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Abstract: This paper investigates the short-term wind farm generation forecast. It is observed from
the real wind farm generation measurements that wind farm generation exhibits distinct features,
such as the non-stationarity and the heterogeneous dynamics of ramp and non-ramp events across
different classes of wind turbines. To account for the distinct features of wind farm generation,
we propose a Drifting Streaming Peaks-over-Threshold (DSPOT)-enhanced self-evolving neural
networks-based short-term wind farm generation forecast. Using DSPOT, the proposed method
first classifies the wind farm generation data into ramp and non-ramp datasets, where time-varying
dynamics are taken into account by utilizing dynamic ramp thresholds to separate the ramp and
non-ramp events. We then train different neural networks based on each dataset to learn the different
dynamics of wind farm generation by the NeuroEvolution of Augmenting Topologies (NEAT), which
can obtain the best network topology and weighting parameters. As the efficacy of the neural
networks relies on the quality of the training datasets (i.e., the classification accuracy of the ramp and
non-ramp events), a Bayesian optimization-based approach is developed to optimize the parameters
of DSPOT to enhance the quality of the training datasets and the corresponding performance of the
neural networks. Based on the developed self-evolving neural networks, both distributional and point
forecasts are developed. The experimental results show that compared with other forecast approaches,
the proposed forecast approach can substantially improve the forecast accuracy, especially for ramp
events. The experiment results indicate that the accuracy improvement in a 60 min horizon forecast
in terms of the mean absolute error (MAE) is at least 33.6% for the whole year data and at least 37%
for the ramp events. Moreover, the distributional forecast in terms of the continuous rank probability
score (CRPS) is improved by at least 35.8% for the whole year data and at least 35.2% for the ramp
events.

Keywords: ramp events; short-term wind power forecast; distributional forecast; point forecast;
Bayesian optimization; self-evolving neural networks

1. Introduction

To reduce the environmental impacts of the electricity system, much progress can
be found to integrate renewable energy resources, such as solar and wind. Indeed, a
substantial percentage of this renewable integration [1] comes from wind energy. Large-
scale wind power integration has aroused new challenges in power system operations,
particularly during wind power ramps. Large ramps have a significant influence on system
economics and reliability. For instance, the unexpected wind power ramp events that
occurred in Texas [2] caused a significant economic loss, and such cases were also reported
in many other countries [3].

Future Internet 2023, 15, 17. https://doi.org/10.3390/fi15010017 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15010017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-0350-416X
https://orcid.org/0000-0003-0084-7722
https://orcid.org/0000-0003-0084-7722
https://doi.org/10.3390/fi15010017
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15010017?type=check_update&version=2


Future Internet 2023, 15, 17 2 of 19

In this paper, we aim to develop accurate forecast approaches for a short-term wind
power forecast that accounts for wind power ramps.

There are many studies on short-term wind power forecast using time-series models
(e.g., the autoregressive model [4], autoregressive moving average model [5], Gaussian
process (GP) [6], Kalman filtering (KF) [7], and Markov chains [8]). However, these studies
cannot effectively capture the non-stationarity and the heterogeneous dynamics of wind
farm generation. To address the problem of non-stationary wind generation, the empirical
mode decomposition (EMD), complementary empirical mode decomposition (CEEMD)
[9], improved complete ensemble empirical mode decomposition (iCEEMDAN) [10], hy-
brid model of LSTM and variational mode decomposition (VMD) [11,12], and ensemble
empirical mode decomposition (EEMD)-based hybrid methods [13] are proposed, which
use Intrinsic Mode Functions (IMFs) as a pre-processing measure and the product of the
decomposition components as input for the prediction. However, finding an appropriate
number of components or modes is challenging. Recently, artificial intelligence (AI)-based
approaches were employed to many applications with success (e.g., Computer Vision
(CV) [14], Natural Language Processing (NLP) [15], and Chess Playing [16]). Different
neural network (NN)-based frameworks [11,17–34] were proposed for the wind generation
forecast, e.g., artificial neural networks (ANN) [17], a wavelet neural network (WNN) [19],
an adaptive neuro-fuzzy neural network (ANFIS) [18], the long short-term memory (LSTM)
model [25], a convolutional neural network (CNN) [21,22,26], radial neural networks [23],
a fuzzy wavelet neural network [24], a deep echo state network [20], a genetic LSTM [27],
a K-shape- and K-means-guided deep convolutional recurrent network [28], a dynamic
elastic NET (DELNET) [29], an attention temporal convolutional network (ATCN) [30], a
spatio-temporal correlation model (STCM) based on convolutional neural networks long
short-term memory (CNN-LSTM) [32], the extended deep sequence-to-sequence long short-
term memory regression (STSR-LSTM) [33], a hybrid model with attention mechanism and
complete ensemble empirical mode decomposition (CEEMDAN) [34], etc.

Although neural network (NN)-based methods may enhance the forecast accuracy to a
certain degree, the existing NN-based approaches may have poor performance during ramp
events, simply because the ramp and non-ramp events are not separated when training
the NNs. It has been shown that NNs may perform poorly if extreme (or ramp) events are
overlooked [35]. Previous studies [36,37] have revealed (1) the non-stationary and seasonal
dynamics of wind farm generation and (2) the heterogeneous dynamics of non-ramp and
ramp events. Moreover, as different classes of wind turbines are deployed in wind farms,
we observe that the dynamics of the wind generation of different classes of wind turbines
can be different (see Section 2). Thus, employing NNs without considering these distinct
features of wind farm generation means wind farm generation cannot be accurately forecast,
especially for ramp events (see Section 4). In the previous work, seasonal self-evolving
neural networks [38] are built for different seasons and ramps are defined using fixed
thresholds. However, it is observed that the dynamics of wind ramps may change within
each season, and due to the time-varying dynamics of wind ramps, it is challenging to use
fixed thresholds to accurately capture the dynamics of the wind ramps. To address this
challenge, this paper proposes a dynamic threshold-based approach that can adapt to the
time-varying dynamics of wind ramps.

Specifically, we propose Drifting Streaming Peaks-over-Threshold (DSPOT)-enhanced
self-evolving neural networks that account for the time-varying dynamics of different wind
turbines’ power outputs during non-ramp and ramp events in order to achieve a better
wind farm generation prediction. First, the proposed DSPOT approach leverages dynamic
ramp thresholds to classify the wind generation data of each class of wind turbines into
ramp and non-ramp datasets, which can account for the time-varying dynamics of the
ramp and non-ramp events across different classes of wind turbines. Then, different NNs
are trained for each dataset to learn the heterogeneous dynamics of the different classes of
wind turbines’ generation, in which the NeuroEvolution of Augmenting Topologies [39] is
adopted to evolve the NNs in order to obtain the best network topology and weighting
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parameters. As the efficacy of NNs depends on the quality of the training datasets (i.e., the
classification accuracy of the ramp and non-ramp events), a Bayesian optimization-based
approach is developed to optimize the parameters of DSPOT to enhance the quality of the
training datasets and the corresponding performance of the NNs. Ultimately, the proposed
DSPOT-enhanced self-evolving neural networks (see Figure 1) form a closed loop for optimizing the
performance of the wind generation forecast purely based on the data.
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Figure 1. Illustration of the DSPOT-enhanced self-evolving neural networks.

Real-world wind farm generation measurements often exhibit distinct features, such
as the non-stationarity and the heterogeneous dynamics for ramp and non-ramp events
across different classes of wind turbines. Employing existing machine learning approaches
without considering these features means wind farm generation cannot be accurately
forecast, especially for ramp events. The contributions of this paper can be summarized as
follows:

• We propose a Drifting Streaming Peaks-over-Threshold (DSPOT)-enhanced self-evolving
neural networks-based short-term wind farm generation forecast, which is adaptive
machine learning for wind farm generation forecasting. The proposed framework
addresses the challenges of the non-stationarity and the ramp dynamics of wind
farm generation and can greatly facilitate the integration of wind generation in the
real world.

• The proposed method first classifies the wind farm generation data into the ramp and
non-ramp datasets, where time-varying dynamics are captured by utilizing an adaptive
thresholding framework to separate the ramp and non-ramp events, based on which
different neural networks are trained to learn the dynamics of wind farm generation.

• As the efficacy of the neural networks relies on the quality of the training datasets (i.e.,
the classification accuracy of the ramp and non-ramp events), a Bayesian optimization-
based approach is developed to optimize the parameters of the DSPOT algorithm to
enhance the quality of the training datasets and the corresponding performance of the
neural networks, which enables the model parameters to be adjusted automatically.

• The experimental results show that compared with other forecast approaches, the
proposed forecast approach can substantially improve the forecast accuracy, especially
for ramp events.

The remaining parts of this paper are organized as follows. Section 2 elaborates the
distinct features of wind farm generation. Section 3 introduces the proposed wind farm
generation forecast approach. Section 4 validates the performance of the proposed approach
by using the real wind farm generation data. Section 5 summarizes the paper.
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2. Data Description and Key Observations

This paper uses the same real wind generation data from a large wind farm as our
previous works [36–38,40]. The wind farm has a rated capacity of 300.5 MW, where two
classes of wind turbines are installed: Mitsubishi and GE turbines. There are 221 Mitsubishi
turbines with a rated capacity of 1MW and 53 GE turbines with a rated capacity of 1.5 MW
(see in Figure 2).

GE
Mitsubishi

Figure 2. Locational distribution of the Mitsubishi and GE wind turbines in the wind farm.

Each class of wind turbines has distinct power curves as well as a cut-in and cut-off
speed. For each class, a meteorological tower (MET), collocated with a wind turbine, is
deployed to collect weather information. The instantaneous power outputs of each turbine
together with the weather information are saved every 10 min for the years 2009 and 2010.
In this paper, we use the power outputs of the Mitsubishi turbines Pmit(t) and GE turbines
Pge(t), the wind speed Ws(t), and the wind direction Wdir(t) to develop the proposed NNs.

From the measurements of the power outputs, we find 1) the non-stationarity of
the power measurements and 2) the heterogeneous dynamics of the wind non-ramp and
ramp events across each class of turbines as illustrated in Figure 3, where the cumulative
distribution functions (CDFs) of the wind power measurements of two classes of turbines
over different seasons of a year and different ramp events are presented.
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Figure 3. Empirical distribution of power outputs of GE and Mitsubishi turbines in 4 seasons and
ramp events, where season 4 is from October to December.
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In addition, it is shown in Figure 4 that the distributions of the ramps in different
time windows l and different time periods are different and follow the generalized Pareto
distribution (GPD).
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(a) GE ramp-up distribution
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(b) GE ramp-down distribution
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(c) Mitsubishi ramp-up distribution
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Figure 4. Empirical ramp distributions of GE and Mitsubishi turbines in different time windows l
and different time periods, which follow the generalized Pareto distribution.

In the previous work [38], the non-stationarity is considered by developing seasonal
self-evolving neural networks, where the ramp events are defined using fixed thresholds.
As observed from Figure 4, fixed thresholds cannot fully capture the dynamics of wind
ramp events. To address this challenge, we redefine the ramps by using dynamic thresholds,
which change over time based on the dynamics of the ramp events, in order to reduce the
forecast error of the wind farm generation, especially for ramp events.

3. DSPOT-Enhanced Self-Evolving Neural Networks

Motivated by the observations in Section 2, we seek to design a short-term forecast of
a wind farm generation method that accounts for not only the heterogeneous dynamics
of each class of wind turbines but also the time-varying dynamics of ramp and non-ramp
events. Inspired by the success of artificial intelligence (AI) in a wide range of fields, our
goal is to use neural networks (NNs) to learn these different dynamics of power outputs.
Although there are several attempts along this line (e.g., ANNs [41] and LSTM [42]), these
approaches use a single model and overlook the extreme ramp events, which leads to a
poor forecast performance, especially for ramp events. Additionally, to train good NNs,
it is critical to have high-quality training datasets (i.e., the ramp and non-ramp datasets
should be well separated), which is a challenging task due to the time-varying dynamics
of ramp and non-ramp events. Further, when training NNs, it is challenging to find the
optimal topology as well as the hyperparameters of NNs.
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To tackle these challenges, we propose DSPOT-enhanced self-evolving neural net-
works, namely the DSN, for the short-term wind farm generation forecast. The idea is
to (1) first classify non-ramp and ramp events using DSPOT, which uses dynamic ramp
thresholds to account for the time-varying dynamics of non-ramp and ramp events, and (2)
then train different NNs for each dataset to learn the heterogeneous generation dynamics
of the different classes of wind turbines, where these NNs can self-evolve based on the
data, in order to account for the non-stationarity and reduce the overhead of tuning the
topology and hyperparameters of NNs.

The design of our model is illustrated in Figure 1. The historical data are first classified
into non-ramp, ramp-up, and ramp-down datasets by DSPOT, in which dynamic thresholds
are determined based on recent observations in a moving window with size d, in order to
appropriately define ramp and non-ramp events over time.

Then, we use NeuroEvolution of Augmenting Topologies [39] to train NNs using the
classified datasets, in which the NNs evolve based on a genetic algorithm to obtain the
best topology and hyperparameters of NNs. As a result, 6 NNs, i.e., 3 for Mitsubishi and
3 for GE, are built (see Figure 1). As the efficacy of NNs relies on the quality of training
datasets, i.e., how good different ramp events are labeled, a Bayesian optimization-based
method is proposed to optimize the parameters of DSPOT to enhance the quality of the
training datasets and the corresponding performance of the NNs. Ultimately, the proposed
DSPOT-enhanced self-evolving neural networks form a closed loop for optimizing the
performance of wind farm generation forecast purely based on the data. In what follows,
the design of each component of the model is described in detail.

3.1. DSPOT-Based Ramp Classifier

Based on extreme value theory, it is likely that extreme events follow a generalized
Pareto distribution (GPD) [43], which is observed in wind power ramps in Figure 4. Thus
motivated, we will develop a data-fitting technique using the GPD model to determine
the dynamic threshold zqcat(t) for different ramp events, where the index cat ∈ {up, down}
denotes the category of ramp events and qcat is the quantile of the corresponding ramp
event distribution used to determine the threshold zqcat(t). The idea is to first estimate
the parameters of the GPD and then use the estimated GPD to find zqcat(t) based on the
quantile qcat. To account for the time-varying dynamics of ramp events, the parameters of
the GPD will be updated using the recent observed wind power in a moving window with
size d.

Specifically, let Pclass(t) denote the wind power output at time t, where the index
class ∈ {GE, Mitsubishi} represents the class of wind turbines. In a specified time period l,
ramp-up and ramp-down events can be separately expressed as:

Pclass(t)− Pclass(t− l) = ∆Pl
class(t) > zqup(t),

Pclass(t)− Pclass(t− l) = ∆Pl
class(t) < −zqdown(t),

(1)

where l and qcat are parameters to be tuned by BO (see Section 3.3) to determine the
ramp events.

Based on the above definitions of ramp events, we classify the original dataset into
ramp-up, ramp-down, and non-ramp datasets, i.e., 3 different datasets for each class of
wind turbine. Let X class

i , i ∈ {up, down, non} denote these 3 datasets, where X class
up denotes

the ramp-up dataset, X class
down the ramp-down dataset, and X class

non the non-ramp dataset. These
datasets will be used to train NNs in Section 3.2. Clearly, the quality of these datasets
(i.e., how well different ramp events can be separated) depends on the values of zqup(t)
and zqdown(t). In this section, we determine zqup(t) and zqdown(t) using the GPD model. For
ease of presentation, we present how to calculate the dynamic threshold zq(t) for ramp-up
events by omitting the index cat in the following. Correspondingly, the dynamic threshold
for ramp-down events can be determined using the same procedure.
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3.1.1. Calculating zq(t)

We derive the log-likelihood of the GPD using the recent observations {∆Pl
class(t)}d in

a moving window with size d:

L(γ, ξ; {∆Pl
class(t)}d) = −d log ξ

+ ( 1
γ − 1)

t
∑

i=t−d+1
log(1− γ∆Pl

class(i)
ξ ), (2)

where γ and ξ are the parameters of the GPD (γ 6= 0). To estimate the parameters of the
GPD, we find a solution (γ∗, ξ∗) of L by solving the following two equations:

∂L(γ, ξ; {∆Pl
class(t)}d)

∂γ
= 0, (3)

∂L(γ, ξ; {∆Pl
class(t)}d)

∂ξ
= 0. (4)

Grimshaw [43] has shown that if a solution (γ∗, ξ∗) is obtained in this equation, the
argument β∗ = γ∗/ξ∗ is the solution to the scalar equation u(β)v(β) = 1, where

u(β) =
1
|Yq|

|Yq |

∑
i=1

1
1 + βYi

, (5)

v(β) = 1 +
1
|Yq|

|Yq |

∑
i=1

log(1 + βYi). (6)

Here, a set Yq = {Yi} is defined for a given quantile q, i.e., Prob(∆Pl
class(i) > Pth

q ) = q,
where Pth

q > 0 is the threshold associated with the quantile q. Yq contains all ∆Pl
class(i)

larger than Pth
q with Yi = ∆Pl

class(i)− Pth
q > 0. |Yq| denotes the cardinality of Yq. Based on

Grimshaw trick [43], ξ∗ and γ∗ can be obtained using β∗ by

γ∗ = v(β∗)− 1, (7)

ξ∗ = γ∗/β∗. (8)

As there are multiple possible solutions of β∗, we need to find all the solutions in
order to best estimate the GPD parameters (γ, ξ) to fit the distribution of ramp events. It is
noted that 1 + βYi must be strictly positive. As Yi is positive, we have β∗ ∈ (− 1

Ymax
,+∞).

Grimshaw also shows an upper-bound β∗max :

β∗max = 2
Ȳ−Ymin

(Ymin)2 , (9)

where Ȳ, Ymax, and Ymin are the average amount, the maximum amount, and the minimum
amount of Yq, respectively. Therefore, we can perform a numerical root search and find all
possible solutions in (− 1

Ymax
, β∗max), in which we choose the solution that maximizes the

likelihood L.
Based on the estimated GPD, we can calculate zq(t) by solving the probability:

Prob(∆Pl
class(i) > zq(t)). Based on [44], we leverage the probability of the exceedances of

∆Pl
class(i) over the threshold Pth

q ,

Prob{∆Pl
class(i) > zq(t)|∆Pl

class(i) > Pth
q }

= (1 + γ̂(
zq(t)−Pth

q

ξ̂
))−

1
γ̂ .

(10)
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As Prob(∆Pl
class(i) > Pth

q ) = q, we can solve

Prob(∆Pl
class(i) > zq(t)) = q(1 + γ̂(

zq(t)−Pth
q

ξ̂
))−

1
γ̂ (11)

based on Bayesian theorem. Using (11), we can obtain zq(t) by

zq(t) = Pth
q +

ξ̂

γ̂

((
q · d
|Yq|

)−γ̂

− 1

)
. (12)

3.1.2. DSPOT Algorithm

Given a quantile qcat, the DSPOT algorithm determines the dynamic threshold zqcat(t)
using the recent observations. Based on zqcat(t), wind generation difference ∆Pl

class(t) will
be labeled into ramp-up, ramp-down or non-ramp events, and the wind power of recent
measurement Pclass(t) will be added into the corresponding dataset X class

i . The details of
the DSPOT algorithm are provided in Algorithm 1.

Specifically, Algorithm 1 will first initialize the thresholds zqup(t) and zqdown(t) using
the first d + l wind power measurements. Then, Algorithm 1 will update zqup(t) and
zqdown(t) using the new wind power measurement in the moving window with size d in an
online manner, based on which the new wind power measurement will be added into the
corresponding dataset Xclass

i . Algorithm 1 will be run for wind power measurements of
each class of wind turbines.

Algorithm 1 DSPOT

Input: {Pclass(t)}, d, l, qup, and qdown.
Output: Xclass

up , Xclass
down, and Xclass

non .
Initialization:
(1) Calculate initial thresholds zqup , zqdown based on Section 3.1.1 using {Pclass(t)|t =

1, . . . , d + l}.
(2) Initialize Xclass

up , Xclass
down, and Xclass

non based on zqup and zqdown .
End Initialization
For every t > d + l in {Pclass(t)}
(1) Update zqup(t) and zqdown(t) based on Section 3.1.1 using the recent observations

{∆Pl
class(t)}d.

(2) Classify ∆Pl
class(t) based on zqup(t) and zqdown(t), and add Pclass(t) into the correspond-

ing dataset X class
i .

3.2. Self-Evolving Neural Network

A self-evolving neural network (SEN) will be built for each dataset, Xclass
up , Xclass

down, and
Xclass

non . When training the neural networks (NNs), each element Pclass(t + 1) in Xclass
i is

treated as the label and the corresponding features contain the wind speed Ws(t), the change
in wind direction degree Wdir(t), and current power measurements {Pclass(t), Pclass(t −
1), . . . , Pclass(t− Lag)}, where Lag depends on the measurements (see the discussion in
Section 4.1). As demonstrated in Figure 5, NEAT [39] is used to train an NN. NEAT
leverages a genetic algorithm (GA) to evolve the NN. It obtains the best network topology
and the best weighting parameters by minimizing the forecast error, i.e., min ∑t(P̂class(t)−
Pclass(t))2, where P̂class(t) denotes the forecast from the NN.

As demonstrated in Figure 5, the workflow of NEAT contains random population
generation, crossover, mutation, speciation, and evaluation by the fitness function. In this
paper, the fitness function is defined using the forecast accuracy:

Fit = −∑
t
(P̂class(t)− Pclass(t))2. (13)



Future Internet 2023, 15, 17 9 of 19

Figure 5. Workflow of NEAT.

Each gene in the population set corresponds to a neural network. We aim to find
the best gene with the largest fitness value (i.e., the lowest prediction error). In NEAT,
the topology of an NN is directly encoded into the gene by a direct encoding scheme
[45] in order to avoid Permutations Problem [46] and Competing Conventions Problem
[47]. Specifically, connection and node (list of inputs, hidden nodes, and outputs) are
encoded. Every unit of connection gene describes the connection weight (W), output node
(O), input node (I), enable gate (E), and the number of innovation (N) that corresponds
to a consecutive arrangement of new generated node. The workflow of NEAT will be
elaborated in the following.

First, initial population (i.e., a set of genes) is generated randomly. Each gene repre-
sents an NN. Note that under this random generation, a neural network might contain no
route from inputs to outputs, and we will remove these NNs from the initial population. For
example, Figure 6 shows an NN containing 3 inputs (Pclass(t), Ws(t), Wdir(t)) and 1 output
(P̂class(t + 1)), where in the first unit of connect gene, I:1 O:5 W:0.5 indicates connection
from Node 1 to Node 5 with weight of 0.5, and E:1 means that this is an enabled connection.

Figure 6. Encoding of an NN with 1 output and 3 inputs.

After generating the initial population, NEAT iteratively optimizes the topology and
connection weights of NNs using crossover and mutation. Specifically, nodes and connec-
tions of NNs are inserted or removed randomly based on the Poisson distribution [39]. For
example, Figures 7 and 8 show possible mutations by appending a connection and a node to
a neural network, respectively. After crossover and mutation, topologically homogeneous
genes are classified as one speciation determined by compatibility distance [39].

Then, the fitness of species will be evaluated. If the highest fitness of species does not
increase or the number of generations is achieved, NEAT will output the species with high
fitness value, which will be used for wind generation forecast.
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Figure 7. Mutation by appending a connection, where the link from Node 1 to Node 4 is inserted.

Figure 8. Mutation by appending a node, where Node 6 is inserted between Node 1 and Node 5.

3.3. Bayesian Optimization-Based Parameter Search

The performance of NNs depends on the quality of datasets Xclass
up , Xclass

down, and Xclass
non

obtained by the DSPOT-based ramp classifier in Section 3.1. As the performance of the
DSPOT-based ramp classifier relies on the parameters b = (l, d, qup, qdown), we develop a
Bayesian optimization-based approach that can efficiently find the best parameters b∗. The
idea is to model the unknown function between the parameters and the training errors as
a multivariate Gaussian distribution, and then use a computationally cheap acquisition
function to guide the search for the best parameters.

Specifically, we introduce an acquisition function ζ(·) as the optimization objective,
which characterizes the expected training error improvement under b,

ζ(b) = E
[

∑
class

∑
i
(Fclass

i (b∗)− Fclass
i (b))+

]
, (14)

where Fclass
i (b) denotes the training error of the NN trained under b using Xclass

i described
in Section 3.2, and Fclass

i (b∗) is the lowest error that has been obtained so far. It is as-
sumed that the training errors {Fclass

i (b)|i ∈ {up, down, non}, class ∈ {GE, Mitsubishi}}
are random variables following the multivariate Gaussian distribution G ∼ N (m(b), Σ(b))
with mean m(b) and covariance Σ(b). In each attempt, we find b that maximizes the
acquisition function ζ(b). Then, we use this b as the input of Algorithm 1 to deter-
mine Xclass

up , Xclass
down, and Xclass

non , based on which we evolve the NNs. Then, {Fclass
i (b)|i ∈

{up, down, non}, class ∈ {GE, Mitsubishi}} will be added into a sample set S , and the
mean m(b) and covariance Σ(b) of G will be updated based on Bayesian optimization [48].
The details of the Bayesian optimization-based parameter search are given in Algorithm 2.
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Algorithm 2 Bayesian optimization-based parameter search

Initialization: Initialize S = {(b, {Fclass
i (b)})}.

For each attempt:
(1) Find the parameter vector b̂ that maximizes ζ, i.e., b̂ = arg max(b,{Fclass

i (b)})∈S ζ(b).

(2) Generate Xclass
up , Xclass

down, and Xclass
non based on Algorithm 1 using b̂, and evolve the NNs

accordingly.
(3) Add the current training errors {Fclass

i (b̂)} into the sample set S = S ∪
(b̂, {Fclass

i (b̂)}), and update the parameters of m(b) and Σ(b) using S .

3.4. Short-Term Wind Farm Generation Forecast

The proposed DSPOT-enhanced self-evolving neural networks (DSN) will train multi-
ple NNs, which capture different dynamics of wind farm generation. When forecasting
wind farm generation, we will first leverage the DSPOT-based ramp classifier to determine
whether the current state of wind farm generation is in ramp up, ramp down, or non-ramp.
Based on the classified state, we choose the corresponding NNs to forecast the wind farm
generation.

Specifically, let the function Hclass
θi

(·) represent the neural network with parameters θi

(i.e., the best gene) trained using the datasets: Xclass
i (t) = {Ws(t), Wdir(t), Pclass(t), Pclass(t−

1), . . . , Pclass(t− Lag)}, the output of the neural network is

P̂class(t + 1) = Hclass
θi

(Xclass
i (t)). (15)

Based on the results of the ramp classifier, we pick the corresponding NNs (i.e., the best
gene) for each class of wind turbines. Therefore, the wind farm generation forecast P̂ag(t+ 1)
can be achieved by:

P̂ag(t + 1) = P̂mit(t + 1) + P̂ge(t + 1). (16)

Equation (16) is the point forecast of wind farm generation.
Distributional forecasts are often needed to manage the uncertainty [49]. To this end,

we leverage the collection of genes generated in NEAT and use the forecasts by these genes
to develop distributional forecasts. Let {P̂(j)

ag (t)} represent the set of forecasts offered by
each gene j. It is assumed that the forecast error of the point forecasts follows the standard
normal distribution with the mean µt and the variance σ2

t as follows:

µt =
1
J

J

∑
j=1

P̂(j)
ag (t), (17)

σ2
t =

1
J

J

∑
j=1

(P̂(j)
ag (t)− µt)

2, (18)

where J is the number of genes. Under such assumption, we calculate the (1− α) confidence
interval of the point forecasts (16) as follows:

[P̂ag(t + 1)− Z(1− α

2
)σt+1, P̂ag(t + 1) + Z(1− α

2
)σt+1], (19)

where Z(1− α
2 ) represents the point where the cumulative distribution function of the

standard normal distribution is equivalent to 1− α
2 .

Remark 1. The proposed SENs can be trained offline. As the learning process of each SEN is based
on different datasets, we can train these SENs on parallel. This can significantly reduce the training
time of these SENs. Furthermore, the learning of SENs needs no AI experts to manually tune the
topology and the hyperparameters; SENs can automatically adapt to the changing dynamics of
wind farm generation purely based on the data. This can greatly facilitate the implementation of the
proposed method in reality.
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4. Case Studies of Real Wind Power Data
4.1. Experimental Setup
4.1.1. Data

The data used in case studies are described in Section 2. Specifically, we use the data
of year 2009 to train the proposed SENs and the data of year 2010 to validate the forecast
performance of the proposed approach.

4.1.2. Evaluation Metrics

Mean absolute error (MAE) and root mean square error (RMSE) are employed to
evaluate the forecast performance, i.e.,

MAE =
1

Nt
∑

t

∣∣P̂ag(t)− Pag(t)
∣∣,

RMSE =

√
1

Nt
∑

t

∣∣P̂ag(t)− Pag(t)
∣∣2.

where Nt is the number of data points in the test dataset.

4.1.3. Parameter Tuning

As discussed in Section 3, the forecast performance of NNs greatly depends on the
quality of training datasets, which hinges on the parameters (l, d, qup, qdown) and Lag. To
find the best (l, d, qup, qdown), Algorithm 2 is run with 200 attempts.

To optimize Lag, we evaluate MAE under different values of Lag (see Figure 9) and
pick the one with the lowest MAE. It is observed that the lowest MAE is achieved when the
feature dimension is 9 (i.e., Lag = 7).

Figure 9. MAE versus feature dimension size.

4.1.4. Benchmark

We compare the forecast performance of the proposed approach with the following
benchmarks:

• The adaptive AR model [37];
• The Markov chain-based (MC) model [36];
• The SVM-enhanced Markov (SVM-MC) model [37];
• The seasonal NEAT (SNEAT) model trained by different season data without splitting

ramp events;
• The NEAT model trained by the entire year data without splitting ramp events;
• The long short-term memory (LSTM) model trained by the entire year data;
• The artificial neural network (ANN);
• The seasonal self-evolving neural networks (SSEN) model [38].

The seasonal NEAT model considers four seasons, but it does not split ramp and
non-ramp events in the training process, which would lead to a poor performance when
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ramp events occur. We use a prevailing structure of three layers to build the LSTM with the
same configuration in [38]. The fully connected ANN is used, which includes three layers,
and each layer contains 30 nodes.

4.2. Experimental Results
4.2.1. 10 min ahead Forecast

In Tables 1 and 2, we compare the 10 min ahead forecast under different models for
the whole year data and ramp events in the year 2010, respectively. The forecast results in
terms of the MAE and RMSE are normalized using the nominal capacity of 300.5MW of the
wind farm.

Table 1. Forecast under different models over the whole year 2010.

Error AR MC SVM-MC NEAT SNEAT LSTM SSEN ANN DSN

MAE(%) 2.441 2.413 2.214 1.734 1.778 1.799 1.704 1.826 1.661
RMSE(%) 3.974 3.524 3.342 3.030 3.074 3.072 3.023 2.993 2.996

Table 2. Forecast under different models over all ramps of the year 2010.

Error AR MC SVM-MC NEAT SNEAT LSTM SSEN ANN DSN

MAE(%) 2.945 2.856 2.657 2.363 2.416 2.469 2.320 2.426 2.288
RMSE(%) 4.403 3.837 3.654 3.593 3.667 3.679 3.534 3.580 3.518

From Tables 1 and 2, we observe that the proposed approach (DSN) outperforms the
benchmarks. Compared with the non-NN-based benchmarks (the AR, MC, and SVM-MC),
the proposed approach improves the MAE at least 24.9% for the whole year data and at
least 13.8% for the ramp events, respectively. Compared with the NN-based benchmarks,
the improvement in the proposed approach (DSN) in terms of the MAE is at least 2.5% for
the whole year and at least 1.3% for the ramp events. Such improvements are because of the
splitting of the non-ramp and ramp events, which enables the DSN to more effectively learn
the different dynamics of the GE and Mitsubishi turbines measurements under non-ramp
and ramp events.

Figures 10–12 illustrate the prediction intervals for the three representative ramp
events. The first chosen event is 5 January 2010 because there is a wind power ramp-up
event from 4 a.m. to 5 a.m. with a ramp-up rate of 85 Megawatts per hour (MW/H). The
second chosen event is 19 March 2010 because of the significant wind power fluctuation
from 7 p.m. to 9 p.m. with both ramp-up and ramp-down events of an average ramp
rate around 100 MW/H. The final chosen event is 9 October 2010 because of a remarkable
ramp-down event from 3 a.m. to 5 a.m. with an average ramp rate of 66.5 MW/H. As
demonstrated in those pictures, the actual wind farm generation is mostly confined in the
prediction interval achieved from (19), regardless of the sharp ramps.
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Figure 10. On 5 January 2010.
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Figure 11. On 19 March 2010.
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Figure 12. On 9 October 2010.

4.2.2. Other Forecasting Horizons

In Tables 3 and 4, we compare the forecast of different models under different horizons
using the whole year data and ramp events in the year 2010, respectively. From Tables
3 and 4, we observe that the proposed approach outstrips the benchmarks under these
forecasting horizons. It is observed in most cases that seasonal NEAT performs worse than
NEAT (trained by using the entire year data). It is because the amount of data in a season is
not enough for training a good NN compared to the entire year data.

For the 30 min ahead forecast, compared with the non-NN-based benchmarks (the
AR, MC, and SVM-MC), the proposed approach improves the MAE at least 20.6% for the
whole year data and at least 17.7% for the ramp events, respectively. Compared with the
NN-based benchmarks (NEAT, SNEAT, LSTM, ANN, and SSEN), the enhancement of the
proposed approach by the MAE is no less than 19.4% for the whole year data and at least
22.8% for the ramp events.

Table 3. MAE of different models at different forecasting horizons over the whole year 2010.

Model 30 min 40 min 50 min 60 min

AR 4.837 6.516 8.160 9.624
MC 4.733 6.233 7.551 8.727

SVM-MC 4.733 6.233 7.550 8.727
NEAT 4.804 5.851 6.939 7.640

SNEAT 5.064 6.322 7.681 8.277
LSTM 4.664 6.517 7.681 8.257
SSEN 4.852 5.970 7.095 7.862
ANN 4.755 5.846 6.580 7.491
DSN 3.755 4.220 4.746 5.069
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Table 4. MAE of different models at different forecasting horizons over ramp events of the year 2010.

Model 30 min 40 min 50 min 60 min

AR 6.991 8.871 11.883 11.996
MC 6.592 8.426 10.654 11.091

SVM-MC 6.591 8.425 10.654 11.091
NEAT 7.255 8.379 10.366 10.274

SNEAT 7.427 8.612 10.471 10.385
LSTM 7.025 9.255 11.558 10.915
SSEN 7.092 8.182 9.727 9.849
ANN 7.109 8.087 9.384 9.627
DSN 5.420 5.595 7.023 6.197

For the 40 min ahead forecast, compared with the non-NN-based benchmarks (the
AR, MC, and SVM-MC), the proposed approach improves the MAE at least 32.2% for the
whole year data and at least 33.5% for the ramp events, respectively. Compared with the
NN-based benchmarks (NEAT, SNEAT, LSTM, ANN, and SSEN), the enhancement of the
proposed approach by the MAE is no less than 27.8% for the whole year data and at least
31.6% for the ramp events.

For the 50 min ahead forecast, compared with the non-NN-based benchmarks (the AR,
MC, and SVM-MC), the proposed approach improves the MAE at least 37.1% for the whole
year data and at least 34% for the ramp events, respectively. Compared with the NN-based
benchmarks (NEAT, SNEAT, LSTM, ANN, and SSEN), the enhancement of the proposed
approach by the MAE is no less than 31.6% for the whole year data and at least 27.7% for
the ramp events.

For the 60 min ahead forecast, compared with the non-NN-based benchmarks (the
AR, MC, and SVM-MC), the proposed approach improves the MAE at least 41.9% for the
whole year data and at least 44.1% for the ramp events, respectively. Compared with the
NN-based benchmarks (NEAT, SNEAT, LSTM, ANN, and SSEN), the enhancement of the
proposed approach by the MAE is no less than 33.6% for the whole year data and at least
37% for the ramp events.

4.2.3. Distributional Forecast

The continuous rank probability score (CRPS) is used to evaluate the performance of
the proposed distributional forecasts. The CRPS is defined as:

CRPS =
1

Nt
∑

t

∫ Pmax
ag

0
(F̂t(x)−U(x− Pag(t)))dx (20)

where F̂t(x) is the cumulative density function (cdf) obtained by using the distributional
forecast. In addition, U(.) is a unit step function that equals to 1 if x > Pag(t) and 0
otherwise. Generally, the lower the CRPS, the more accurate the distributional forecast is. In
Tables 5 and 6, we compare the forecast of different NN-based models under different
horizons using the whole year data and ramp events in the year 2010, respectively. The
results of the non-NN models can be found in [37]. We observe that our model performs
much better than other benchmarks for longer prediction horizons (normally longer than
30 min) where the wind ramps are large, while the performance is similar for the 10 min
forecast. This indicates the superior performance of the proposed method on handling the
uncertainty of the wind.

For the 30 min ahead forecast, compared with the NN-based benchmarks (NEAT,
SNEAT, LSTM, ANN, and SSEN), the proposed approach improves the CRPS at least 24.9%
for the whole year data and at least 21.7% for the ramp events, respectively.

For the 40 min ahead forecast, compared with the NN-based benchmarks (NEAT,
SNEAT, LSTM, ANN, and SSEN), the proposed approach improves the CRPS at least 26%
for the whole year data and at least 30% for the ramp events, respectively.
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For the 50 min ahead forecast, compared with the NN-based benchmarks (NEAT,
SNEAT, LSTM, ANN, and SSEN), the proposed approach improves the CRPS at least 33.3%
for the whole year data and at least 38.8% for the ramp events, respectively.

For the 60 min ahead forecast, compared with the NN-based benchmarks (NEAT,
SNEAT, LSTM, ANN, and SSEN), the proposed approach improves the CRPS at least 35.8%
for the whole year data and at least 35.2% for the ramp events, respectively.

Table 5. CRPS of different NN models distributional forecast (normalized by Pmax
ag ) over the year of

2010.

Model 10 min 30 min 40 min 50 min 60 min

NEAT 1.628 4.595 5.761 6.451 7.371
SNEAT 1.601 4.655 5.773 6.751 7.512
LSTM 2.000 4.644 5.574 6.947 7.309
SSEN 1.584 4.614 5.776 6.704 7.464
ANN 1.651 4.84 5.844 6.756 7.755
DSN 1.611 3.598 4.120 4.303 4.725

Table 6. CRPS of different NN models distributional forecast (normalized by Pmax
ag ) of all ramps over

the year of 2010.

Model 10 min 30 min 40 min 50 min 60 min

NEAT 2.296 7.048 8.123 9.585 9.897
SNEAT 2.234 6.995 7.952 9.632 9.743
LSTM 2.719 6.944 7.781 9.799 9.290
SSEN 2.186 6.845 7.975 9.447 9.513
ANN 2.276 7.192 8.010 9.739 9.941
DSN 2.276 5.137 5.445 5.776 6.018

4.2.4. Model Updating

The training time for the self-evolving NN depends on the number of training samples.
In our case, the number of ramp-up and ramp-down events in the training datasets is
less than 4000, and updating the corresponding models takes only about 3–5 min using a
machine with Dual-sockets Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz. The updating
time is much less than the forecasting horizons, and therefore our model can work well
in practice.

4.2.5. Discussions

Based on the experimental results, we observe that the NN-based models outperform
the non-NN-based models. By breaking the training datasets into ramp and non-ramp
training datasets for distinct classes of wind turbines, the performance of the NNs can be
improved.

Further, the proposed DSPOT-based ramp classifier can better split the ramp and
non-ramp events using dynamic thresholds and therefore better capture the heterogeneous
dynamics of wind farm generation. Moreover, the proposed DSN can automatically adapt
to the changing dynamics of wind farm generation over time, and the model updating
time for the DSN is low. Specifically, the number of ramp-up and ramp-down events in the
training datasets is less than 4000, and updating the corresponding models takes only about
3–5 min using a machine with Dual-sockets Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz.
The updating time is much less than the forecasting horizons, and therefore our model can
work well in practice.

As shown in the experiments, the performance improvement for the point forecast
and the distributional forecast is smaller in the 10 min horizon while the improvement is
higher in the 60 min horizon. This might be due to the fact that some baseline models (e.g.,
the AR, SNEAT, LSTM, and ANN) are not considering ramp events which leads to a deeper
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forecast degeneration with a longer prediction horizon. Although the SSEN in our previous
work [38] considered the ramp events, it leverages a fixed threshold to distinguish the ramp
events. Because our proposed framework adjusts the ramp thresholds dynamically, the
accuracy results are superior compared to the existing benchmarks.

5. Conclusions

We develop the DSPOT-enhanced self-evolving neural networks for the short-term
wind power forecast. Specifically, the proposed approach initially classifies the wind farm
generation data into ramp and non-ramp datasets using DSPOT, which leverages the dy-
namic ramp thresholds to account for the time-varying dynamics of the ramp and non-ramp
events. We then train different NNs based on each dataset to learn the different dynamics
of wind farm generation by NEAT, which are able to obtain the best network topology
and weighting parameters. As the efficacy of the neural networks relies on the quality of
the training datasets (i.e., the classification accuracy of the ramp and non-ramp events), a
Bayesian optimization-based approach is developed to optimize the parameters of DSPOT
to enhance the quality of the training datasets and the corresponding performance of the
neural networks. The experimental results show that the proposed approach outperforms
other forecast approaches.

In the future work, we plan to leverage the generative adversarial networks (GAN)-
based models to better classify the ramp events which in turn would improve the quality
of the training datasets.
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