, and
DT. Compared to KNN, LR, SVM, and DT, RF and GBDT
are ensemble methods, which consist of a pool of trees that
can better capture the features of different types of events and
deal with the imbalanced training data.

Fig. 14 illustrates the confusion matrix of the RF model
based on the testing data, where the rows represent the
estimated event type, the columns represent the true event type,
and the value of each cell represents the classification accuracy
of the corresponding event type. The diagonal and off-diagonal
cells in Fig. 14 represent the events that are correctly and
incorrectly classified, respectively. From Fig. 14, it is observed
that most of the events (i.e., 94% on average) can be classified
correctly. For the misclassified events, 4.6% of line outages are
misclassified as transformer outages, and 5.3% of frequency
events are misclassified as line outages. By analyzing these
misclassified events, we find that the reasons for misclassifying
these events are 1) the patterns of some line and transformer
outages are similar and 2) the patterns in the ROCOF signal
of some frequency events are buried by noise due to the low
SNR.

For the neural network models, the classification results in
Table I agree with the findings in [20], [21] that directly using
the PMU data to train neural networks cannot achieve good

classification results. This is because 1) directly applying such
imbalanced data can cause severe overfitting problems; 2) the
number of labeled events is only a few thousands, which
is not enough for training a good neural network; and 3)
neural network based automatic feature generation using the
PMU data cannot well capture the event patterns. Hence, the
performance of off-the-shelf neural network models directly
trained using such a dataset can be significantly poor.

TABLE II
TRAINING TIME OF DIFFERENT MODELS.

Model RF GBDT KNN LR DT SVM CNN LSTM
Training time(secs) 1.59 25.39 0.01 0.37 0.21 3.48 11234.23 15689.45

Table II compares the training time of different models in a
server with dual-sockets Intel(R) Xeon(R) CPU E5-2630 v4 @
2.20GHz and 64 GB of memory. The training of all these non-
neural networks models takes only a few seconds, compared
with hours of training time for neural networks reported in
[20], [21]. Specifically, the RF model, which achieves the
best classification performance, takes only 1.59 seconds for
training. In comparison, the longest training time for non-
neural network models is the GBDT model, which is about
25 seconds. While the neural network related model requires
several hours of training time. These results show that the
proposed machine learning framework provides a promising
ways to train good event classifiers with good interpretability
and low training cost.

C. Robustness Analysis

Event classifiers trained under the proposed machine learn-
ing framework are robust against the low-quality PMU data
(e.g., bad and missing data described in Section III-B). To
evaluate the robustness, we compare the classification per-
formance under different data missing rates in the testing
dataset. Specifically, the PMU data are assumed to be missing
randomly with a probability. The missing data will be first
recovered in our framework using our regularized tensor
completion approach [23]. Then, the recovered PMU data will
be used to calculate the features for event classification.

TABLE III
EVENT CLASSIFICATION PERFORMANCE OF THE RF MODEL UNDER

DIFFERENT MISSING RATES

Missing Rate(%) ACC(%) PRE(%) REC(%) F1(%)
10 94 94 88 91
20 87 93 87 85
30 87 89 63 69
40 88 91 65 71
50 87 91 64 69

Table III compares the classification performance using
the RF model under different missing rates. It is observed
that the classification performance under 10% missing rate is
almost the same as the results in Table I. As the missing rate
increases, the classification performance slightly drops but still
remains at a high level, while the classification performance of
the neural network model in [20] drops significantly. This is
because the proposed machine learning framework leverages
the features constructed based on the event patterns and does
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not depend on the specific PMU measurements for event
classification. Therefore, even with high missing rates, our
approach can still perform well as long as the patterns are
preserved.

V. CONCLUSION

In this paper, we have developed a machine learning
framework for training robust event classifiers to enhance
the situational awareness of power systems using PMU data.
Our framework has addressed the challenges of using real-
world PMU data, such as incomplete and noisy PMU mea-
surements, inaccurate event timestamps in the event logs, and
insufficient and imbalanced training data. One salient merit of
the proposed framework is that large-scale real-world PMU
data is reduced to a small set of event features, which can
be used to efficiently train many off-the-shelf lightweight
machine learning models. As the features are constructed
based on the event patterns, the contribution of any single
PMU measurement to the features is low, which can effectively
mitigate the impact of bad and missing data and improve
the robustness of the event classifiers. Numerical experiments
using the real-world dataset from the Western Interconnection
of the U.S power transmission grid show that the event
classifiers trained under the proposed framework can achieve
high classification accuracy while being robust against low-
quality data. In conclusion, the proposed machine learning
framework provides a promising way to train robust event
classifiers with good interpretability and low training cost.
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